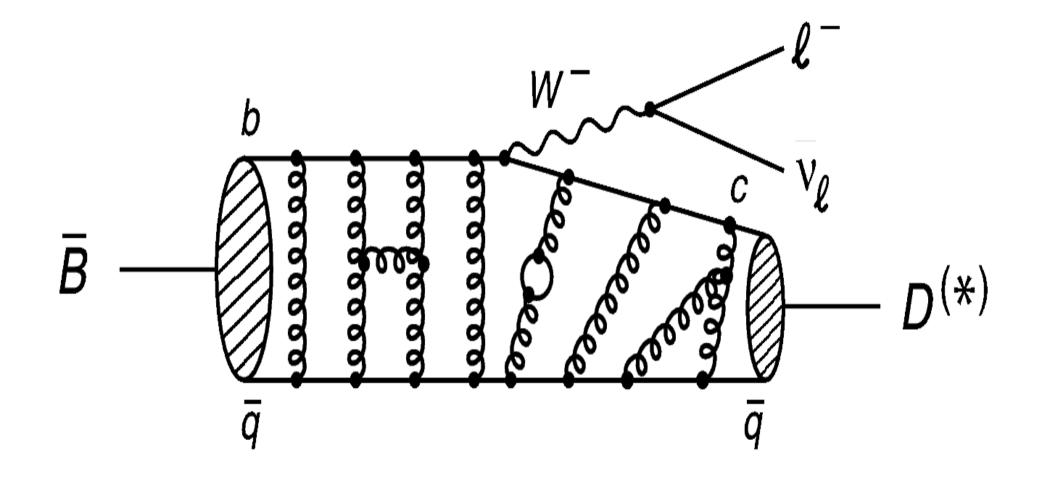
Measurements of $|V_{cb}|$ @ **BABAR**

Session: Heavy Flavour Physics I 27 July 2009

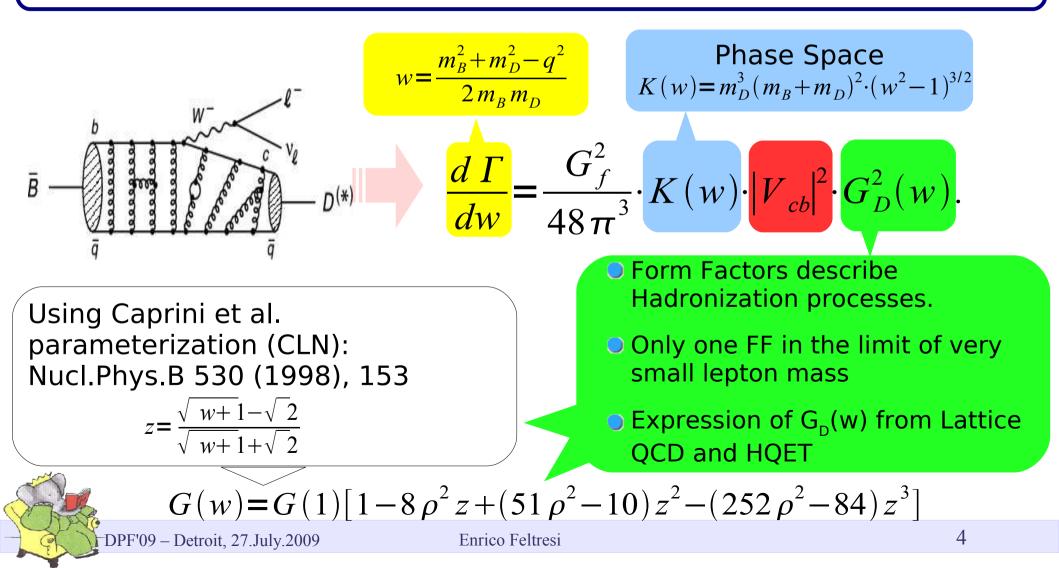
On Behalf of the BaBar Collaboration: Enrico Feltresi (INFN Padova)

