Measurement of the $B \to D^{**} \ell \nu_{\ell}$ and $B \to D^{(*)} \tau \nu_{\tau}$ Decays

DPF Detroit, 27th of July 2009

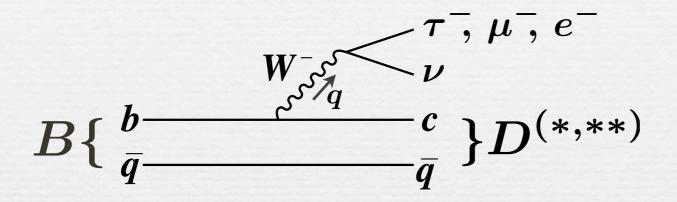
Manuel Franco Sevilla on behalf of the BaBar Collaboration

Outline

Introduction

 $\stackrel{\bullet}{\twoheadrightarrow} B \to D^{**}\ell \,\nu_\ell \text{ measurement}$ $\stackrel{\bullet}{\twoheadrightarrow} B \text{ tagging}$

 $\sim B \rightarrow D^{(*)} \tau \nu_{\tau}$ measurement


✤ Conclusions

$$B \to D^{**}\ell \nu_\ell$$
 and $B \to D^{(*)}\tau \nu_\tau$

Semileptonic $b \rightarrow c$ decays

Rate $\propto |V_{cb}|^2 \cdot FF(q^2)$

Hadronic and leptonic currents factorize

∞ Important tool for precise |V_{cb}| measurements

Complementary to measuring CKM angles

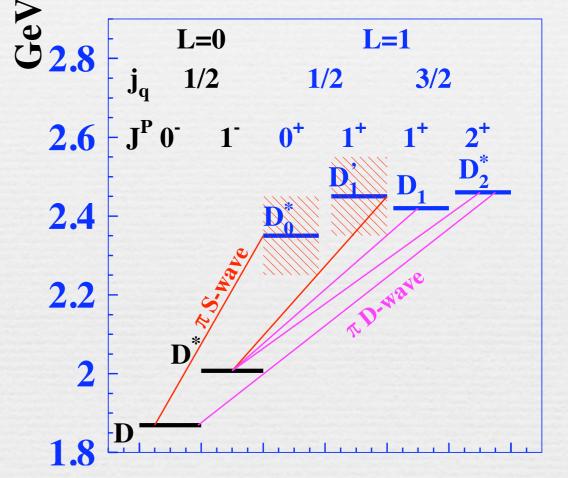
 $\sim \mathcal{B}(B^+ \to X_c \ell^+ \nu_\ell) = (10.8 \pm 0.4)\%$

(2.5 ± 0.5) % larger than exclusive $\begin{cases} \mathcal{B}(B^+ \to \overline{D}^0 \ell^+ \nu_\ell) = (2.27 \pm 0.11)\% \\ \mathcal{B}(B^+ \to \overline{D}^{*0} \ell^+ \nu_\ell) = (6.07 \pm 0.29)\% \end{cases}$

Possibility of new physics at tree level
 Higher statistics than leptonic decays

$$B \to D^{**}\ell \,\nu_\ell$$
 and $B \to D^{(*)}\tau\nu_\tau$

$B \rightarrow D^{**} \ell \nu_{\ell}$ measurement

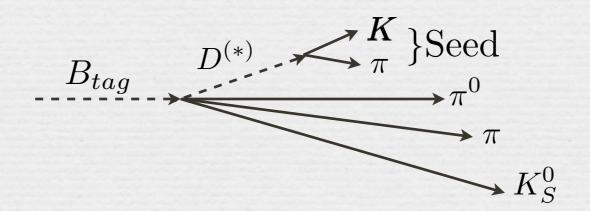


Motivation: $B \rightarrow D^{**} \ell \nu_{\ell}$

- \sim Charmed mesons with L = 1
- Little knowledge on D**
 Only masses and widths are known
- Semileptonic decays may help bridge the inclusive-exclusive gap
- ∼ Leading source of uncertainty in some $B \to X \ell \nu$ analyses
- QCD sum rules suggest narrow states

 (j_q = 3/2) dominate
 Phys. Lett. B 501, 86 (2001)
 Eur. Phys. J. C 52, 975 (2007)

 $B \to D^{**} \ell \nu_{\ell}$ and $B \to D^{(*)} \tau \nu_{\tau}$

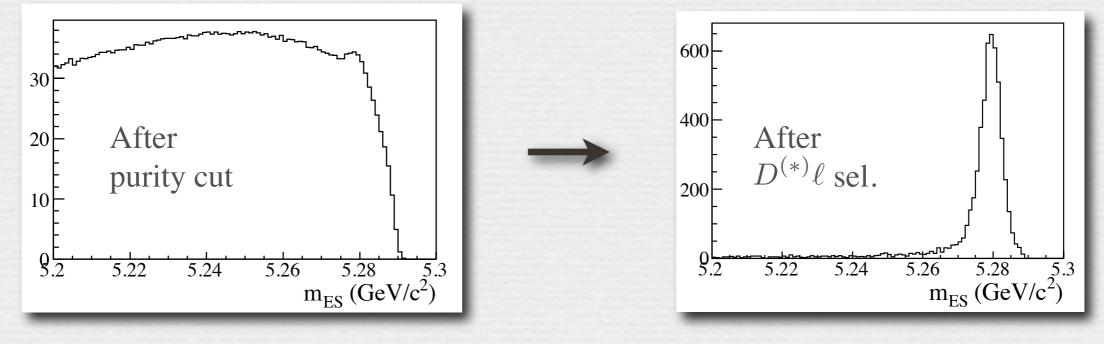


B tagging

→ Full reconstruction of one of the B mesons from $e^+e^- \to \Upsilon(4S) \to B\overline{B}$

- ✤ Constrains kinematics
- ∞ Determines charge and flavor of signal B
- Sefficiency is just 0.2-0.4 %
- → A seed is reconstructed
- Combined with up to 5 particles $(K^{\pm}, K_s^0, \pi^{\pm} \text{ and } \pi^0)$

