

Search for Contact Interactions in the Dimuon Final State at ATLAS

<u>E. Thompson</u>¹, S. Willocq¹, K. Black² ¹University of Massachusetts, Amherst ²Harvard University DPF'09, Detroit, MI – Thursday, July 30, 2009

Introduction

- Standard Model has shown impressive predictive power and agreement with experiment
- However,
 - Cause of EWSB still unconfirmed
 - Also, unable to explain number of quark/lepton families, dark matter, gravity, matter/antimatter asymmetry
- \rightarrow Motivates looking Beyond the Standard Model

Outline

- Motivation for high-mass dimuons as an early data BSM channel
- New BSM physics Contact interactions
 - Quark Compositeness
 - Large Extra Dimensions in the ADD Model
- Setting new limits with early data at ATLAS

- In the first year of running, expect 100 200 pb⁻¹ at sqrt(s)=10 TeV
- Dimuons are a clean, simple event topology for first-year analysis
- Muon performance will be understood relatively quickly

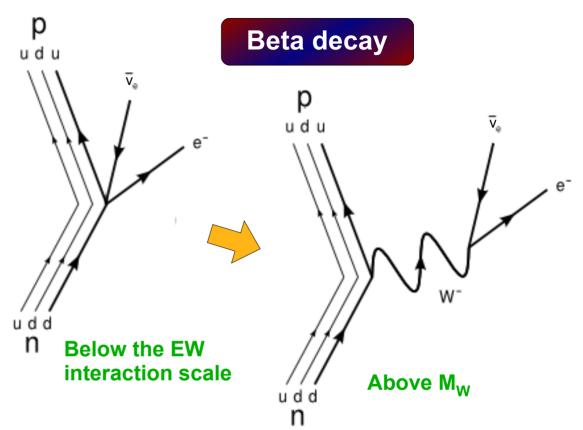
Few pb⁻¹:

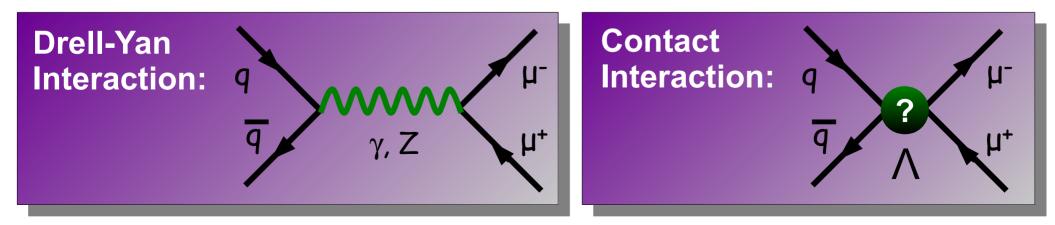
- Software robustness
- Monte Carlo validation
- ID-MS and internal MS alignment
- Trigger performance

Tens of pb⁻¹:

- Optimize muon selection from data
- Efficiency, resolution and momentum scale from resonances
- Fake rates

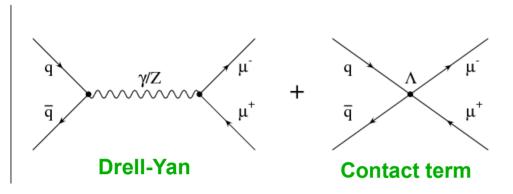
100 to 200 pb⁻¹:

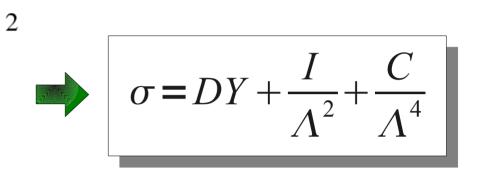

- Single and dimuon inclusive x-section measurements
- Efficiency, resolution etc measured in situ at the 1% level
- Beyond the Standard Model signals with high-mass dimuons:
 - Resonant: Z prime, RS Graviton (spin 2), Technicolor
 - Non-resonant: Quark Compositeness, Large Extra Dimensions



