Lepton Universality Test in $\Upsilon(1S)$ decays at BABAR

Elisa Guido

University & INFN Genova (on behalf of BABAR Collaboration)

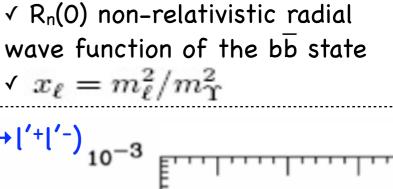
DPF2009, Detroit 26th-31st July 2009

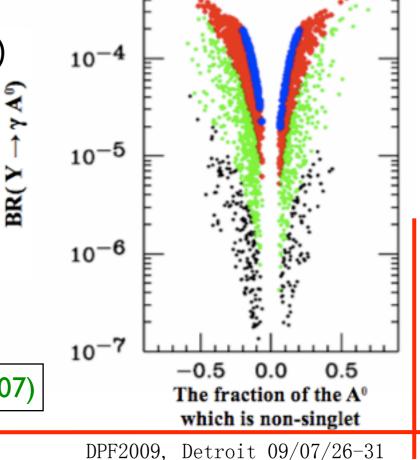
Outline:

- Theoretical motivations
- Previous measurement
- BABAR analysis
- ✓ Future developments

Theoretical motivations (I)

- ✓ In the SM couplings between gauge bosons and leptons are independent of lepton flavour
- ✓ BR($\Upsilon(1S) \rightarrow l^+l^-$) does not depend on the lepton considered


$$\Gamma_{\Upsilon \to \ell \ell}^{(em)} = 4\alpha^2 Q_b^2 \, \frac{|R_n(0)|^2}{m_{\Upsilon}^2} \, (1+2x_\ell)(1-4x_\ell)^{1/2}$$

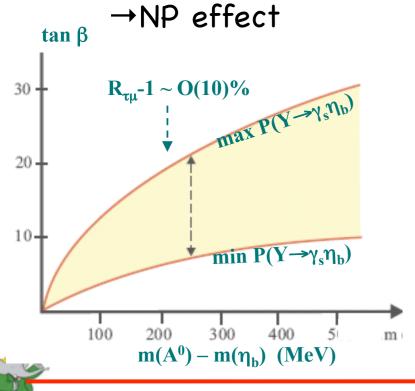

✓ SM expectation for
$$R_{ll'} = BR(\Upsilon(1S) \rightarrow l^+l^-)/BR(\Upsilon(1S) \rightarrow l'^+l'^-)_1$$

is 1

(except for small lepton-mass effects, $R_{\tau\mu} \sim 0.992$)

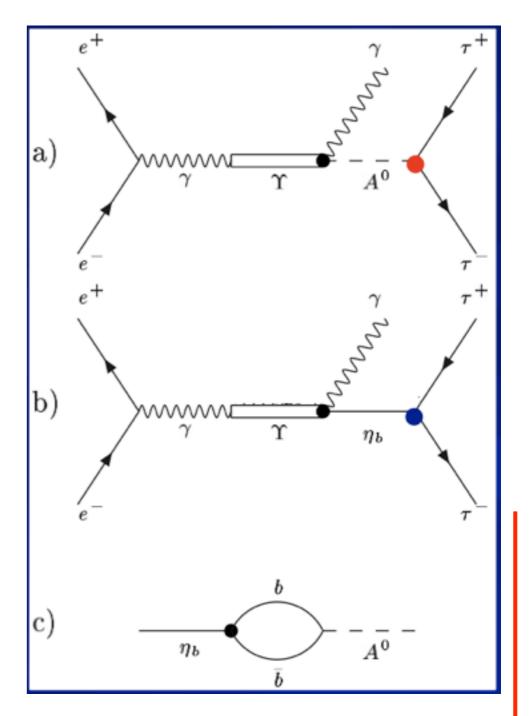
- ✓ Beyond the SM deviations of $R_{II'}$ from SM expectation are possible
- ✓ In the NMSSM hypothesis of existence of a light pseudo-scalar Higgs boson A⁰ (possibly escaped to LEP bounds)

Phys.Rev. D76, 051105 (2007)