 $B \to D^{**} \ell \nu_{\ell}$ and $B \to D^{(*)} \tau \nu_{\tau}$

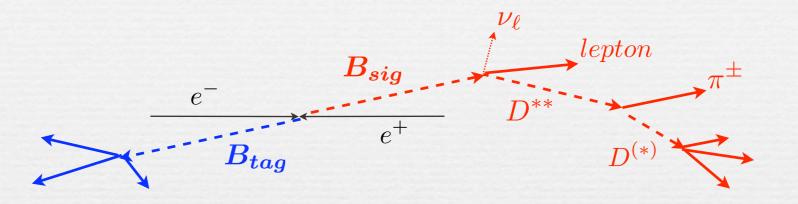

B tagging

✤ Kinematic constraints

$$m_{ES} = \sqrt{s/4 - |\mathbf{p}_{tag}|^2} > 5.18 \,\text{GeV}$$
 $|\Delta E| = |E_{tag} - \sqrt{s}/2| < 0.2 \,\text{GeV}$

Solution Solution

- \sim Dominated by combinatoric background \rightarrow Purity cut
- Signal side selection cleans it up further


 $B \to D^{**}\ell \nu_\ell$ and $B \to D^{(*)}\tau \nu_\tau$

Manuel Franco Sevilla

$B \rightarrow D^{**} \ell \nu_{\ell}$ reconstruction

 \sim Events with at least one B_{tag} candidate

∼ Lepton (e^- or μ^-) with $p_\ell > 600$ MeV

- \sim D reconstructed within 2σ of nominal mass
 - \sim D⁰ in 9 channels, D⁺ in 7 channels

 $\sim D^*$ reconstructed within 1.5-2.5 σ of nominal mass

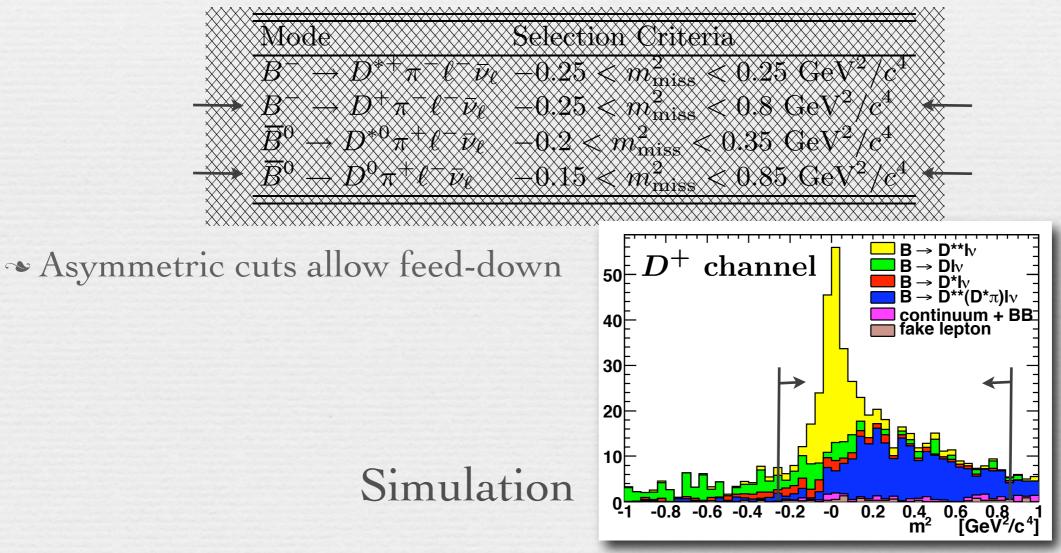
 $\sim D^* \to D\pi$ and $D^* \to D\gamma$ channels

• A π^{\pm} is added. Events with extra tracks are rejected

 $\sim D^{*\pm} \to D^0 \pi^{\pm}$ is vetoed, by $m(D^0 \pi^{\pm}) - m(D^0) > 180$ MeV in the D^0 channel

Manuel Franco Sevilla

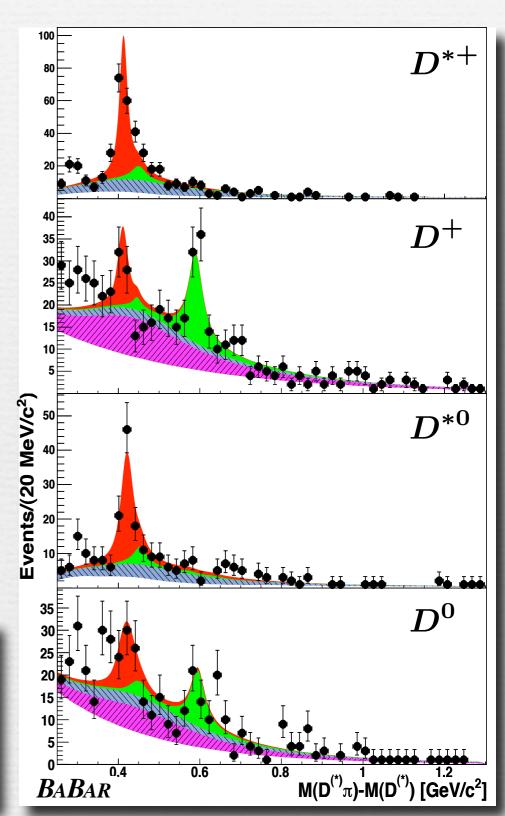
$$B \to D^{**}\ell \nu_\ell$$
 and $B \to D^{(*)}\tau \nu_\tau$



Missing mass

•
$$m_{miss}^2 = (p_{beam} - p_{B_{tag}} - p_{D^{(*)}} - p_{\ell} - p_{\pi^{\pm}})^2$$

 \sim Signal events have $m_{miss}^2 = m_{\nu}^2 \sim 0$



Yields

- Maximum likelihood fit to m(D^(*)π)-m(D)
 4 signal yields extracted
- **Shapes and feed-down rate** from MC
- Combinatorial bkg. from fit to m_{ES}
 Excess at low mass not from known sources

Yields not very sensitive to this region

Decay Mode	Yield
$B^- \to D_1^0 \ell^- \bar{\nu}_\ell$	165 ± 18
$B^- \to D_2^{*0} \ell^- \bar{\nu}_\ell$	97 ± 16
$B^- \to D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	142 ± 21
$B^- \to D_0^{*0} \ell^- \bar{\nu}_\ell$	137 ± 26
$\overline{B}{}^0 \to D_1^+ \ell^- \bar{\nu}_\ell$	88 ± 14
$\overline{B}{}^0 \to D_2^{*+} \ell^- \bar{\nu}_\ell$	29 ± 13
$\overline{B}^0 \to D_1^{\prime +} \ell^- \bar{\nu}_\ell$	86 ± 18
$\overline{B}{}^0 \to D_0^{*+} \ell^- \bar{\nu}_\ell$	142 ± 26