Outline

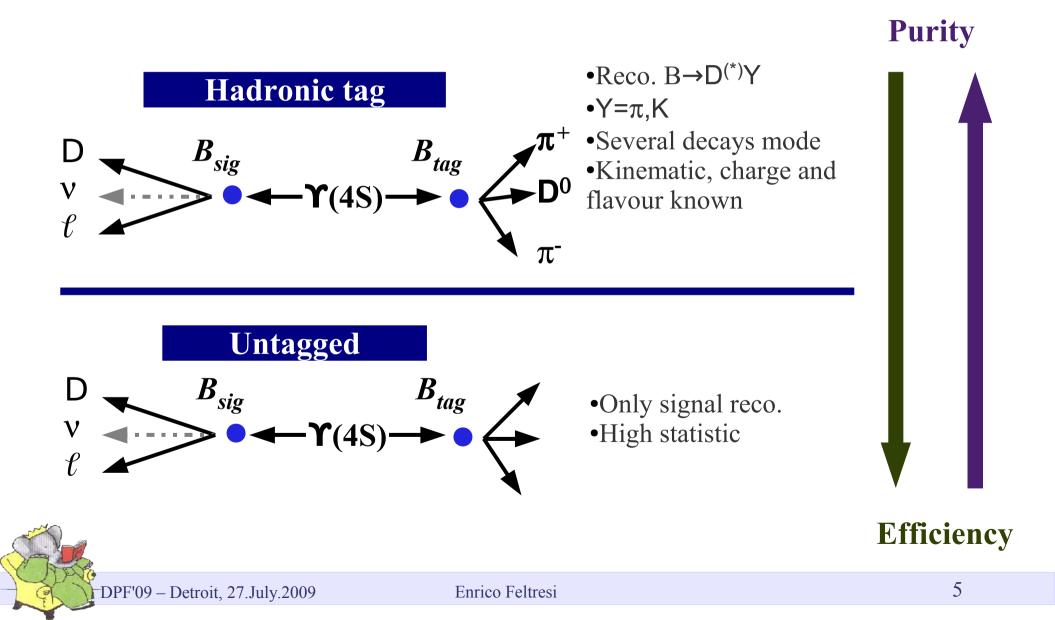

• $|V_{cb}|$ and **FF** from exclusive $B \rightarrow D\ell v$ decays

- Hadronic tagged $B \rightarrow D\ell v$
- -Untagged global fit to $B \rightarrow DX \ell v$
- Measurements of Moments in inclusive Semileptonic Decay $B \rightarrow X_{c} \ell v$:

-Extraction of $|V_{cb}|$, m_b , m_c , $B(B \rightarrow X_c \ell v)$ and leading non perturbative QCD parameters


Conclusions

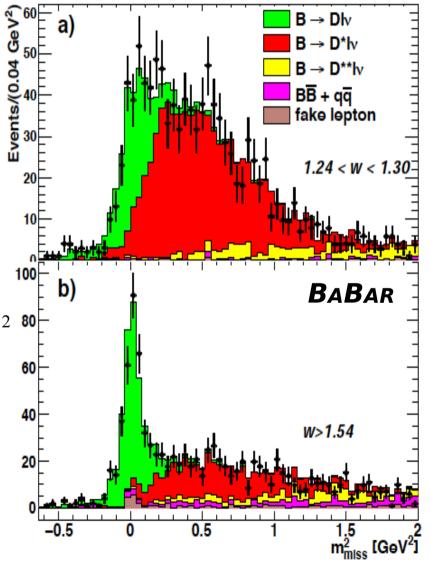
Exclusive $B \rightarrow D^{(*)} \ell \nu$ decays



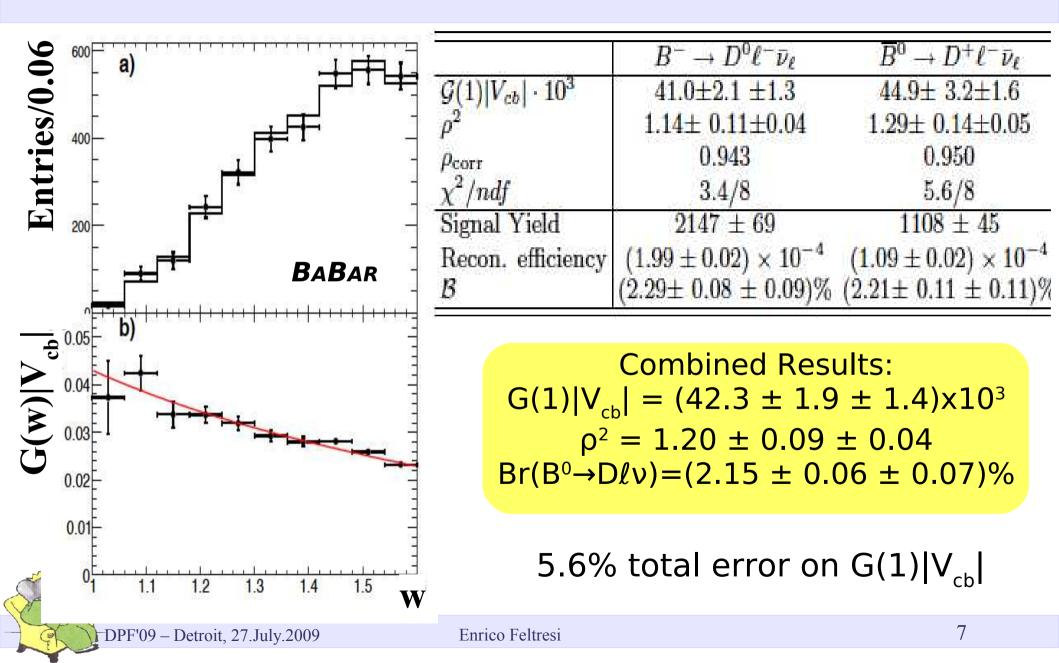
Why $B \rightarrow D\ell v$ decays?