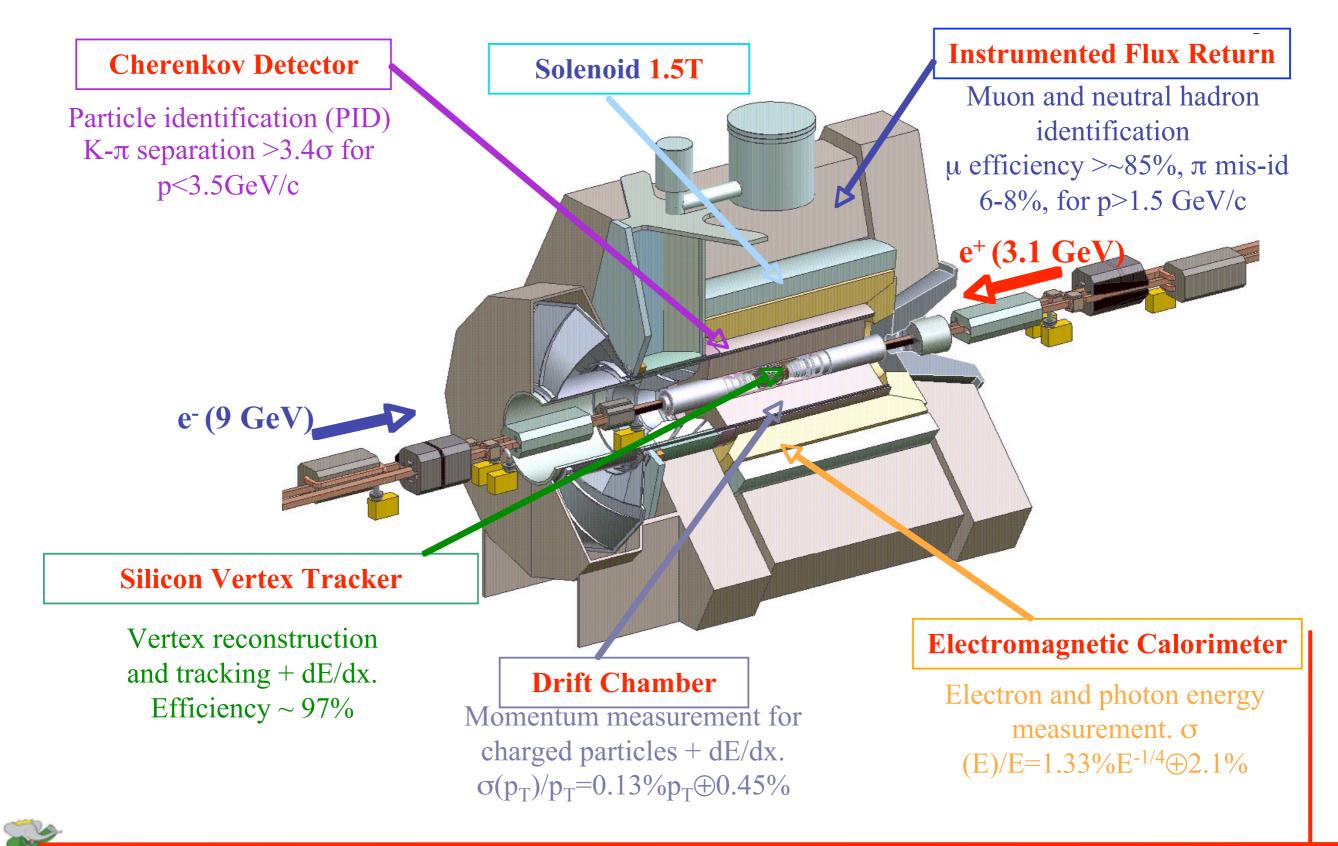
Theoretical motivations (II)

 \checkmark A⁰ may mediate the decay chain of the Y(1S):