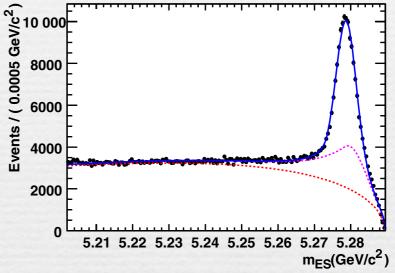
 $B \to D^{**}\ell \nu_\ell$ and $B \to D^{(*)}\tau \nu_\tau$

 $D_1 \ell \nu_\ell$

 $D_1^{\prime}\ell\nu_\ell$

 $D_2^*\ell\nu_\ell$

 $D_0^*\ell\nu_\ell$


background

Normalization and Systematic Uncertainties

- - ∼ Lepton with $p_{\ell} > 600$ MeV
 - $\sim B_{tag}$ with correct charge-flavor correlation
 - \sim Yield from m_{ES} fit

- Systematic uncertainties
 - **∞ D**^{**} signal yields (5.5-17.0%)
 - PDF parameterization, shape and yield of background, modeling the broad D** and D* feed-down rate

 - ► D/D* branching fractions (3.0-4.5 %)
 - $\sim \overline{B} \to X \ell^- \overline{\nu}_\ell$ normalization (1.9 %)
 - **∞ B**_{tag} efficiencies (4.0-5.6 %)

$$B \to D^{**}\ell \nu_\ell$$
 and $B \to D^{(*)}\tau \nu_\tau$

$B \rightarrow D^{**} \ell \nu_{\ell}$ Results

PRL 101, 261802 (2008)

Decay Mode	$\mathcal{B} (\overline{B} \to D^{**} \ell^- \overline{\nu}_\ell) \times \mathcal{B}(D^{**} \to D^{(*)} \pi^{\pm}) \%$	$S_{ m tot}(S_{ m stat})$	and the second	$S_{ m tot}(S_{ m sitat})$
$B^- \to D_1^0 \ell^- \bar{\nu}_\ell$	$0.29 \pm 0.03 \pm 0.03$	9.9(12.7)	$0.29 \pm 0.03 \pm 0.03$	10.7 (15.2)
$B^- \to D_2^{*0} \ell^- \bar{\nu}_\ell$	$0.15 \pm 0.02 \pm 0.02$	5.2(7.3)	$0.12 \pm 0.02 \pm 0.02$	5.3(7.4)
$\rightarrow B^- \rightarrow D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	$0.27 \pm 0.04 \pm 0.05$	5.4(8.0)	$0.30 \pm 0.03 \pm 0.04$	
$\rightarrow B^- \rightarrow D_0^{*0} \ell^- \bar{\nu}_\ell$	$0.26 \pm 0.05 \pm 0.04$	4.5(5.8)	$0.32 \pm 0.04 \pm 0.04$	6.1 (8.3) ←
$\overline{B}{}^0 \to D_1^+ \ell^- \bar{\nu}_\ell$	$0.27 \pm 0.04 \pm 0.03$	7.0(8.4)		
$\overline{B}{}^0 \to D_2^{*+} \ell^- \bar{\nu}_\ell$	$0.07 \pm 0.03 \pm 0.02 \ (< 0.12 \ @90\% \ CL)$	2.0(2.5)		
$\overline{B}{}^0 \to D_1^{\prime +} \ell^- \bar{\nu}_\ell$	$0.31 \pm 0.07 \pm 0.05$	4.6(5.8)		
$\overline{B}{}^0 \to D_0^{*+} \ell^- \bar{\nu}_\ell$	$0.44 \pm 0.08 \pm 0.06$	4.7(6.0)		

Simultaneous observation of all 4 D** semileptonic decays

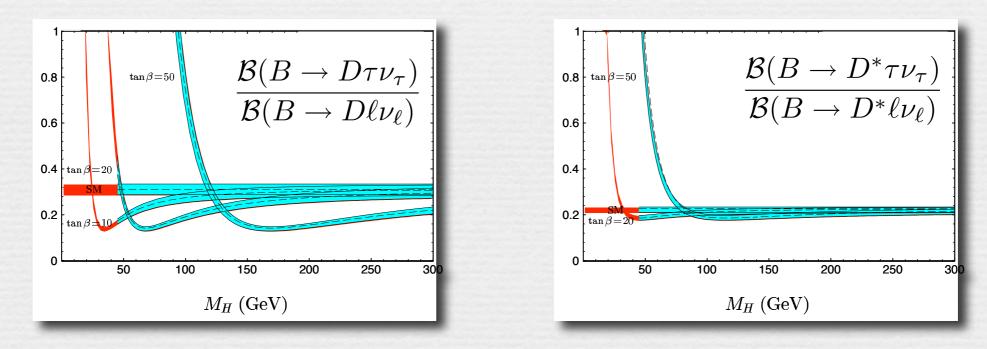
- ∞ 1.55 % total fills part of the 2.5 % inclusive/exclusive gap
- ∞ Agrees well with BaBar untagged, PRL 100: 151802 (2008)
- ∼ Rate for D'_1 does not agree with limit by Belle, <u>PRD 77: 091503 (2008)</u>, but agrees with DELPHI, <u>Eur. Phys. J. C 45: 35 (2006)</u>

∞ Rate of broad states still in conflict with QCD sum rules

 $B \to D^{**}\ell \nu_\ell$ and $B \to D^{(*)}\tau \nu_\tau$

$B \rightarrow D^{(*)} \tau \nu_{\tau}$ measurement

PRL 100, 021801 (2008) PRD 79, 092002 (2009)


 \overline{q}

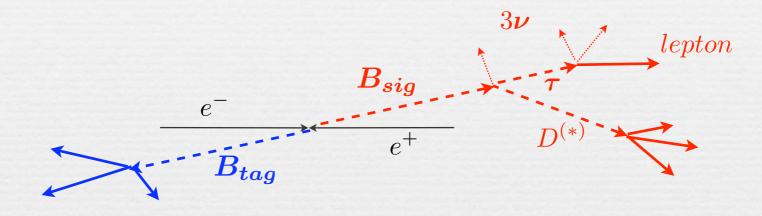
Motivation: $B \rightarrow D^{(*)} \tau \nu_{\tau}$