Simple and Clean way to get $|V_{cb}|$ and B FF parameter (p)

Experimental Methods



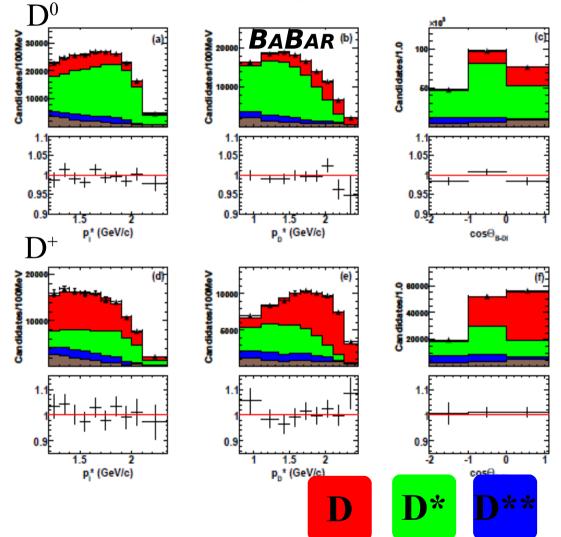
Hadronic tagged $B {\rightarrow} D\ell\nu^{\text{submitted to PRL}}$


- Reconstruct $\mathbf{B}^{+/0} \rightarrow \mathbf{D}^{0/+} \ell \mathbf{v}$ on the recoil of about 1000 fully reco. B final states ($\mathbf{D}^{0/+}$ reco. in 9/7 different final states)
 - ☺ High purity (S/S+B)
 - Sood Resolution
 - \odot Very Low efficiency (0.2%÷0.5%)
- Missing Mass squared (MM²)used to identify semileptonic B decay

$$m_{miss}^{2} = [P(Y(4S)) - P(B_{tag}) - P(D) - P(lepton)]^{2}$$

- Signal Events Yields from a binned maximum likelihood fit to MC sources in 10 bins of w
- G(1) $|V_{cb}|$ and ρ^2 extracted with a χ^2 -fit to the w-distribution

Tagged $B \rightarrow D\ell\nu$: Results



PRD79,012002(2009)

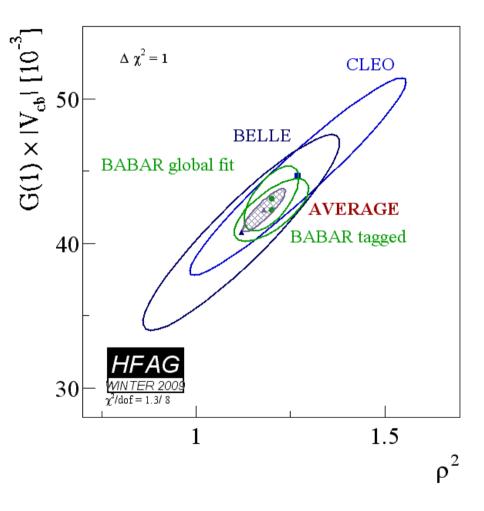
Untagged $B{\rightarrow}\, D^{(\boldsymbol{\ast})}\ell\nu$

- Select $B^{+/0} \rightarrow D^{0/+} \ell v$ with $p_{\ell} > 1.2 GeV/c$, no D(*,**) reco.
 - © High Signal yields
 - ③ High Systematics:
 - Physics Modeling: FF and BR for $B \rightarrow D(*)\pi I \nu$, $B \rightarrow D(*)\pi \pi I \nu$, D^* and D.
- Get D/D* rates and FF slope (ρ_D^2, ρ_{D*}^2) with a binned 3D fit to $p_t, p_D, \cos\theta_{BY}$
- Relate BR(B^o) to BR(B⁺) using lifetime ratio
- \odot The analysis is sensitive to $|V_{cb}|$

• 1-D projections for $p_{\ell}, p_{D}, \cos\theta_{BY}$

Untagged $B \rightarrow D^{(*)}\ell v$: Results

 $\mathcal{G}(1)|V_{cb}| = (43.1 \pm 0.8 \pm 2.3) \times 10^{-3}$ 5.5% total error (mainly sys) $\mathcal{F}(1)|V_{cb}| = (35.9 \pm 0.2 \pm 1.2) \times 10^{-3}$ 3.3% total error (mainly sys)