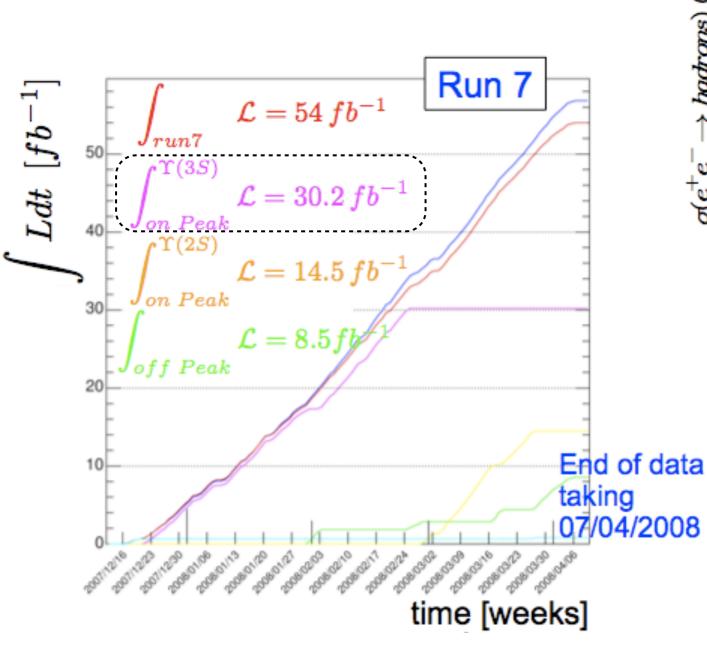

 $\begin{array}{c} \Upsilon(1S) \rightarrow A^{0} \Upsilon, A^{0} \rightarrow l^{+}l^{-} & a) \\ \Upsilon(1S) \rightarrow \eta_{b} \Upsilon, \eta_{b} \rightarrow A^{0} \rightarrow l^{+}l^{-} & b) \& c) \\ \uparrow \\ mixing \end{array}$

- ✓ If the photon was present but undetected, the lepton pair would be ascribed to the Y(1S)
- ✓ It can result in a deviation of R_{II}['] from SM expectation (lepton universality breaking)

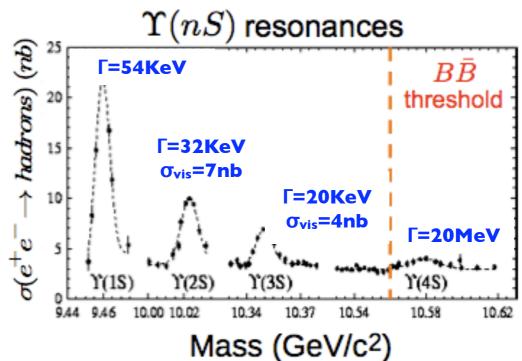
- The coupling of A⁰ is proportional to the lepton mass
- ✓ Effect more evident when one of the leptons is a ⊤ (up to 10%) → R_{Tµ}


Int.J.Mod.Phys.A19, 2183 (2004); Phys.Lett B653, 67 (2007)

Previous measurement


CLEO J/ψ (a) γμμ Previous best result by **CLEO**: \checkmark 90% U.L. on $B(Y → \gamma a_1^0)B(a_1^0 → II)$ $\vec{\beta}$ R_{τμ}(Y(3S)) : 1.07 ± 0.08 (stat.) ± 0.05 (syst.) $R_{\tau\mu}(\Upsilon(2S))$: 1.04 ± 0.04 (stat.) ± 0.05 (syst.) 1000 2000 3000 4000 $R_{\tau\mu}(\Upsilon(1S))$: 1.02 ± 0.02 (stat.) ± 0.05 (syst.) (b) γττ BR($\Upsilon(1S) \rightarrow \eta_b$)·BR($\eta_b \rightarrow A^0 \rightarrow \tau^+ \tau^-$) < 0.27% @ 95% C.L. Phys.Rev.Lett.98, 052002 (2007) 10-5 4500 5500 6500 7500 8500 9500 a⁰₁ mass (MeV) Statistics exploited: ~1.2fb⁻¹ at \checkmark each Y peak Phys.Rev.Lett.101, 151802 (2008) $\rightarrow \sim 10^7 \Upsilon$ resonances No results by **Belle** \checkmark Updated results from **BABAR** in Y.Kolomensky talk This is the first result by **BABAR** for $R_{\tau\mu}(\Upsilon(1S))$ \checkmark (on Tuesday Higgs Physics session)

