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What is viscosity 

the ability of momentum transfer

Shear viscosity –measures the resistance to flow  
Bulk viscosity –measure the resistance to expansion 

Determines the dynamics of

-volume viscosity 
compressible fluid 
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The QGP viscosity

-strongly coupled AdS/CFT prediction : D.T. Son et al. ‘01,’05

To extract the QGP viscosity from experimental data, we need viscous hydrodynamics

Shear viscosity:  uncertainty principle requires a lower limit for    
-weakly coupled QCD:

)()]0()([lim
20
1 4

0
tTxTxed ijijti θθθθηηηη ωωωω

ωωωω
>>>><<<<==== ∫∫∫∫→→→→

)()]0()([lim
18
1 4

0
tTxTxed i

i
i

i
ti θθθθζζζζ ωωωω

ωωωω
>>>><<<<==== ∫∫∫∫→→→→

Kubo formulas: shear viscosity: bulk viscosity: 
-lattice SU(3) gluon dynamics :

-weakly coupled QCD prediction:

-lattice SU(3) gluon dynamics :

-LET+ assum. of spectral fun. + Lattice data:   
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Bulk viscosity: zero for classical massless particles,       reaches a peak near s/ζζζζ cT
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-strongly coupled AdS/CFT prediction:
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Viscous hydro with shear & bulk viscosity

(2nd order shear-bulk -mixing term (Muronga, Rischke) not included.)
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Conservation laws:
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Evolution equations for shear pressure tensor         and bulk presurre:µνπ
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Numerical Results

Bulk viscosity:  

Shear viscosity:  
,4/108.0/ ππππηηηη ≈≈≈≈====s 0/or ====sηηηη

Relaxation times:  (see later)  

QGPHRG

Min. AdS/CFT  
prediction



Shear viscosity vs. bulk viscosity (I)

-Shear viscosity: decelerate cooling process in early stage
accelerate cooling  process in middle and late stages

-Bulk viscosity:    decelerate cooling process

Same initial & final conditions
ideal hydro                 viscous hydro-shear only                 viscous hydro-bulk only  

Local temperature 



Shear viscosity vs. bulk viscosity (II)

-shear viscosity: increases radial flow, results in flatter spectra 
-bulk viscosity:   decreases radial flow, results in steeper spectra    

radial flow spectra

Same Initial & final conditions
ideal hydro                 viscous hydro-shear only                 viscous hydro-bulk only  
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Shear viscosity vs. bulk viscosity (III)

-v2 is sensitive to both shear and bulk viscosity

Elliptical flow v2

Same Initial & final conditions
ideal hydro                 viscous hydro-shear only                 viscous hydro-bulk only  



Viscous v2 suppression: shear and bulk viscosity 
ideal hydro 
visc. hydro: 

-at RHIC, 2 x min. bulk viscosity could result in ~50% additional v2 suppression   

-when extracting the        from RHIC data, bulk viscous effects cannot be neglected  s/ηηηη
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Viscous v2 suppression: shear and bulk viscosity 
ideal hydro 
visc. hydro: 

-at RHIC, 2 x min. bulk viscosity could result in ~50% additional v2 suppression   

-when extracting the        from RHIC data, bulk viscous effects cannot be neglected  s/ηηηη

20%
30%
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bulk viscosity effects:

(a) Change the flow profile during hydro evolution  
(b) Additional spectra correction      along freeze-out surfacefδδδδ

Song & Heinz: v2 will decrease, flow corrections only (a), , at freeze-out     
Monnai & Hirano: v2 will increase, spectra corrections only(b),  ideal hydro for evolution   



-relaxation time effects 

Bulk Viscosity 



Bulk viscous v2 suppression:
-- Smaller vs. larger relaxation time 

-viscous effects from bulk viscosity strongly depend on relaxation time and the 
initialization for bulk pressure   



Effects from initialization of      (I)ΠΠΠΠ
Smaller relaxation time 

-after (several relaxation times), viscous pressure loses memory of initial cond. 

fm/c)5.0( ====ππππττττ is insensitive to different initializations of ΠΠΠΠ2v-When       is small                        ,ππππττττ