Combined Fit

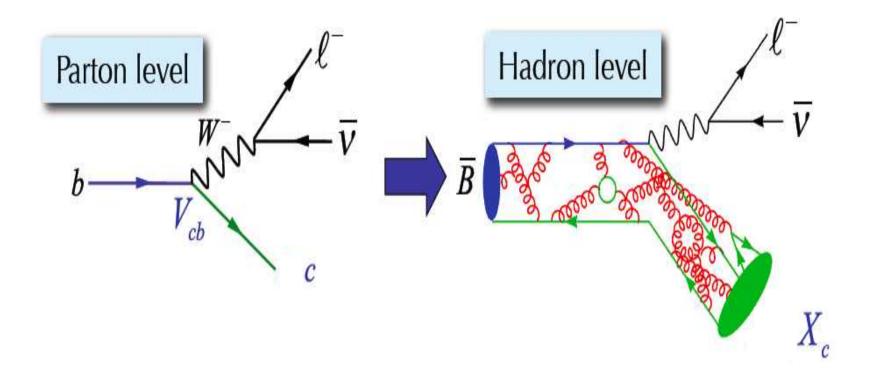
ρ ² _D	$1.20 \pm 0.04 \pm 0.07$
ρ² _{D*}	$1.22 \pm 0.02 \pm 0.07$
BR(D⁰lv)(%)	$2.34 \pm 0.03 \pm 0.13$
<mark>BR(D*⁰lν)(%)</mark>	$5.40 \pm 0.02 \pm 0.21$

Interesting results validation:

- G(1)/F(1) in agreement with lattice calculation:
 - $G(1)/F(1)_{Theory} = 1.17 \pm 0.04$
 - $G(1)/F(1)_{untag} = 1.20 \pm 0.09$
- Slope difference $(\rho_D^2 \rho_{D^*}^2)$ compatible with zero

BaBar Results on $B \rightarrow D\ell v$

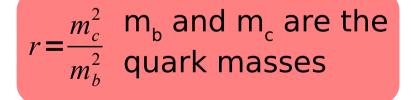
Combined BaBar Results:


$$\begin{split} G(1) |V_{cb}| &= (42.4 \pm 0.7 \pm 1.6) \times 10^{-3} \\ \rho^2 &= 1.18 \pm 0.04 \pm 0.04 \\ Br(B^0 {\rightarrow} D\ell v) {=} (2.16 \pm 0.08)\% \end{split}$$

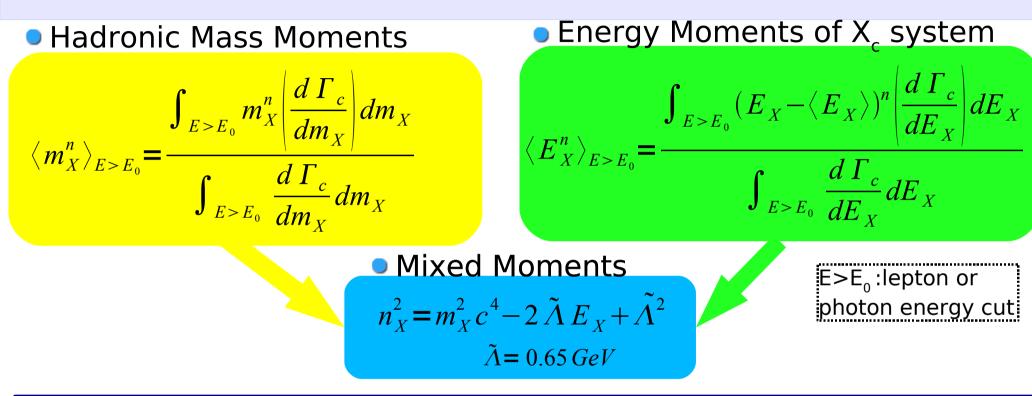
Using the Okamoto et al. (FNAL05) LQCD $\mathcal{G}(1) = 1.074 \pm 0.018 \pm 0.016$

$$|V_{cb}| = (39.2 \pm 1.6 \pm 0.9_G) \times 10^3$$

In good Agreement with exclusive B →D*

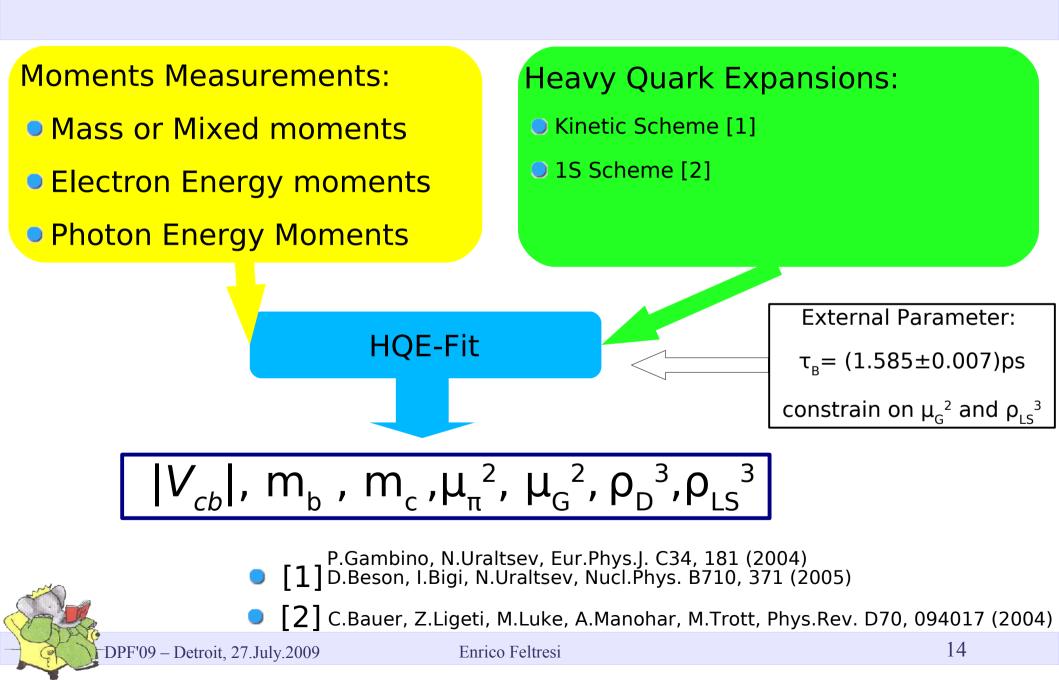

Inclusive Semileptonic b→c decays

Inclusive Semileptonic $B \rightarrow X_c l v$ decays

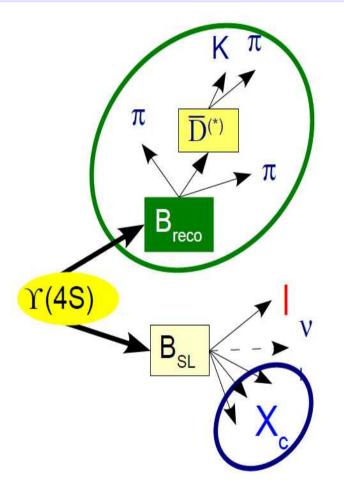

- Study of Semileptonic $B \rightarrow X_c I v$ decay offers laboratory for studying the **b** quark in the **B** meson
- The Inclusive decay rate can be written in terms of a Heavy Quark Expansion (HQE) in $1/m_b^n$ and α_s :

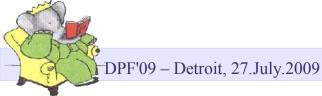
$$\Gamma_{sl}(B \to X_c l \nu) = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 \left[z_0(r) + \frac{0}{m_b} + z_2(r) \frac{\mu_{\pi}^2 \mu_G^2}{m_b^2 m_b^2} + z_3(r) \frac{\rho_D^3 \rho_{LS}^3}{m_b^3} + O(1/m_b^4) \right]$$

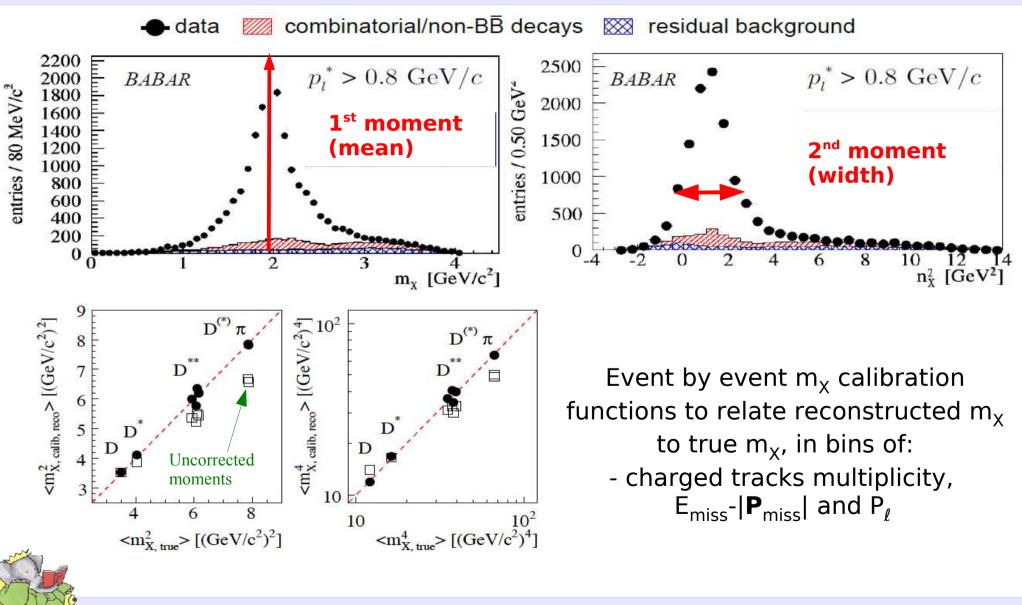
 μ_{π}^{2} , μ_{G}^{2} , ρ_{D}^{3} , ρ_{LS}^{3} are Nonperturbative parameters, matrix elements of local operators in HQET


Moments of Inclusive Distributions

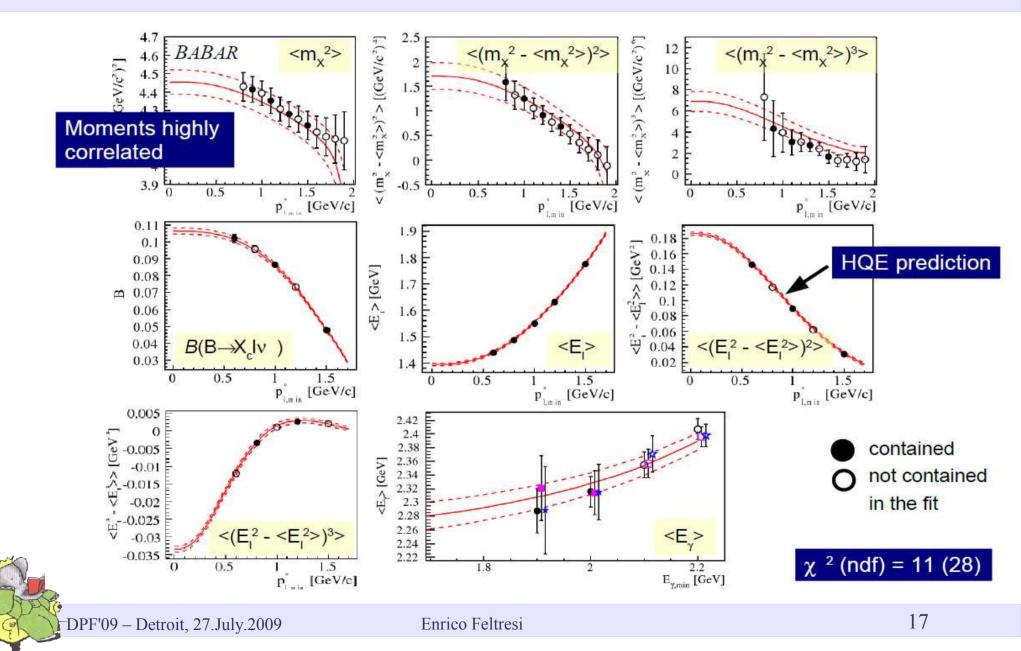
• Moments, like the total rate are also described in term of an HQE in $1/m_b^n$ and α_s by quark masses (m_b,m_c) and Nonperturbative parameters, matrix elements of local operators in HQET (μ_{π}^2 , μ_{G}^2 , ρ_{D}^3 , ρ_{LS}^3)


$$\langle m_X^n \rangle_{E > E_0} = f(E_0, m_b, m_c \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3)$$


Interpretation of Moments


Moments: Analysis Strategy

- Dataset: 230 million B pairs
- On the recoil of fully reconstructed B
- Measure one recoiling lepton with minimum p*>0.8GeV in the B rest-frame
- Remaining particles form inclusive hadronic X_csystem
- Missing mass and Energy consistent with semileptonic decay
- Improve resolution with kinematic fit to the total event



Moments: Spectra

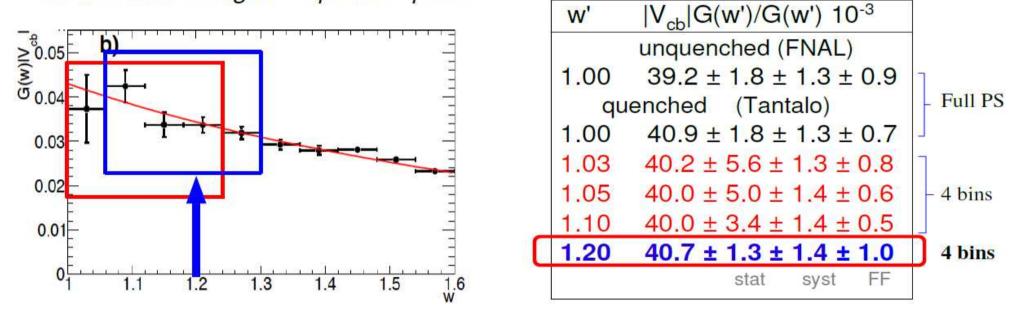
Mass Moments: HQE-Prediction

HQE-Fit results (kinetic scheme)