 \overline{q}

- Decay sensitive to Higgs mediation
 - ∞ At tree level
 - \sim Coupling proportional to $m_{ au}$

∞ It affects D and D* differently (Higgs spin)

∽ Only $\mathcal{B}(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}) = 2.02^{+0.40}_{-0.37} \pm 0.37$ observed <u>PRL 99, 191807 (2007)</u>


$$B \to D^{**}\ell \nu_\ell$$
 and $B \to D^{(*)}\tau \nu_\tau$

$B \rightarrow D^{(*)} \tau \nu_{\tau}$ reconstruction

∼ Full event reconstruction: B_{tag} , a D^(*) and a lepton (e^{-} or μ^{-})

Basic cuts

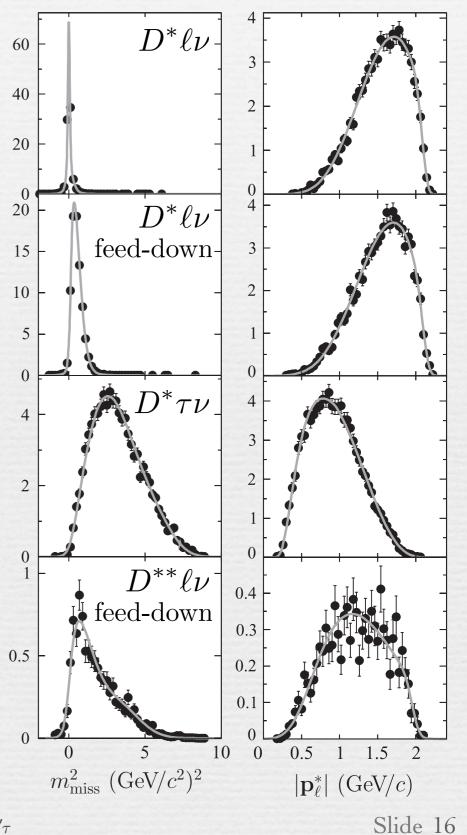
- $|\Delta E| < 72 \, MeV; \, m_{ES} > 5.27 \, GeV; \, p_e > 0.3 \, GeV$
- · Particle ID on leptons, pions and kaons
- ∞ No extra tracks

~ Selection of best B with smallest $E_{Extra} = \sum E_{\gamma}$, with $E_{\gamma} > 50$ MeV Additional cuts not used

 $p_{miss} > 200 \text{ MeV}$ $q^2 = (p_{beam} - p_{B_{tag}} - p_{D^{(*)}})^2 > 4 \text{ GeV}^2$ $E_{Extra} < 150-300 \text{ MeV}$

Manuel Franco Sevilla

$$B \to D^{**}\ell \nu_\ell$$
 and $B \to D^{(*)}\tau \nu_\tau$



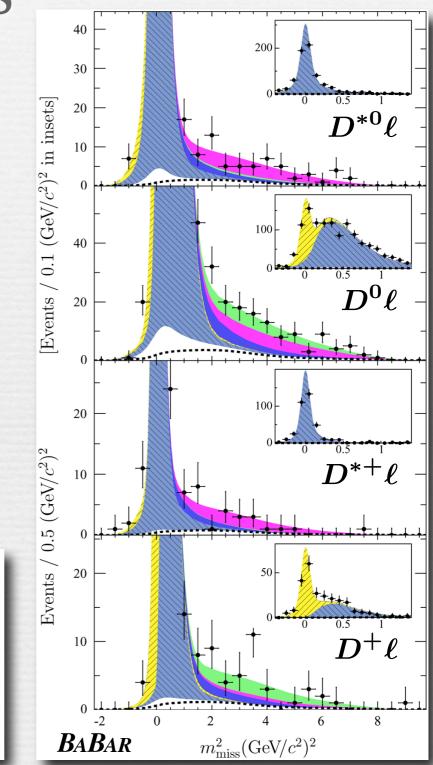
Fit

→ 2D fit on m_{miss}^2 and p_{ℓ}^* in 4 channels → Shapes and cross-feed from MC

 $\sim D^{(*)}\ell\nu_{\ell}$ peaks at $m_{miss}^2 = 0$

- $B \to D^{**}(\to D^{(*)}\pi^0)\ell\nu_\ell$, where we lose the π^0 , is a **difficult background** • Simultaneous fit on a $D^{(*)}\pi^0\ell$ control sample
 - ✤ Fixes D^{**} contribution to main fit
 - ✤ Reduces sensitivity to D^{**} model dependence

$$B \to D^{**}\ell \nu_\ell$$
 and $B \to D^{(*)}\tau \nu_\tau$



Signal yields

- $\sim m_{miss}^2$ projection of the 4 signal channels
- Simultaneous fit of signal and normalization

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu_{\ell})}$$
$$= \frac{N_{sig} \cdot \epsilon_{norm}}{N_{norm} \cdot \epsilon_{sig}} \cdot \frac{1}{\mathcal{B}(\tau^{-} \to \ell^{-}\overline{\nu}_{\ell}\nu_{\tau})}$$

Mode	N _{sig}	N _{norm}
$B^- \to D^0 \tau^- \bar{\nu}_\tau$	35.6 ± 19.4	347.9 ± 23.1
$B^- \rightarrow D^{*0} \tau^- \bar{\nu}_{\tau}$	92.2 ± 19.6	1629.9 ± 63.6
$\bar{B}^0 \rightarrow D^+ \tau^- \bar{\nu}_{\tau}$	23.3 ± 7.8	150.2 ± 13.3
$\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_\tau$	15.5 ± 7.2	482.3 ± 25.5
$B \rightarrow D \tau^- \bar{\nu}_{\tau}$	66.9 ± 18.9	497.8 ± 26.4
$B \longrightarrow D^* \tau^- \bar{\nu}_{\tau}$	101.4 ± 19.1	2111.5 ± 68.1