Contact interactions

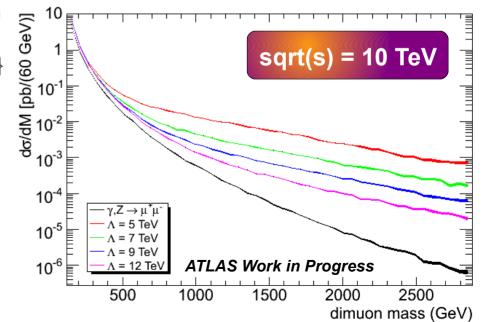
UMASS ATLAS


- Looking for new physics eg: Fermi Interaction
- Described as an effective coupling between incoming partons and final state leptons (contact term in the Lagrangian)
- Similarly, new physics may exist at an energy scale (Λ) higher than we are able to probe at the LHC



Contact interactions

- Observe a deviation from the Drell-Yan spectrum:
- $2 \rightarrow 2$ scattering cross-section:


Full Lagrangian of qqµµ contact interaction:

 $L_{ql} = \frac{g_0^2}{\Lambda^2} \{ \eta_{LL}(\bar{q}_L \gamma^{\mu} q_L) (\bar{\mu}_L \gamma_{\mu} \mu_L) + \eta_{LR}(\bar{q}_L \gamma^{\mu} q_L) (\bar{\mu}_R \gamma_{\mu} \mu_R) + \eta_{RL}(\bar{u}_R \gamma_{\mu} u_R) (\bar{\mu}_L \gamma^{\mu} \mu_L) + \eta_{RL}(\bar{d}_R \gamma_{\mu} d_R) (\bar{\mu}_L \gamma^{\mu} \mu_L) + \eta_{RR}(\bar{u}_R \gamma^{\mu} u_R) (\bar{\mu}_R \gamma_{\mu} \mu_R) + \eta_{RR}(\bar{d}_R \gamma^{\mu} d_R) (\bar{\mu}_R \gamma_{\mu} \mu_R) \}$

• As $\Lambda \rightarrow \infty$, distribution \rightarrow SM

Fermion Compositeness

 A is the hypercolor scale below which quark/lepton constituents are bound together

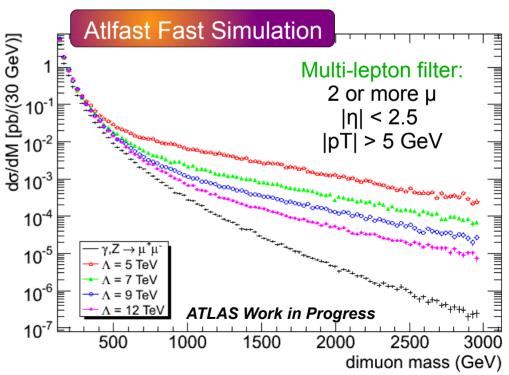
Thursday, July 30, 2009

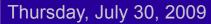
6/13

Monte Carlo: Quark Compositeness

- Different compositeness models correspond to different values of η_{mn} in full Lagrangian
- $L_{ql} = \frac{g_0^2}{\Lambda^2} \{ \eta_{LL} (\bar{q}_L \gamma^{\mu} q_L) (\bar{\mu}_L \gamma_{\mu} \mu_L) + \eta_{LR} (\bar{q}_L \gamma^{\mu} q_L) (\bar{\mu}_R \gamma_{\mu} \mu_R)$ $+ \eta_{RL} (\bar{u}_R \gamma_{\mu} u_R) (\bar{\mu}_L \gamma^{\mu} \mu_L) + \eta_{RL} (\bar{d}_R \gamma_{\mu} d_R) (\bar{\mu}_L \gamma^{\mu} \mu_L)$ $+ \eta_{RR} (\bar{u}_R \gamma^{\mu} u_R) (\bar{\mu}_R \gamma_{\mu} \mu_R) + \eta_{RR} (\bar{d}_R \gamma^{\mu} d_R) (\bar{\mu}_R \gamma_{\mu} \mu_R) \}$
- Left-Left Isoscalar Model, constructive interference: $\eta_{LL} = -1$, $\eta_{LR} = \eta_{RL} = \eta_{RR} = 0$
- Benchmark A scale values:

 σ x BF(X → µµ) x k(M_{µµ}) (M_{µµ} > 120 GeV, √s = 10 TeV) Λ = 5 TeV: 13.28 pb Λ = 7 TeV: 12.85 pb Λ = 9 TeV: 12.75 pb