		V _{cb} x 10 ³	m _b [GeV]	m _c [GeV]	μ_{π}^{2} [GeV ²]			
	mass moments	$42.05{\pm}0.83$	4.549±0.049	1.077 ± 0.074	0.476±0.063			
	mixed moments	41.91 ± 0.85	4.566 ± 0.053	1.101 ± 0.078	0.452±0.069			
	HFAG (Winter 2009)*	41.54 ± 0.73	4.620 ± 0.035	1.190 ± 0.052	0.424±0.042			
	BELLE 2008 [Phys.Rev. D78,032016]	41.58±0.90	4.543±0.075	1.055±0.118	0.539±0.079			
	[[1]]		All meas. B→X _c lv		eas. B→X _c lv			
	Agreement with othe		(+mixed) w/ B→X	(,γ (+ma	ss) w/out B→X _s γ			
measurements and world average								
	Good agreement of re of mixed and mass moments:	esults E		+++++++++++++++++++++++++++++++++++++++				
	 Indicating that high order corrections been treated con for the calculation the mass mome 	s have rectly on of 4.3	All meas. $B \rightarrow X_c lv$ (+mass) w/ $B \rightarrow X_s$		v (+mass -elec) B→X _s γ			
ALL AND			41	42	⁴³ $ V_{cb} \times 10^3$			

Conclusion

■ Many exciting results on B→Dlv decays


- Recent BaBar measurements have improve the total error on the world average $G(1)|V_{cb}|$ (4%)
- Interesting validation in the comparison with $B \rightarrow D^* I v$ [($\rho_D^2 \rho_{D^*}^2$) and G(1)/F(1)]
- Precision on |V_{cb}| measurements limited by form factor knowledge
- Inclusive |V_{cb}| precision now at 2% level
- Agreement between Exclusive (B→Dlv) and Inclusive measurements

Back-up:Tagged $B{\rightarrow}\,D\ell\nu$ at $w{\geq}1$

Reduce the model dependence determining $G(w')|V_{cb}|$ from a fit in a limited region of phase-space

- Experimental error interpolating 4 bins around w=1.2 is competitive with the extrapolation to w=1 using the full phase-space
- We expect lattice community provide un-quenched (2+1) computation of the FF at w=1 and at w>1

Back-up: Tagged $B{\rightarrow}\,D\ell\nu$ Sys

	Systematic uncertainty on $ V_{cb} $ and ρ^2							
	$D^0\ell^-$	$\bar{\nu}_{\ell}$	$D^+\ell^-$		$D\ell^-$	$\bar{\nu}_{\ell}$		
	$ V_{cb} (\%)$	ρ^2	$ V_{cb} (\%)$	ρ^2	$ V_{cb} (\%)$	ρ^2		
Tracking efficiency	0.5	0.008	1.1	0.003	0.7	0.004		
Neutral reconstruction	1.	0.003	0.8	0.006	0.9	0.004		
Lepton ID	1.0	0.009	0.9	0.009	0.95	0.009		
PHOTOS	0.13	0.005	0.10	0.005	0.12	0.005		
Cascade $\overline{B} \to X \to \ell^-$ decay background	0.6		1.0		0.75			
$\overline{B} - B^-$ cross-feed	0.24	0.003	0.24	0.003	0.24	0.003		
$\overline{B} \to D^* \ell^- \bar{\nu}_{\ell}$ Form factors	0.56	0.008	0.20	0.003	0.38	0.006		
$\overline{B} \to D^{**} \ell^- \bar{\nu}_{\ell}$ Form factors	0.24	0.007	0.34	0.006	0.29	0.007		
D branching fractions	1.0	-	1.35	-	1.12	-		
$\mathcal{B}(\overline{B} \to D^{**}\ell^- \bar{\nu}_\ell)$	1.18	0.023	0.96	0.011	1.08	0.019		
$\mathcal{B}(\overline{B} \to X \ell^- \bar{\nu}_\ell)$	0.95		0.95		0.85	-		
$B_{\rm tag}$ selection	1.1	0.021	1.8	0.036	1.5	0.028		
$\overline{B} \to X \ell^- \bar{\nu}_\ell$ yield	0.7		1.1	-	0.85	-		
$\overline{B} \to D\ell^- \bar{\nu}_\ell$ yield	1.27	0.018	1.06	0.027	1.25	0.020		
Total systematic error	3.1	0.04	3.6	0.05	3.3	0.04		

