D. Harper

GMSB Overview

- Popular class of SUSY breaking scenarios
 - SUSY broken at high scale, in the hidden sector
 - Usual $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge interactions responsible for communicating this to the observable sector
- Parameters for mGMSB:

 $\Lambda, M, N, \tan\beta, \mu, C_{\text{grav}}$

- Phenomenology
 - Lightest SUSY particle (LSP) gravitino
 - Next-to-lightest SUSY particle (NLSP) neutralino, slepton, etc.

GMSB Overview (cont.)

• All SUSY particles decay (e.g., via cascades) to the NLSP, which then decays to the gravitino (LSP) $\tilde{A}_{\text{NLSD}} \rightarrow A + \tilde{G}$

- Assume lightest neutralino is the NLSP in our analyses
 - Neutralino is a mixture of gaugino and Higgsino eigenstates

$$\tilde{\chi}_1^0 \to (h, \gamma, Z) + \tilde{G}$$

- This leads to final states such as

 $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow (hh, h\gamma, hZ, Z\gamma, ZZ, \gamma\gamma) + \tilde{G}\tilde{G}$

Neutralino Production & Decay

Note: $\ell = e, \mu$ above

Visualization of Signal Events

Virtual Point 1 (VP1) – an ATLAS event display program

APS DPF Meeting - Wayne State University

Background MC – $Z(\ell\ell)\gamma + E_T$

Sample	$\sigma_{ m NLO}[m pb]$	$\int \mathcal{L} dt \; [\mathrm{fb}^{-1}]$
$\overline{Z\gamma}$	7.1	3
$t\overline{t}$	203	9
$Z \rightarrow ee + X$	1318	4
$Z \to \mu \mu + X$	1318	4
$W^-Z \to \ell \nu \ell \ell$	156	99
$W^-Z \to qq\ell\ell$	488	10
$W^-Z \to \tau \nu \ell \ell$	78	253
$W^+Z \to \ell \nu \ell \ell$	265	75
$W^+Z \to qq\ell\ell$	828	6
$W^+Z \to \tau \nu \ell \ell$	132	150

NB: $\ell = e, \mu$

Leptons

 $p_T(\ell) > 6 \text{ GeV}, |\eta(\ell)| < 2.5$ $p_T(\text{leading } \ell) > 30 \text{ GeV}$ electron ID – used BDT

Photons

Isolation: $\Delta R > 0.1$ $p_T(\gamma) > 20 \text{ GeV}$

Z Candidate

 $M_{\ell\ell} \in [70, 110] \text{ GeV}$

Signal & Background Contributions (after preselection)

	Process	$\sigma_{\mathrm{PRESEL}}[\mathrm{fb}]$
	$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to Z(\mu\mu) \gamma \tilde{G} \tilde{G}$	10
Muon Samplo	$Z\gamma$	581
Muon Sample	$t\overline{t}$	14
	$Z(\mu\mu) + X$	644
	$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to Z(ee) \gamma \tilde{G} \tilde{G}$	6
Electron Sample	$Z\gamma$	374
	$t\overline{t}$	4
	Z(ee) + X	349

Muon Analysis

Electron Analysis

	$N_{\rm events}$		$N_{\rm events}$
$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to Z(\to \mu\mu) \gamma \tilde{G} \tilde{G} \ (N_s)$	5.4 ± 0.06	$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to Z(\to ee) \gamma \tilde{G} \tilde{G} (N_s)$	3.38 ± 0.05
$Z\gamma ightarrow \ell \ell \gamma$	0.3 ± 0.3	$t\bar{t} \to \ell + X$	0.4 ± 0.2
$t\bar{t} \to \ell + X$	0.3 ± 0.2	$Z(\rightarrow ee) + X$	0.3 ± 0.3
$Z(\rightarrow \mu\mu) + X$	1.1 ± 0.5	$W^+Z \to \ell \nu \ell \ell + X$	0.17 ± 0.05
$W^+Z \to \ell \nu \ell \ell + X$	0.28 ± 0.06	$W^-Z \to \ell \nu \ell \ell + X$	0.06 ± 0.02
$W^-Z \to \ell \nu \ell \ell + X$	0.26 ± 0.05	$W^+Z \to \tau \nu \ell \ell + X$	0.06 ± 0.02
$W^+Z \to \tau \nu \ell \ell + X$	0.07 ± 0.02	$W^-Z \to \tau \nu \ell \ell + X$	0.02 ± 0.01
$W^-Z \to \tau \nu \ell \ell + X$	0.04 ± 0.01	Total BG (N_b)	1.0 ± 0.35
Total BG (N_b)	2.4 ± 0.65	N_s/N_b	3.3
N_s/N_b	2.3		

Results for 1fb⁻¹ 10 TeV vs. 14 TeV

		$10 \mathrm{TeV}$	$14 \mathrm{TeV}$
	Muon:	5.4 ± 0.06	7.8 ± 0.2
Signal	Electron:	3.4 ± 0.05	4.7 ± 0.15
	Combined:	8.8 ± 0.08	12.5 ± 0.2
Background	Muon:	2.4 ± 0.65	2.1 ± 0.6
	Electron:	1.0 ± 0.35	2.1 ± 1.0
	Combined:	3.4 ± 0.7	3.8 ± 1.2