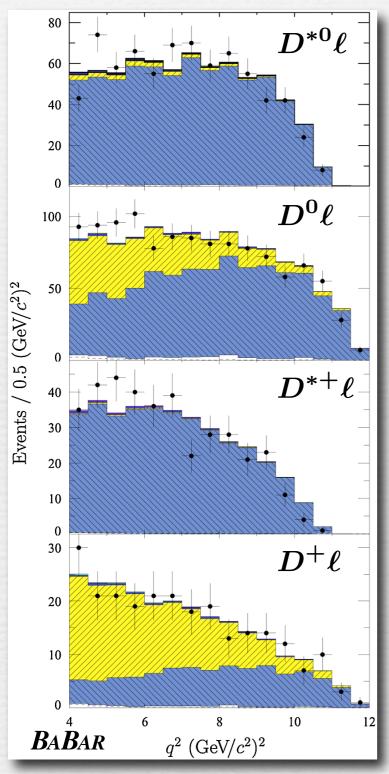
$$B \to D^{**}\ell \,\nu_\ell$$
 and $B \to D^{(*)}\tau \nu_\tau$

 $\square D^* \tau \nu$

 $\square D \tau \nu$

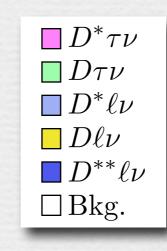
 $\square D^* \ell \nu$

 $\Box D\ell\nu$

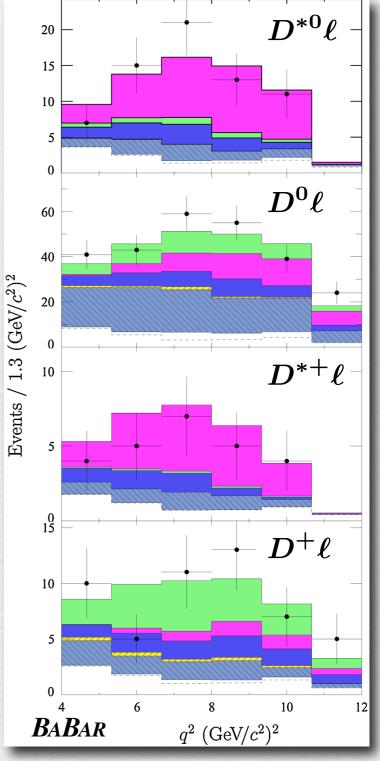

□Bkg.

 $\square D^{**}\ell\nu$

q² distributions



Manuel Franco Sevilla


 Momentum transfer distributions
 Normalization region m²_{miss} < 1 GeV²

 Signal region m²_{miss} > 1 GeV² _____
 Agreement MC/data

 CLN model works within statistics

 $B \to D^{**} \ell \nu_{\ell}$ and $B \to D^{(*)} \tau \nu_{\tau}$

Results

PRL 100, 021801 (2008) PRD 79, 092002 (2009)

Mode	R [%]	B [%]	$\sigma_{ m tot}~(\sigma_{ m stat})$
$B^- \rightarrow D^0 \tau^- \bar{\nu}_{\tau}$	31.4 ± 17.0 ± 4.9	$0.67 \pm 0.37 \pm 0.11 \pm 0.07$	1.8 (1.8)
$B^- \rightarrow D^{*0} \tau^- \bar{\nu}_{\tau}$	$34.6 \pm 7.3 \pm 3.4$	$(2.25 \pm 0.48 \pm 0.22 \pm 0.17)$	5.3 (5.8)
$\bar{B}^0 \rightarrow D^+ \tau^- \bar{\nu}_{\tau}$	$48.9 \pm 16.5 \pm 6.9$	$1.04 \pm 0.35 \pm 0.15 \pm 0.10$	3.3 (3.6)
$\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_\tau$	$20.7 \pm 9.5 \pm 0.8$	$1.11 \pm 0.51 \pm 0.04 \pm 0.04$	2.7 (2.7)
$B \longrightarrow D \tau^- \bar{\nu}_{\tau}$	$41.6 \pm 11.7 \pm 5.2$	$(0.86 \pm 0.24 \pm 0.11 \pm 0.06)$	3.6 (4.0)
$B \to D^* \tau^- \bar{\nu}_\tau$	$29.7 \pm 5.6 \pm 1.8$	$1.62 \pm 0.31 \pm 0.10 \pm 0.05$	6.2 (6.5)

- \sim First evidence of $B \to D\tau^- \bar{\nu}_{\tau}$
- Observation of $B^- \to D^{*0} \tau^- \bar{\nu}_{\tau}$
- ✤ Compatible with SM predictions Chen & Geng, JHEP 10, 053 (2006)

Mode	$\mathcal{B}(\%)$		
$\bar{B}^0 \to D^+ \tau^- \bar{\nu}_{\tau}$	0.69 ± 0.04		
$\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}$	1.41 ± 0.07		

Nierste et al, <u>PRD 78, 015006 (2008)</u> $\mathcal{B}(B^- \to D^0 \tau^- \bar{\nu}_{\tau}) = (0.71 \pm 0.09)\%$

Manuel Franco Sevilla

 $B \to D^{**} \ell \nu_{\ell}$ and $B \to D^{(*)} \tau \nu_{\tau}$

Conclusions

\sim All 4 $B \rightarrow D^{**} l \nu_l$ observed

- ∞ Would explain 60 % of the inclusive-exclusive gap
- $\sim D'_1$ rate exceeds one of Belle's limits
- ✤ Higher rate to broad states than predicted by QCD sum rules
- **More knowledge** on D** and semileptonic decays **needed**
 - ∞ Hadronic B decays can help
- First evidence for all $B \to D^{(*)} \tau \nu_{\tau}$ channels
 - Statistically limited
- Promising channel to test charged Higgs models
- ∞ Results with full data sets expected by Belle and BaBar soon