Effects from initialization of      (II)ΠΠΠΠ

-after (several relaxation times), viscous pressure loses memory of initial cond. 

larger relaxation time 

fm/c)5( ====ππππττττ is sensitive to different initializations of ΠΠΠΠ2v-When       is larger                       ,ππππττττ



Effects from initialization of      (III)ΠΠΠΠ

-viscous effects from bulk viscosity strongly depend on relaxation time and the 
initialization for bulk pressure   

Smaller vs. larger relaxation time 



--Effects  from system size

Multiplicity scaling of v2/ε
and collision energy 



Multiplicity scaling of v2/ε EOS I      

- freeze-out condition introduces time scale, breaking scale invariance of id. hydro eqns. 
- Initial profiles for Cu+Cu and Au+Au systems are not identical after a rescaling

Ideal hydrodynamics:  multiplicity scaling of v2/ε is weakly broken: 

Viscous hydrodynamics:  additional scale breaking by shear viscosity, resulting in fine 
structure of v2/ε:

Viscous effects are larger for smaller systems and lower collision energies

- for similar initial energy density, Cu+Cu curves are slightly below the Au+Au curves
- at fixed            , the                          curves are slightly above the                          ones 

dy
dN

S
ch1 3

0 GeV/fm15====e 3
0 GeV/fm30====e

full I-S eqn

ideal hydro 
v2 scaling line

Song & Heinz PRC 08



good candidate to constrain)

Multiplicity scaling of v2/ε EOS L 

- experimental data show qualitatively similar fine ordering as viscous hydro prediction

- to reproduce slope of v2/ε vs. (1/S)dN/dy, a better description of the highly viscous
hadronic stage is needed: T-dependent ,  viscous hydro + hadron cascade

- the experimental v2/ε vs. (1/S)dN/dy scaling (slope and fine structure) is another

- this requires, however, experimental and theoretical improvements: reduced error bars,
accounting for T-dependence of                near Tc, modeling hadronic phase with realistic cascade

full I-S eqn

gases
dilute

hydro
region

Song & Heinz PRC 08

s/ηηηη

ss /,/ ζζζζηηηη

s/ηηηη



A Short Summary

-When extracting QGP viscosity from experimental data, bulk viscosity effects should not be neglected  -More theoretical inputs are needed for bulk viscosity:  - relaxation time- initialization for bulk pressure - bulk viscosity of hadronic phase, etc
- multiplicity scaling of           is a good candidate to extract the QGP viscosity: 

- larger viscous effects in smaller systems and at lower collision energies 
εεεε/2v

- is sensitive to2v s/ηηηη



Thank You
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Viscous hydro in 2+1-dimension
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3+1     2+1coordinates),,,( ητ yx

--the transport equations for energy momentum tensor are explicit written as:
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1Bjorken approximation:

-shear tensor decelerate longitudinal expansion, but accelerate transverse expansion 
-bulk pressure decelerates both longitudinal & transverse expansion (bulk pressure 
effectively softens the EoS near the QCD phase transition) 



Viscous hydro: a short summary for shear viscosity --------shear viscosity only  shear viscosity only  shear viscosity only  shear viscosity only  -2+1-d viscous hydro code individually developed by different groups:-v2 at RHIC is sensitive to even the minimum shear viscosity entropy ratio -v2  suppression from different groups ranges from 20% to 70%  -the above discrepancy was largely resolved by investigating effects from  system size, EoS and different forms of I-S eqns. used
-Code checking within the TECHQM collaboration:-The first attempt to extract QGP shear viscosity from RHIC data:Luzum & Romatschke, PRC 78 (2008)TECHQM webpage

Song & Heinz,  PRC 78 (2008)    
Romatsche & Romatschke (INT),    Song & Heinz (OSU),      Dusling & Teaney (Stony)   Huovinen & Molnar (Purdue),    Chaudhuri (Kolkata, India) 

70% 20%



Effects from initialization of mnππππ

- is insensitive to different initializations of mnππππ2v
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-after ~1fm/c (several relaxation times), viscous pressure loses memory of initial cond. 

Song & Heinz, PLB08 & PRC 77(2008)

mnmn ησησησησππππ 2==== 0====mnππππvs.

-Effects on entropy production: ~20%
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