Discovery Sensitivity for $Z(\ell\ell)\gamma + \not\!\!\!E_T$

10 TeV

• $1 \text{ fb}^{-1} - 3\sigma$ evidence

	$Z(\mu\mu)\gamma + E_T$	$Z(ee)\gamma + E_T$	Combined
N_s	5.4 ± 0.06	3.4 ± 0.05	8.80 ± 0.08
N_b	2.4 ± 0.65	1.0 ± 0.35	3.4 ± 0.7
p-value (20% sys)	0.009	0.036	0.0014
Significance $(20\% \text{ sys})$	2.4σ	1.8σ	${f 3}\sigma$

- < 3 fb⁻¹ 5 σ discovery
 - 5.4 σ can be reached with 3 fb⁻¹
- 14 TeV
- <2 fb⁻¹ 5 σ discovery!
 - 5.9 σ can be reached with 2 fb⁻¹

Background MC – $Z(\ell \ell)Z(\ell \ell) + E_T$ 14 TeV

• Preselection – use same cuts as for $Z(\ell \ell)\gamma + E_T$ analysis

	Process	$\sigma_{\mathrm{PRESEL}} \ \mathrm{(fb)}$
4	$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to Z(\mu\mu) Z(\mu\mu) \tilde{G}\tilde{G}$	0.25
	$ZZ \to 4\ell$	5.7
4μ	$t\bar{t} \to 4\ell + X$	2.3
	$Zb\overline{b} \to 4\ell + X$	1.8
	$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to Z(ee) Z(ee) \tilde{G} \tilde{G}$	0.09
4e	$ZZ \to 4\ell$	1.8
	$t\bar{t} \to 4\ell + X$	0.06
	$Zb\overline{b} \to 4\ell + X$	0.03
	$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to Z(\mu\mu) Z(ee) \tilde{G} \tilde{G}$	0.3
$2\mu 2e$	$ZZ \to 4\ell$	6.5
	$t\bar{t} \to 4\ell + X$	0.9
	$Zb\bar{b} \to 4\ell + X$	0.55

$\not\!\!E_T > 40 \,\,\mathrm{GeV}$

APS DPF Meeting - Wayne State University

Results of $ZZ + \not\!\!\!E_T$ Selection for 30 fb⁻¹

	Process	N_{events}
4μ	$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to Z(\mu\mu) Z(\mu\mu) \tilde{G}\tilde{G}$	3.29 ± 0.06
	$ZZ \to 4\ell$	2.7 ± 0.3
	$t\bar{t} \to 4\ell + X$	< 1
	$Zb\overline{b} \to 4\ell + X$	< 0.15
	$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to Z(ee) Z(ee) \tilde{G} \tilde{G}$	1.17 ± 0.04
10	$ZZ \to 4\ell$	0.24 ± 0.09
40	$t\bar{t} \to 4\ell + X$	< 1
	$Zb\overline{b} \to 4\ell + X$	< 0.15
	$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to Z(\mu\mu) Z(ee) \tilde{G} \tilde{G}$	4.01 ± 0.07
$2\mu 2e$	$ZZ \to 4\ell$	1.4 ± 0.2
	$t\bar{t} \to 4\ell + X$	< 1
	$Zb\overline{b} \to 4\ell + X$	< 0.15
	$ \tilde{\chi}_1^0 \tilde{\chi}_1^0 \to Z(\ell \ell) Z(\ell \ell) \tilde{G} \tilde{G} (N_s) $	8.5 ± 0.1
Combined	Total BG (N_b)	4.3 ± 0.4
	N_s/N_b	2

27 July 2009

	4μ	4e	$2\mu 2e$	Combined
N_s	3.29 ± 0.06	1.17 ± 0.04	4.01 ± 0.06	8.5 ± 0.1
N_b	2.7 ± 0.3	0.24 ± 0.09	1.4 ± 0.2	4.3 ± 0.4
p-value (10% sys)	0.077	0.23	0.019	0.0015
Significance $(10\% \text{ sys})$	1.4σ	0.7σ	2.1σ	3σ

Can also use BDTs – significance is improved!

	4μ	4e	$2\mu 2e$	Combined
N_s	3.75 ± 0.08	1.36 ± 0.05	4.44 ± 0.08	9.56 ± 0.12
N_b	1.43 ± 0.24	0.12 ± 0.07	0.69 ± 0.17	2.24 ± 0.30
p-value (10% sys)	0.022	0.124	1.12E-3	1.09E-5
Significance $(10\% \text{ sys})$	2σ	1.15σ	3.05σ	4.24σ

Conclusions

- GMSB models provide phenomenologically interesting topologies for SUSY searches
- ATLAS Sensitivity for model line E

 $\Lambda = 80 \text{ TeV}, M/\Lambda = 3, N = 2, \mu = 0.75 M_1, \tan \beta = 3$

- - 20% systematic uncertainty
- 3σ for $ZZ + \not\!\!\!E_T$ for 30 fb⁻¹
- 4σ for $ZZ + \not\!\!\!E_T$ for 30 fb⁻¹ with BDT Analysis
 - 10% systematic uncertainty

Backup

VP1 Visualization of Signal Events

- $|M_z M_{||}| < 13 \text{ GeV}$
- min (∆R) < 0.4
- $p_{T}(\gamma) > 30 \text{ GeV}$
- min p_T (I) > 10 GeV
- MET > 40 GeV
- $|\Delta d0| < 0.1 mm/0.15 mm \& |\Delta z0| < 1 mm$
- + M_{T} (II γ MET) > 210 GeV
- N tracks in cone 0.3 around lepton/photon
 < 4

N(tracks in cone of 0.3) < 4

APS DPF Meeting - Wayne State University