Back-up: Untagged $B \rightarrow D\ell v$ Sys

Electron sample					Muon sample							
Item	$ ho_D^2$	$\rho_{D^*}^2$			$G(1) V_{cb} $	$\mathcal{F}(1) V_{cb} $	$ ho_D^2$	$\rho_{D^*}^2$	$\mathcal{B}(D\ell\bar{\nu})$			$\mathcal{F}(1) V_{cb} $
R'_1	0.44	2.74	0.71	-0.38	0.60	0.71	0.50	2.67	0.74	-0.40	0.63	0.70
R'_2	-0.40	1.02	-0.18	0.30	-0.32	0.49	-0.45	0.96	-0.19	0.30	-0.33	0.48
D** slope	-1.42	-2.52	-0.07	-0.09	-0.82	-0.87	-1.42	-2.58	-0.10	-0.10	-0.77	-0.92
D** FF approximation	-0.87	0.33	-0.12	0.19	-0.54	0.20	-0.99	0.59	-0.12	0.21	-0.59	0.30
$\mathcal{B}(B^- \to D^{(*)} \pi \ell \bar{\nu})$	0.28	-0.27	-0.22	-0.80	0.04	-0.49	0.59	-0.32	-0.13	-0.86	0.24	-0.54
$f_{D_2^*/D_1}$	-0.39	0.16	-0.38	0.16	-0.41	0.13	-0.50	0.17	-0.41	0.18	-0.47	0.15
$f_{D_0^*D\pi/D_1D_2^*}$	-2.30	1.12	-1.53	0.97	-2.07	0.85	-3.13	1.23	-1.53	1.02	-2.41	0.93
$f_{D'_1D^*\pi/D_1D_2^*}$	1.82	-1.14	1.30	-0.65	1.65	-0.70	2.44	-1.15	1.35	-0.72	1.91	-0.75
$f_{D\pi/D_0^*}$	-0.88	-1.28	0.36	0.17	-0.31	-0.34	-0.83	-1.23	0.31	0.18	-0.27	-0.33
$f_{D^*\pi/D_1'}$	-0.21	-0.05	-0.13	0.21	-0.18	0.09	-0.30	-0.04	-0.15	0.23	-0.23	0.10
NR D*/D ratio	0.58	-0.16	0.11	-0.09	0.38	-0.04	0.66	-0.16	0.11	-0.09	0.40	-0.03
$\mathcal{B}(B^- \to D^{(*)} \pi \pi \ell \tilde{\nu})$	1.19	-1.97	0.25	-1.28	0.78	-1.28	1.98	-1.71	0.40	-1.20	1.20	-1.18
X^*/X and Y^*/Y ratio	0.61	-1.15	0.09	-0.27	0.39	-0.52	0.74	-1.02	0.08	-0.24	0.42	-0.47
X/Y and X^*/Y^* ratio	0.76	-0.83	0.21	-0.65	0.52	-0.60	1.09	-0.76	0.25	-0.63	0.68	-0.57
$D_1 \rightarrow D\pi\pi$	2.22	-1.54	0.74	-1.08	1.63	-1.05	2.74	-1.48	0.76	-1.06	1.81	-1.03
f_D ;	-0.14	-0.01	-0.10	0.07	-0.12	0.03	-0.16	-0.01	-0.10	0.07	-0.13	0.03
$\mathcal{B}(D^{*+} \rightarrow D^0 \pi^+)$	0.73	-0.01	0.43	-0.34	0.62	-0.17	0.80	-0.00	0.41	-0.33	0.61	-0.17
$\mathcal{B}(D^0 \to K^- \pi^+)$	0.69	0.02	-0.21	-1.63	0.29	-0.80	0.92	0.12	-0.27	-1.68	0.35	-0.80
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$	-1.46	-0.42	-2.17	0.30	-1.89	0.01	-1.43	-0.42	-2.10	0.28	-1.77	-0.01
τ_{B^-}/τ_{B^0}	0.26	0.16	0.63	0.27	0.46	0.19	0.22	0.16	0.58	0.28	0.41	0.19
f_{+-}/f_{00}	0.88	0.43	0.66	-0.53	0.82	-0.12	0.91	0.48	0.57	-0.52	0.75	-0.10
Number of BB events	0.00	-0.00	-1.11	-1.11	-0.55	-0.55	0.00	-0.00	-1.11	-1.11	-0.55	-0.55
Off-peak luminosity	0.05	0.01	-0.02	-0.00	0.02	0.00	0.07	0.00	-0.02	-0.00	0.02	-0.00
B momentum distribution	-0.96	0.63	1.29	-0.54	-1.15	0.48	1.30	-0.10	1.27	-0.64	1.31	-0.35
Lepton PID efficiency	0.52	0.16	1.21	0.82	0.90	0.46	3.30	0.06	5.11	5.83	1.99	2.90
Lepton mis-ID	0.03	0.01	-0.01	-0.01	0.01	-0.00	2.65	0.70	-0.59	-0.50	1.06	-0.01
Kaon PID	0.07	0.80	0.28	0.23	0.18	0.38	1.02	0.71	0.35	0.29	0.70	0.39
Tracking efficiency	-1.02	-0.43	-3.35	-2.00	-2.25	-1.15	-0.63	-0.28	-3.37	-2.09	-2.02	-1.14
Radiative corrections	-3.13	-1.04	-2.87	-0.74	-3.02	-0.71	-0.76	-0.61	-0.82	-0.25	-0.79	-0.33
Bremsstrahlung	0.07	0.00	-0.13	-0.28	-0.04	-0.14	0.00	0.00	0.00	0.00	0.00	0.00
Vertexing	0.83	-0.64	0.63	0.60	0.78	0.09	1.79	-0.76	0.97	0.54	1.41	0.01
Background total	1.39	1.12	0.64	0.34	1.07	0.51	1.58	1.09	0.67	0.38	1.16	0.49
Total	6.25	5.66	6.01	4.03	5.99	3.20	8.12	5.47	7.35	7.07	6.06	4.23