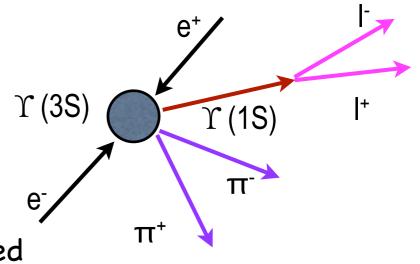
The BABAR detector



BABAR data samples

✓ PEP-II asymmetric energy collider operating at the Y resonances

BABAR recorded luminosity


✓ Bottomonium datasets

Ŷ	25	35	
BABAR	100M	120M	
CLEO	9M	6M	
BELLE	50M	11M	

 \checkmark

Analysis strategy (I)

- ✓ 28 fb⁻¹ of data collected at Y(3S) CM energy → ~ 122 · 10⁶ Y(3S)
- ✓ Tag Y(1S) exploiting Y(3S)→Y(1S) $\pi^+\pi^-$, Y(1S)→T⁺T⁻ and $\mu^+\mu^-$ events:
 - \checkmark BF(Y(3S)→Y(1S)π⁺π⁻) ~ 5%
 - \checkmark select τ 1-prong decays
 - ✓ 4-charged tracks final state topology

- \checkmark $\Upsilon(1S) \rightarrow \mu^+ \mu^-$ events (D_{μ}) completely reconstructed
- \checkmark $\Upsilon(1S) \rightarrow \tau^+ \tau^-$ events (D_τ) cannot be completely reconstructed
- \checkmark Separate selections for D_{τ} and D_{μ} (optimized using Monte Carlo simulated samples)
- ✓ Main sources of bkg: qq̄- and τ⁺τ⁻-continuum; Bhabha events; generic Y(1S) decays (peaking)

Analysis strategy (II)

A cut on the difference between the visible and the reconstructed energy \checkmark of the event separates D_{μ} and D_{τ} events

0.04

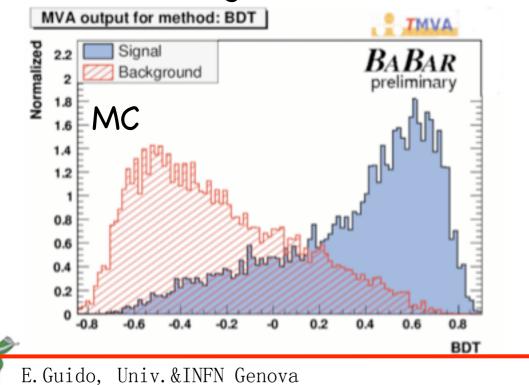
0.035

0.03

0.025

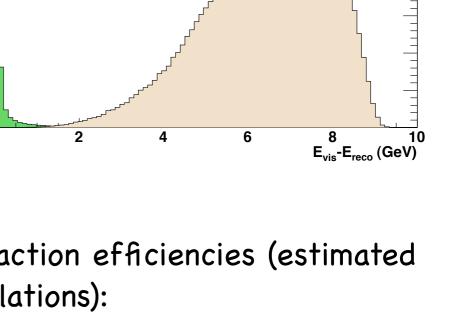
0.02

0.015


0.01

0.005

0


0

- A multivariate analysis approach in D_{τ} \checkmark
 - Boosted decision tree discriminator \checkmark
 - Several kinematic and shape \checkmark variables exploited
 - Good separation between signal and \checkmark background

Signal extraction efficiencies (estimated on MC simulations):

MC D_{μ}

MC D₁

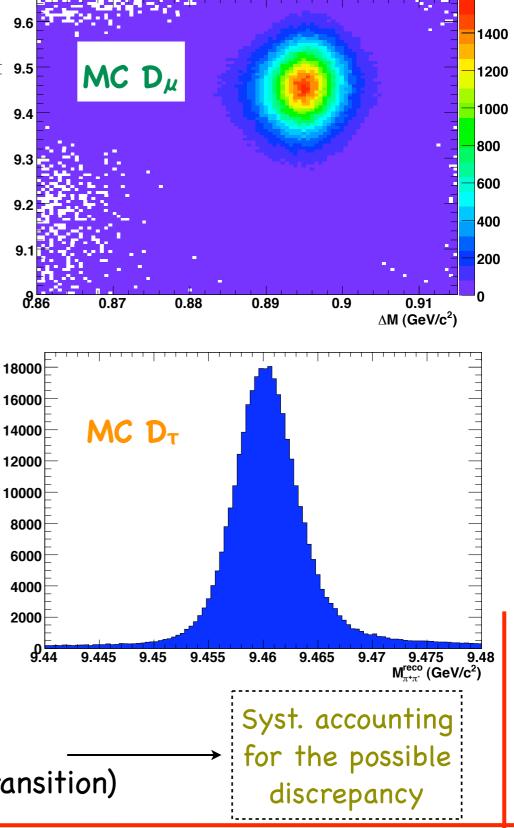
 \checkmark

Signal extraction (I)