 $\Lambda = 12 \text{ TeV}: 12.54 \text{ pb}$


Compare with Drell-Yan: 12.52 pb

12.75 pb
12.54 pb
12.54 pb
10⁻⁶

$$10^{-6}$$

 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}
 $10^{$

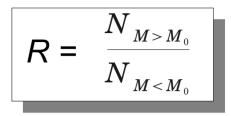
$$L = -\frac{g^2}{\Lambda_{LL^-}^2} \overline{q}_L \gamma_\mu q_L \overline{\mu}_L \gamma^\mu \mu_L$$

Contact Interaction Analysis

- Ratio method: count # events above and below a mass cut
- Advantage: Many systematic uncertainties cancel in ratio (eg. Luminosity)

Turn ratio into a significance

Discovery:

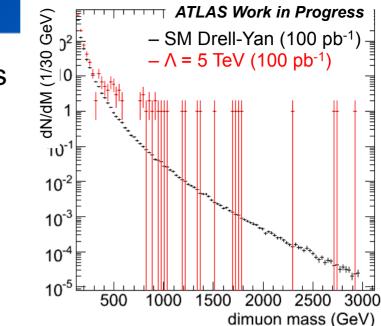

Compare ratio from data to ratio from background modeled from MC (look for excess > 5σ)

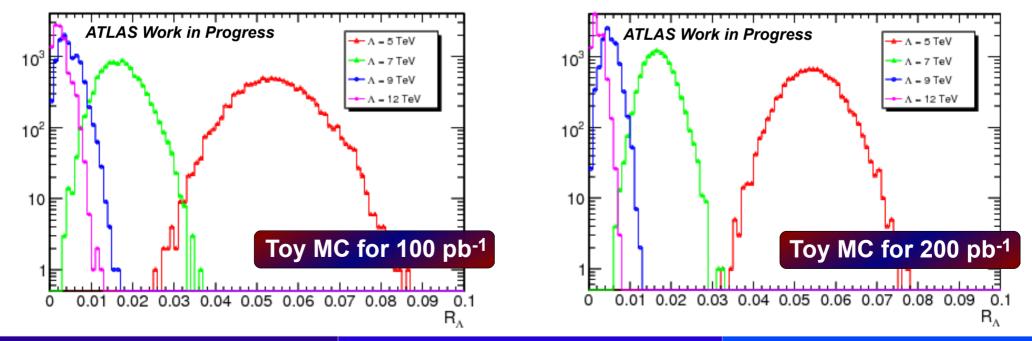
Limit setting:

Assume data is consistent with SM, compare with signal effective scale values (95% C.L. corresponds to $S_{lim} = 1.96$)

Expected limit:

Use Drell-Yan MC to model background, compare with signal MC

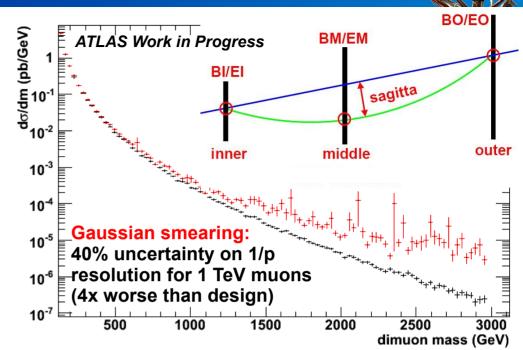

$$S_{\rm lim} = \frac{R_{\Lambda} - R_{SM}}{\sqrt{dR_{\Lambda}^2 + dR_{SM}^2}}$$



Statistical Uncertainty

- In early data, statistical uncertainty dominates
- Benchmark signal values for limit setting:

Uncertainty on signal ratio:					
Lambda	100 pb ⁻¹	200 pb ⁻¹			
5 TeV	15 %	11 %			
7 TeV	27 %	19 %			
9 TeV	47 %	33 %			
12 TeV	60 %	42 %			



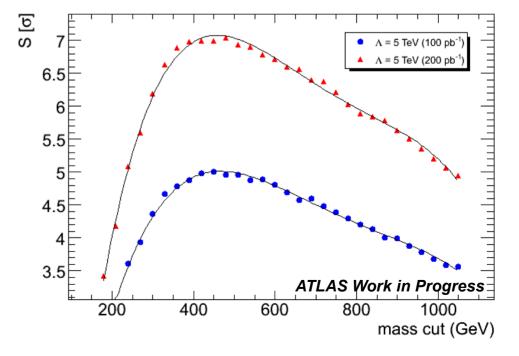
9/13

Systematic Uncertainties

- Systematic uncertainties on background (DY) only
- Only mass-dependent uncertainties play a role in the ratio method
- Largest effect: resolution uncertainty from misalignment, showers, etc.