$$B \to D^{**}\ell \nu_\ell$$
 and $B \to D^{(*)}\tau \nu_\tau$

Backup slides

Reconstruction: $B \rightarrow D^{**} \ell \nu_{\ell}$

✤ Reconstructed D decay modes

Decay Mode	B (%)	Decay Mode B (%)
$D^0 \to K^- \pi^+$	3.82 ± 0.07	$D^+ \to K^- \pi^+ \pi^+ \qquad 9.51 \pm 0.34$
$D^0 \to K^- \pi^+ \pi^0$	13.5 ± 0.6	$ D^+ \to K^- \pi^+ \pi^+ \pi^0 6.0 \pm 0.28$
$D^0 \to K^- \pi^+ \pi^+ \pi^-$	7.70 ± 0.25	$D^+ \to K^0_S \pi^+$ 1.47 ± 0.06
$D^0 \to K^0_S \pi^+ \pi^+$	2.88 ± 0.19	$ D^+ \to K^0_S \pi^+ \pi^0 \qquad 7.0 \pm 0.5 $
$D^0 \to K^0_S \pi^+ \pi^- \pi^0$	5.3 ± 0.6	$D^+ \to K^+ K^- \pi^+$ 1.00 ± 0.04
$D^0 \rightarrow K^0_S \pi^0$	1.13 ± 0.12	$ D^+ \to K^0_S K^+ \qquad 0.295 \pm 0.019 $
$D^0 \to K^+ K^-$	0.385 ± 0.009	$ D^+ \to K_S^0 \pi^+ \pi^+ \pi^- 3.10 \pm 0.22$
$D^0 \to \pi^+ \pi^-$	0.137 ± 0.003	
$D^0 \to K^0_S K^0_S$	0.036 ± 0.007	

 $B \to D^{**} \ell \nu_{\ell}$ and $B \to D^{(*)} \tau \nu_{\tau}$

Other results $B \rightarrow D^{**}\ell \nu_{\ell}$

BaBar, PRL 100: 151802 (2008)

$$\begin{split} \mathcal{B}(B^- \to D^0 \ell^- \bar{\nu}_{\ell}) &= (2.33 \pm 0.09_{\text{stat}} \pm 0.09_{\text{syst}})\% \\ \mathcal{B}(B^- \to D^{*0} \ell^- \bar{\nu}_{\ell}) &= (5.83 \pm 0.15_{\text{stat}} \pm 0.30_{\text{syst}})\% \\ \mathcal{B}(\bar{B}^0 \to D^+ \ell^- \bar{\nu}_{\ell}) &= (2.21 \pm 0.11_{\text{stat}} \pm 0.12_{\text{syst}})\% \\ \mathcal{B}(\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_{\ell}) &= (5.49 \pm 0.16_{\text{stat}} \pm 0.25_{\text{syst}})\% \\ \mathcal{B}(B^- \to D^+ \pi^- \ell^- \bar{\nu}_{\ell}) &= (0.42 \pm 0.06_{\text{stat}} \pm 0.03_{\text{syst}})\% \\ \mathcal{B}(B^- \to D^{*+} \pi^- \ell^- \bar{\nu}_{\ell}) &= (0.59 \pm 0.05_{\text{stat}} \pm 0.04_{\text{syst}})\% \\ \mathcal{B}(\bar{B}^0 \to D^0 \pi^+ \ell^- \bar{\nu}_{\ell}) &= (0.43 \pm 0.08_{\text{stat}} \pm 0.03_{\text{syst}})\% \end{split}$$

With isospin symmetry

 $\mathcal{B}(B^- \to D^{(*)} \pi \ell^- \bar{\nu}_\ell) = (1.52 \pm 0.12_{\text{stat}} \pm 0.10_{\text{syst}})\%$ $\mathcal{B}(\bar{B}^0 \to D^{(*)} \pi \ell^- \bar{\nu}_\ell) = (1.37 \pm 0.17_{\text{stat}} \pm 0.10_{\text{syst}})\%$

Belle, PRD 77: 091503 (2008)

TABLE II. Results of the $D^{(*)}\pi^+$ pair invariant mass study. $\mathcal{B}(\text{mode}) \equiv \mathcal{B}(B \to D^{**}\ell\nu) \times \mathcal{B}(D^{**} \to D^{(*)}\pi^+)$. The first error is statistical and the second is systematic.

Mode	Yield	\mathcal{B} (mode),%	Signif.	
$B^+ \rightarrow \bar{D}_0^{*0} \ell^+ \nu$	102 ± 19	$0.24 \pm 0.04 \pm 0.06$	5.4	
$B^+ \rightarrow \bar{D}_2^{*0} \ell^+ \nu$	94 ± 13	$0.22 \pm 0.03 \pm 0.04$	8.0	
$B^0 \rightarrow D_0^{*-} \ell^+ \nu$	61 ± 22	$0.20 \pm 0.07 \pm 0.05$	2.6	
		<0.4 @ 90% C.L.		
$B^0 \rightarrow D_2^{*-} \ell^+ \nu$	68 ± 13	$0.22 \pm 0.04 \pm 0.04$	5.5	
$B^+ \rightarrow \bar{D}_1^{\prime 0} \ell^+ \nu$	-5 ± 11	<0.07 @ 90% C.L.		
$B^+ \rightarrow \bar{D}_1^0 \ell^+ \nu$	81 ± 13	$0.42 \pm 0.07 \pm 0.07$	6.7	
$B^+ \rightarrow \bar{D}_2^{*0} \ell^+ \nu$	35 ± 11	$0.18 \pm 0.06 \pm 0.03$	3.2	
$B^0 \rightarrow D_1^{\prime -} \ell^+ \nu$	4 ± 8	<0.5 @ 90% C.L.		
$B^0 \rightarrow D_1^- \ell^+ \nu$	20 ± 7	$0.54 \pm 0.19 \pm 0.09$	2.9	
		<0.9 @ 90% C.L.		
$B^0 \to D_2^{*-} \ell^+ \nu$	1 ± 6	<0.3 @ 90% C.L.		