M_{μ⁺μ⁻} (GeV/c²)

- Extended and unbinned maximum-likelihood fit:
 - ✓ in D_{μ} a 2-dim likelihood based on ∆M and $M_{\mu+\mu-}$
 - ✓ in D_{τ} a 1-dim likelihood based on $M_{\pi+\pi-}^{reco}$


 $\Delta \mathsf{M} = M(\varUpsilon(3S)) - M(\varUpsilon(1S))$


M.... invariant u^+u^- mass

$$M_{\pi+\pi-}^{\text{reco}} = \sqrt{s + M_{\pi^+\pi^-}^2 - 2 \cdot s \cdot \sqrt{M_{\pi^+\pi^-}^2 + p_{\pi^+\pi^-CM}^2}}$$

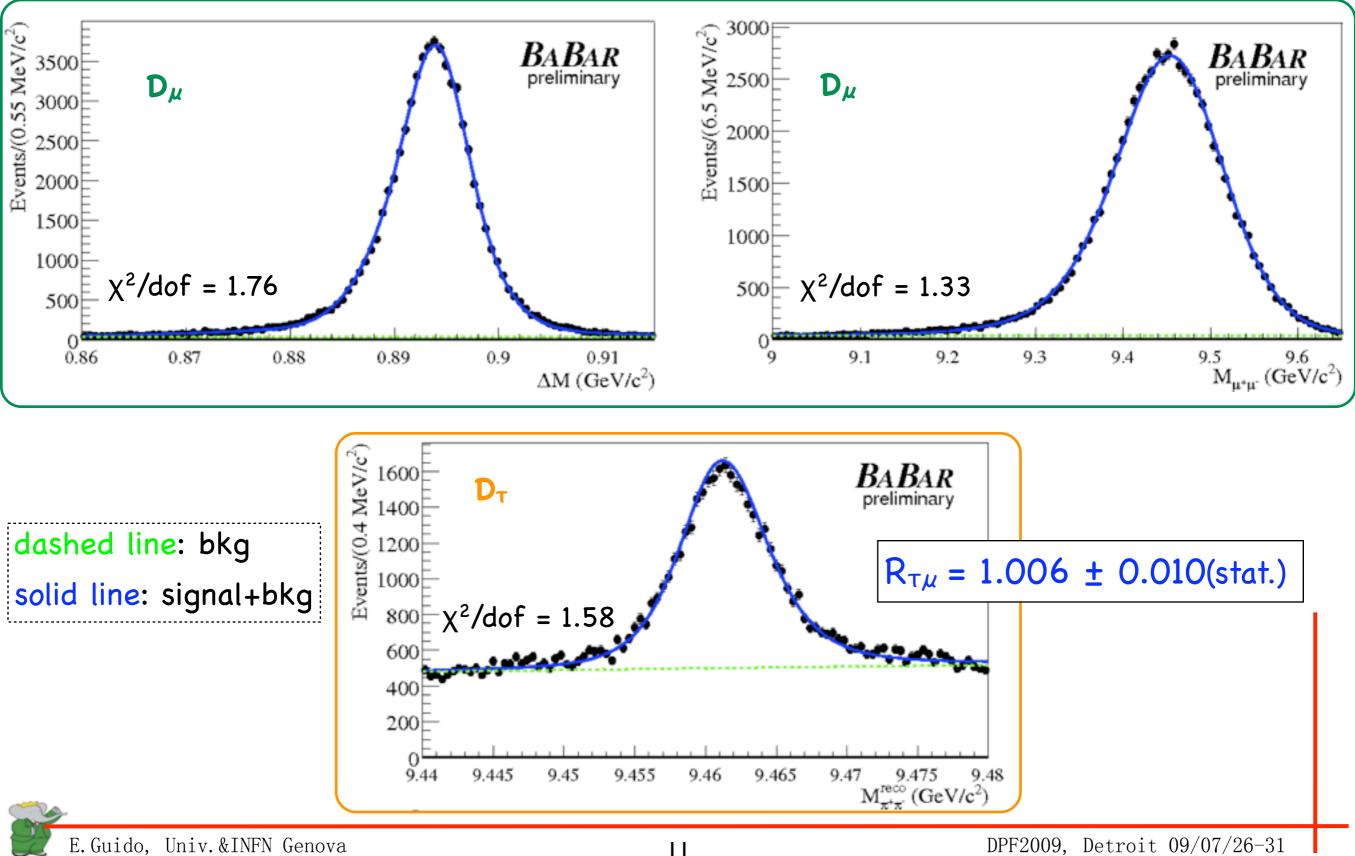
(\sqrt{s} is the nominal beam energy)

- Signal probability density functions (PDFs) chosen:
 - ✓ in D_µ from a sub-sample of data (discarded by the nominal fit)
 - ✓ in D_T from D_µ distribution for M_{π+π-}^{reco}
 (variable sensitive only to Y(3S)→Y(1S)π⁺π⁻ transition)

Signal extraction (II)

✓ Summary of signal and background PDFs:

Variable	Signal PDF	Background PDF
ΔM	Triple Gaussian	flat
$M_{\mu^+\mu^-}$	${\mathcal F}$	flat
$M_{\pi^+\pi^-}^{reco}$	${\mathcal F}$	poly 1^{st} order


where \mathcal{F} is an analytical function approximating a Gaussian with asymmetric widths and non Gaussian tails:

$$\mathcal{F}(x) = exp\Big\{-\frac{(x-\mu)^2}{2\sigma^2(L,R) + \alpha(L,R)(x-\mu)^2}\Big\}$$

(where x is the variable, $M_{\mu+\mu-}$ or $M_{\pi+\pi-}^{reco}$, described by the function)

- \checkmark Fit performed **simultaneously** to D_{μ} and D_{τ}
 - ✓ signal PDFs fixed (parameters determined on the control samples)
 - ✓ bkg PDFs floating
- \checkmark R_t returned

Fit results

Systematic uncertainties

Since we measure a ratio of branching fractions, several systematic uncertainties cancel out (luminosity, $\Upsilon(3S)$ production cross section, $BR(\Upsilon(3S) \rightarrow \Upsilon(1S)\pi^+\pi^-)$, track reconstruction efficiency and the common selection)

 \checkmark

- ✓ Residual uncertainties from:
- ✓ Total contribution up to
 2.4%
- Still room for reducing this uncertainty
- ✓ Corrections for known differences between data and simulation efficiencies

- event selection efficiency;
- \checkmark particle identification (PID) efficiency (μ leptons);
- trigger and background filters (BGF) efficiencies;
 - imperfect knowledge of signal & background shapes.

Systematic error :	$\Upsilon(1S) \rightarrow \mu^+ \mu^- \mid \Upsilon(1S) \rightarrow \tau^+ \tau^-$		
Event selection	1.5%		
PID	0.6%		
Trigger	0.18%	0.10%	
BGF	negl.	negl.	
PDF parameters	1.7%		
Background PDFs	0.28%		
Agreement $\mu^+\mu^-$ vs. $\tau^+\tau^-$ in $M^{reco}_{\pi^+\pi^-}$	_	0.11%	
MC statistics	0.08%	0.09%	
TOTAL	2.4%		

Preliminary result

$\frac{Prelimina}{R_{T,\mu}(Y(1S))}: 1.009 \pm 0.010 \text{ (stat.)} \pm 0.024 \text{ (syst.)}$

[Previous best result: $R_{\tau\mu}(\Upsilon(1S))$: 1.02 ± 0.02 (stat.) ± 0.05 (syst.) by CLEO] Phys.Rev.Lett.98, 052002 (2007)

 Sensitive improvement in precision (factor > 2), both in statistical and systematic errors

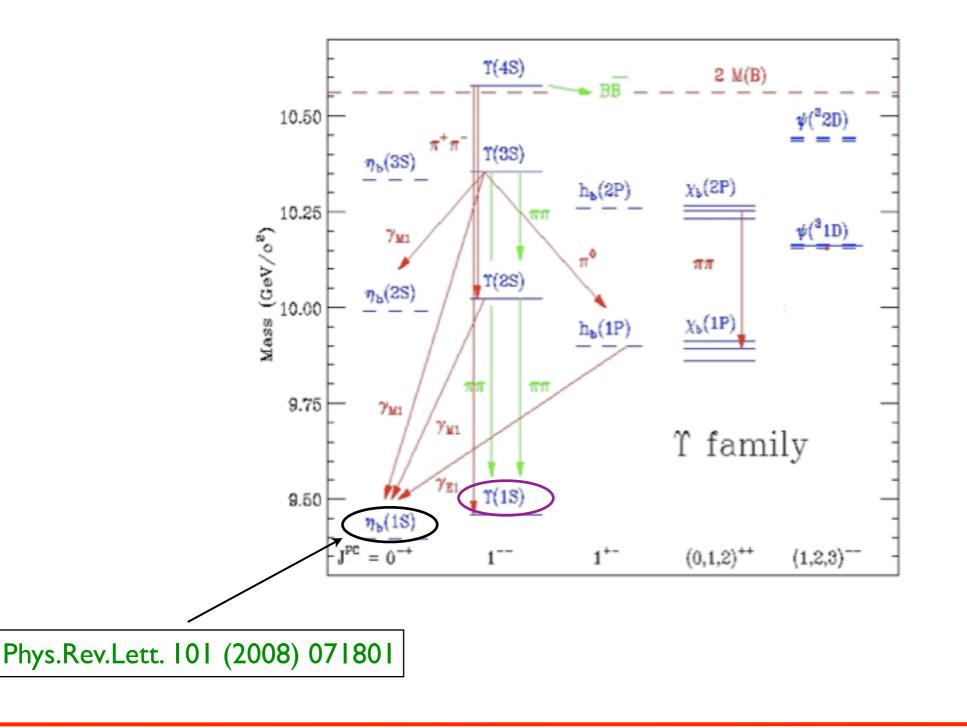
No significant deviations w.r.t. SM expectations

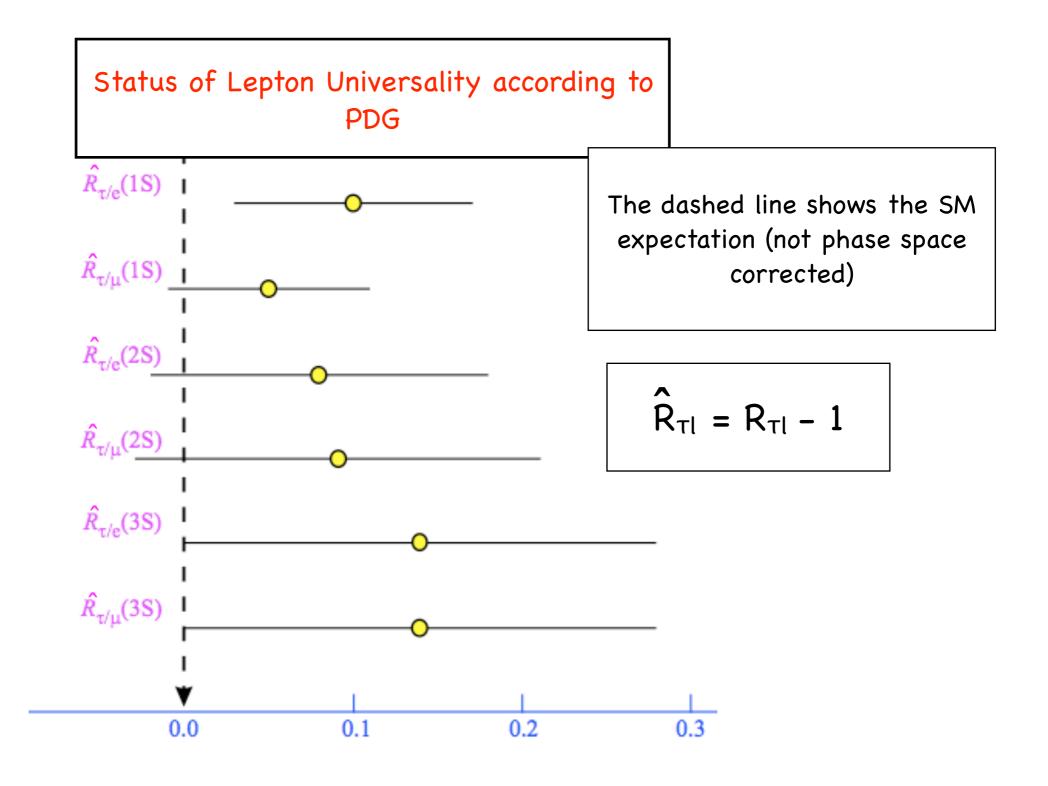
 \checkmark Still working to reduce systematic uncertainty for the final result