Mass cut @ 450 GeV	lowcount	highcount	DY ratio	% diff
NOMINAL SM	660.5	7.6	0.0115	
RESOLUTION	732.7	9.0	0.0123	6.7%
Pt SCALE (1% ↑)	699.3	7.9	0.0113	-1.5%
Pt SCALE (1% \downarrow)	632.5	7.3	0.0116	1.1%
EFFICIENCY (up to 15% ↑)	669.5	7.8	0.0117	2.0%
EFFICIENCY (up to $15\% \downarrow$)	651.4	7.3	0.0112	-2.1%
K FACTOR (max slope)	635.3	7.4	0.0117	1.9%
K FACTOR (min slope)	700.5	7.8	0.0111	-3.1%

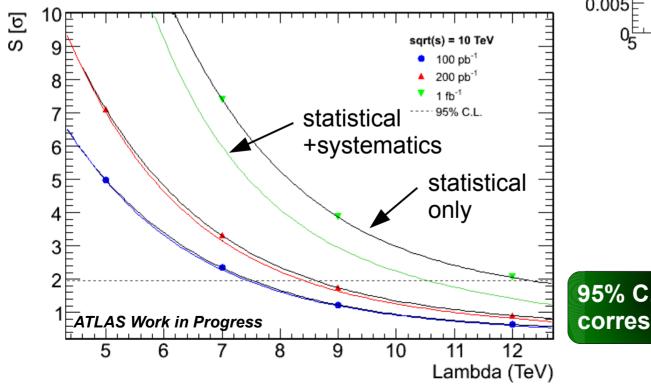
Find the expected limit

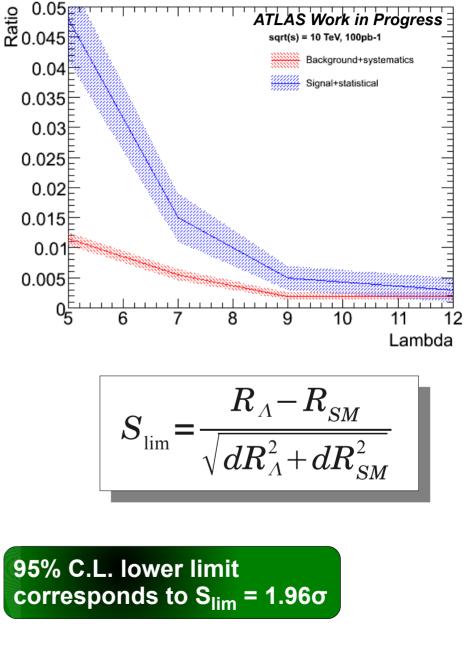

• dR_{Λ} (signal) is the statistical uncertainty on the signal ratio

$$S_{\text{lim}} = \frac{R(M_0)_{\Lambda} - R(M_0)_{SM}}{\sqrt{dR_{\Lambda}^2 + dR_{SM}^2}}$$

• dR_{SM} (background) incorporates systematic uncertainties

How to choose a mass cut?