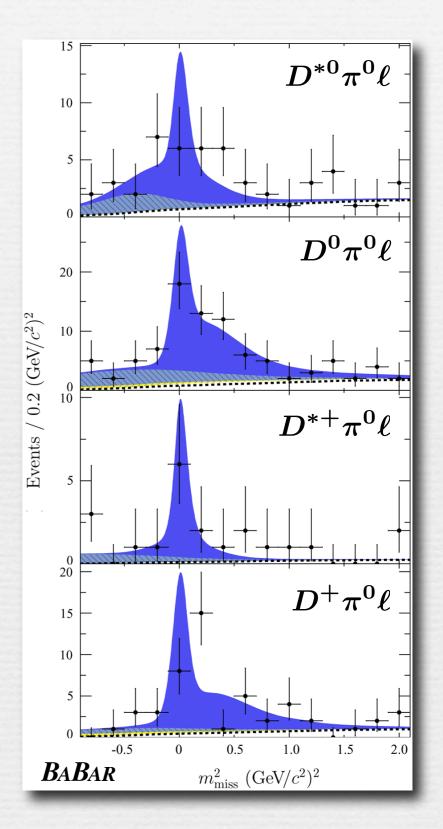

$$B \to D^{**}\ell \,\nu_\ell$$
 and $B \to D^{(*)}\tau\nu_\tau$

Motivation: $B \rightarrow D^{(*)} \tau \nu_{\tau}$

 Measuring the polarization of the τ⁻ would be be a very good probe into new physics

PRD 78, 015006 (2008)

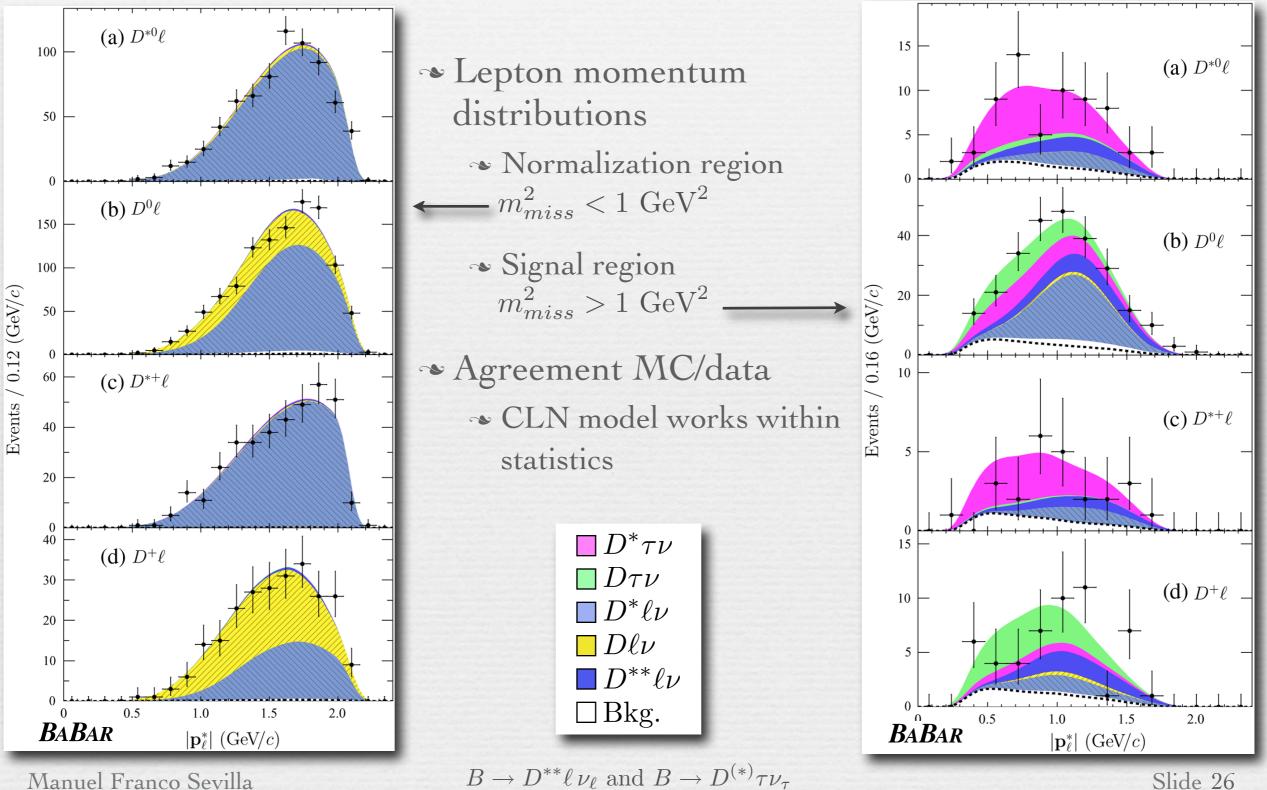
 $B \to D^{**} \ell \nu_{\ell}$ and $B \to D^{(*)} \tau \nu_{\tau}$



$D^{(*)}\pi^0\ell$ Fit

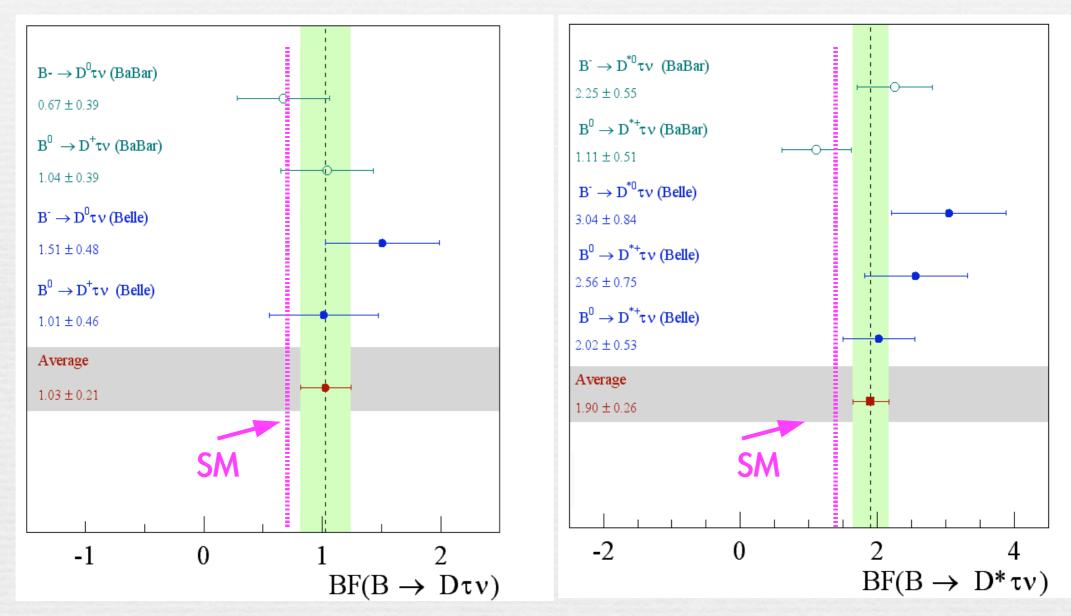
• Select $D^{(*)}\pi^0\ell$ candidates with • A non-overlapping π^0 with $p_{\pi^0} > 400$ MeV • $E_{Extra} < 500$ MeV

This control sample constrains the D** background in the main fit



 $B \to D^{**} \ell \nu_{\ell}$ and $B \to D^{(*)} \tau \nu_{\tau}$

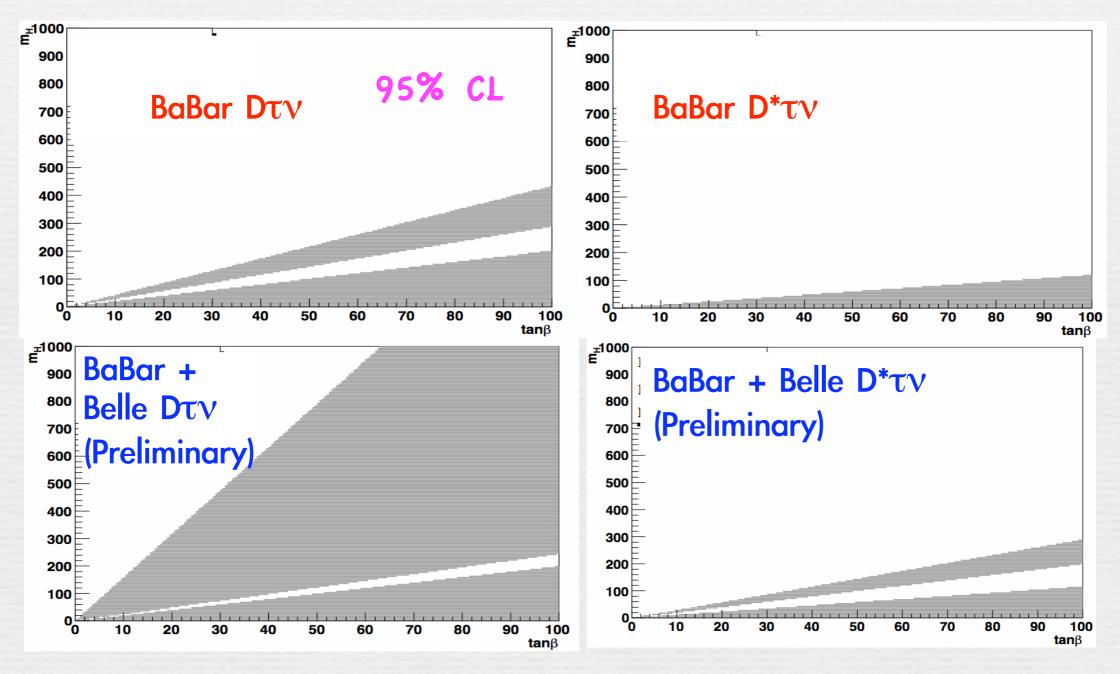
p₁ distributions



$B \rightarrow D^{(*)} \tau \nu_{\tau}$ results

Statistically dominated results still compatible with SM

David Lopes-Pegna, Susy 09, on behalf of the BaBar collaboration


$$B \to D^{**} \ell \nu_{\ell}$$
 and $B \to D^{(*)} \tau \nu_{\tau}$

NP exclusion regions

∞ David Lopes-Pegna, Susy 09, on behalf of the BaBar collaboration

Manuel Franco Sevilla

 $B \to D^{**}\ell \nu_\ell$ and $B \to D^{(*)}\tau \nu_\tau$

Systematic Uncertainties

Monte Carlo statistics and Combinatorial Background uncertainties dominate

Total error on $R(D^{(*)})$ Normalization error

Source	Fractional uncertainty (%) $D^0 \tau \nu D^{*0} \tau \nu D^+ \tau \nu D^{*+} \tau \nu D \tau \nu D^* \tau \nu$					
	_					_
MC statistics (PDF shape)	11.5	8.4	4.5	1.8	6.9	4.7
MC statistics (constraints)	4.2	1.9	6.1	1.3	3.6	1.4
Combinatorial BG modeling	7.5	4.1	11.5	2.6	9.1	2.9
D ^{**} modeling	5.7	0.5	1.6	0.2	3.0	0.4
$\bar{B} \rightarrow D^*$ form factors	1.9	0.7	0.8	0.2	1.4	0.4
$\bar{B} \rightarrow D$ form factors	0.2	0.7	0.6	0.2	0.3	0.4
$m_{\rm miss}^2$ tail modeling	1.5	0.5	1.2	0.4	1.6	0.1
π^0 cross feed constraints	0.5	1.1	0.5	0.9	0.5	1.0
D^{**} feed-down	0.4	0.1	0.1	0.3	0.2	0.2
$D^{**} \tau^- \bar{ u}_{ au}$ abundance	0.4	1.3	0.3	0.2	0.3	0.8
Total additive	15.6	9.7	14.0	3.6	12.5	5.8
Total multiplicative	1.6	1.5	1.8	1.4	1.4	1.3
Total	15.6	9.9	14.0	3.9	12.5	6.0
$\mathcal{B}(\bar{B} \to D^{(*)}\ell^- \bar{\nu}_\ell)$	10.2	7.7	9.4	3.7	6.8	3.4

 $B \to D^{**} \ell \nu_{\ell}$ and $B \to D^{(*)} \tau \nu_{\tau}$

Preliminary results

» Andrzej Bozek, Moriond EW 2009, on behalf of the Belle collaboration

•
$$\mathcal{B}(B^+ \to \bar{D}^0 \tau^+ \nu) = 1.51^{+0.41}_{-0.39} (stat)^{+0.24}_{-0.19} (syst) \pm 0.15 (norm)\%$$

•
$$\mathcal{B}(B^+ \to \bar{D}^{*0} \tau^+ \nu) = 3.04^{+0.69}_{-0.66} (stat)^{+0.40}_{-0.47} (syst) \pm 0.22 (norm)\%$$

•
$$\mathcal{B}(B^0 \to D^- \tau^+ \nu) = 1.01^{+0.46}_{-0.41}(stat)^{+0.13}_{-0.11}(syst) \pm 0.10(norm)\%$$

•
$$\mathcal{B}(B^0 \to D^{*-}\tau^+\nu) = 2.56^{+0.75}_{-0.66}(stat)^{+0.31}_{-0.22}(syst) \pm 0.10(norm)\%$$