Conclusions

- ✓ Lepton Universality test is an important check of SM
 - ✓ possible Lepton Universality breaking in Y decays foreseen in the hypothesis of existence of A⁰ (entering the Y decay chain)
- ✓ BABAR preliminary result

$R_{\tau\mu}(\Upsilon(1S))$: 1.009 ± 0.010 (stat.) ± 0.024 (syst.)


- \checkmark exploits the 28 fb⁻¹ of data collected at the Y(3S) energy
- sensitive improvement in the precision (both statistical and systematic uncertainties are reduced of a factor > 2 w.r.t. the previous best result of CLEO)
- ✓ further improvement in systematic error expected for the final result
- ✓ Stay tuned!


BACKUP SLIDES

LEP bounds on A⁰

The bottomonium family

Details on systematic uncertainties estimate

1. Event selection:

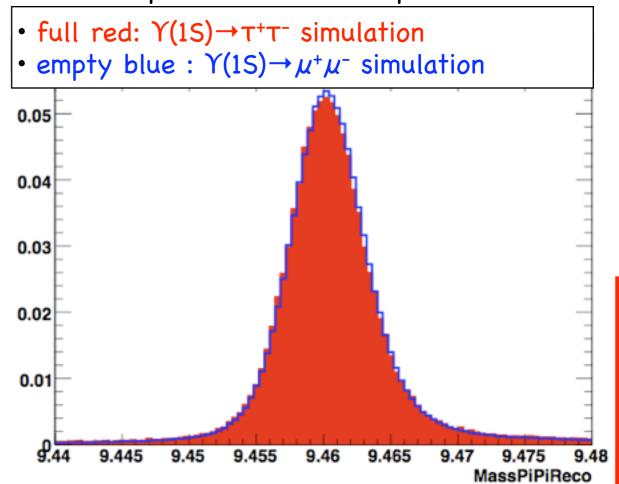
- Evaluated by performing the fit procedure removing one cut of the selection at a time, both on data and on simulation
- ✓ Systematic discrepancy between the changes in the efficiencies
- \checkmark The main contribution arises from the cut on the **mva** output variable

2. PID:

- ✓ It only applies to $\Upsilon(1S) \rightarrow \mu^+ \mu^-$ events
- ✓ 2 independent samples: ✓ sample (A) requiring 2 μ 's identified
 - \checkmark sample (B) requiring exactly 1 μ identified
- $r(\epsilon)_{MC} = [\epsilon(A)/(\epsilon(A) + \epsilon(B))]_{MC}$ and $r(\epsilon)_{DATA} = [\epsilon(A)/(\epsilon(A) + \epsilon(B))]_{DATA}$

The ratio $r(\epsilon)_{MC}/r(\epsilon)_{DATA}$ is quoted as systematic discrepancy

0.6%


3. Fit procedure:

1. systematics deriving from fixing the parameters of the signal p.d.f.'s (fit procedure repeated, changing one parameter at a time of $\pm 1\sigma$)

2. systematics deriving from choosing a parameterization for the **bkg** (fit procedure repeated, changing the p.d.f. of each distribution) 3. systematic discrepancy between the sample used to determine the p.d.f.'s parameters and the data sample where the signal extraction is performed

- in D^{T} we use $D^{\mu} \rightarrow$ we have to take \checkmark into account possible discrepancies between the 2 samples
- repeat the fit procedure, re- \checkmark weighting the parameters with the ratio between the results of the fit to the 2 Monte Carlo samples
- Additionally, fit procedure repeated \checkmark while letting the global width of signal **D**^T PDF to float

in \mathbf{D}^{μ} we use 1/10 of data to fix the p.d.f. \rightarrow no bias expected

1.7%

0.28%