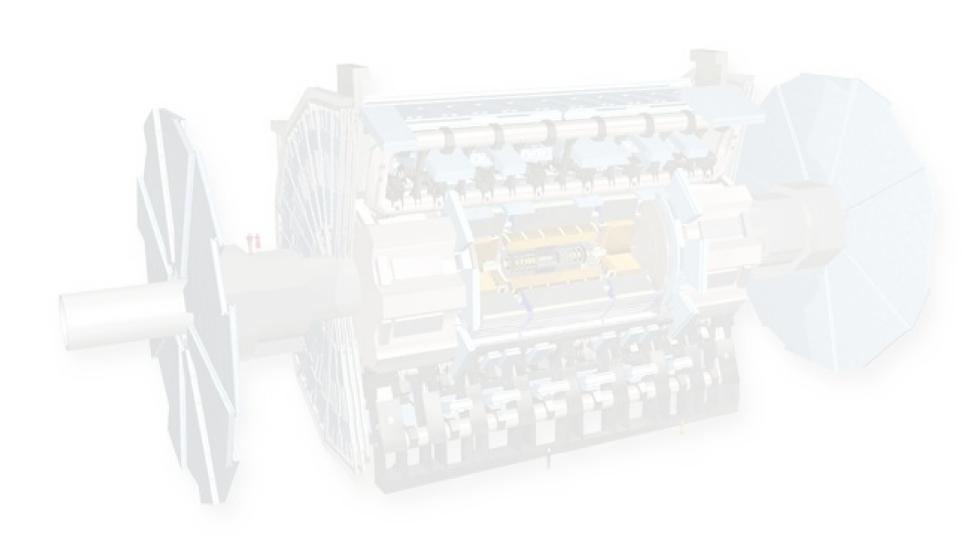

- Maximize the significance for each signal effective scale value
- Peak value doesn't change up to 200 pb⁻¹



UMASS ATLAS

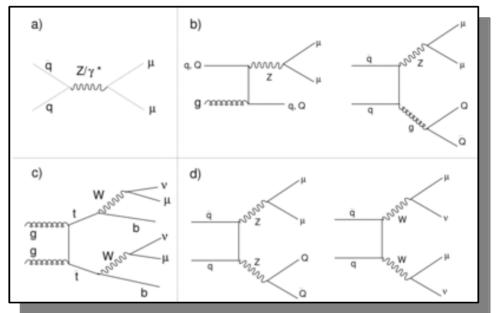
Limit setting using the ratio method

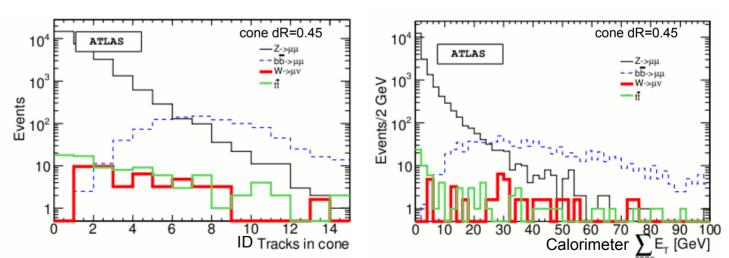
- Use the maximized mass cut for each Λ value
- In 100 pb⁻¹, systematics play no role
- Systematics highly overestimated for 1 fb⁻¹ as performance will be well understood


Conclusions

- New BSM limits can be set with first year data at ATLAS!
- Expected limit for constructive LL-isocalar compositeness model: Λ = 7.5 TeV (100pb⁻¹), 8.4 TeV (200 pb⁻¹) (Current limit: Λ = 6.9 TeV)
- Dimuons present a clean channel while still in the early stages of running
- The ratio method has shown to be advantageous in early data to reduce any large uncertainties

Early Analysis with High-mass Dimuons


Backgrounds


- (Drell-Yan)
- Z+jets, W+jets
- tt
- bb/dijets
- WW, ZZ
- Cosmics

Selections

- M_{µµ} > 120 GeV
- p_T(µ) > 20 GeV
- Opposite sign
- Isolated muons
- Same vertex
- dφ < 3.14

Leading order background diagrams

Background expected to be very low at high-mass!

UMASS ATLAS

<u>Limits</u>

• Current limits:

Large Extra Dimensions: (electron/photon channel)

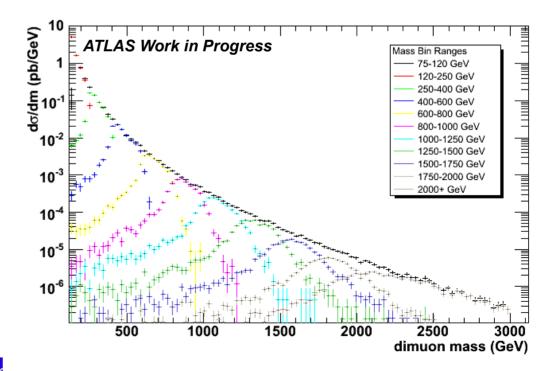
GRW formalism: $(\mathcal{F} = 1)$ M_s = 1.62 TeV

HLZ formalism:

 $\mathcal{F} = \ln(M_s^2/s) \text{ for } n_d = 2$ $\mathcal{F} = 2/(n_d - 2) \text{ for } n_d > 2$ $M_s = 2.06(1.29) \text{ for } 2(7) \text{ extra dimensions}$

<u>Quark/lepton compositeness:</u> (muon channel)

Constructive interference ($\eta = -1$): $\Lambda = 6.9$ TeV (preliminary D0, 2005) Destructive interference ($\eta = +1$): $\Lambda = 4.2$ TeV (preliminary D0, 2005)


 Each of the 10 invariant mass bins are filled by: mass_bin_histo[bin]->Fill(dimuonMass,weight) where weight = sigma[bin] * eff[bin] * kfactor[bin] This scales according to cross-section on an event by event basis.

(Note: sigma = $BF(X \rightarrow uu)$ * lepton filter eff * cross-section)

• When the mass bin histogram is filled with all events in tree, then mass_bin_histo[bin]->Scale(1/nEntries)

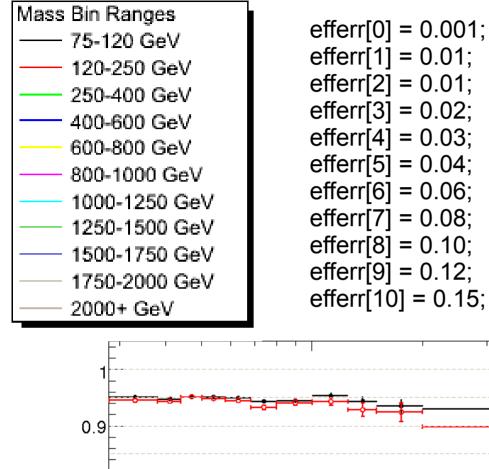
This ensures the area under the histo = weight/dM for that mass range

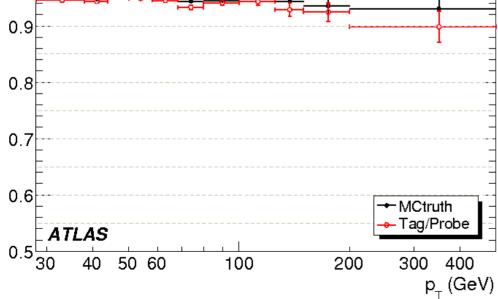
• Finally, the black curve is the addition of all 10 histograms

- Uncertainty from not understanding sagitta (proportional to 1/p)
- Sagitta = 50µm resolution for 1 TeV muons with 10% uncertainty

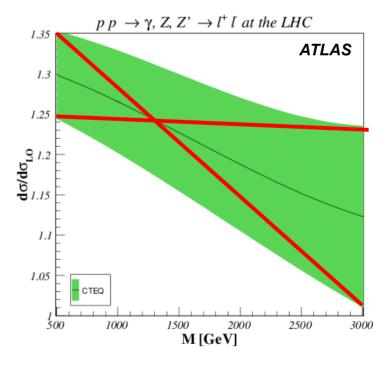
Back of the envelope calculation:

Sagitta + dSagitta = newSagitta \rightarrow 1/(1TeV) + dSagita = 1/(1TeV) *1.1 \rightarrow dSagitta = 0.0001 [1/GeV]


 However, probably more like ~200µm resolution for first year data, so mulitply by a factor of ~4


Smear two muons by random amount from Gauss with width = dSagitta:

```
mean = 0
sigma = 0.0005 // [1/GeV]
Trandom3 r
double res = r.Gaus(0,sigma);
plnew = 1/(1/p1+res);
res = r.Gaus(0,sigma);
p2new = 1/(1/p2+res);
```



Errors used

kerr[0] = 0.1;kfactor[0] = 1.31;kerr[1] = 0.08;kfactor[1] = 1.30;kerr[2] = 0.06;kfactor[2] = 1.29;kerr[3] = 0.04;kfactor[3] = 1.28;kerr[4] = 0.03;kfactor[4] = 1.27;kerr[5] = 0.02; kfactor[5] = 1.26;kerr[6] = 0.01;kfactor[6] = 1.25;kerr[7] = 0; kfactor[7] = 1.24;kerr[8] = -0.02;kfactor[8] = 1.22;kerr[9] = -0.05;kfactor[9] = 1.19;kerr[10] = -0.1;kfactor[10] = 1.15;

DPF'09

LAS

Minimum slope: