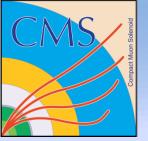
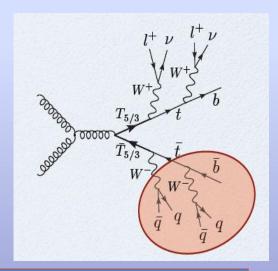

Search for Heavy Top Partners at the LHC

CMS Collaboration


<u>Aram Avetisyan (Brown University)</u> Tulika Bose (Boston University) Meenakshi Narain (Brown University)

7/28/2009

The CMS Experiment



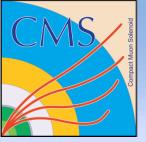
- Compact Muon Solenoid (CMS) Experiment
 - One of two general purpose experiments at the Large Hadron Collider (LHC)
 - Compact: 15m in diameter, 21.5m long, weighs 12500T

T_{5/3} and B Top Partner Model

- Fermionic top partners arise from natural, non-supersymmetric solutions of the hierarchy problem
 - Pseudo-Goldstone boson Higgs
 - $T_{5/3}$ with $Q_e = 5/3$ and B with $Q_e = -1/3$ decay into W and top

- Signature: $l^{\pm}l^{\pm} + n$ jets $(n \ge 5)$
- tW invariant mass peak $(T_{5/3})$

0000


Model suggested by Contino and Servant: arXiv:0801.1679 (2008) "Discovering the top partners at the LHC using same-sign dilepton final states" 3

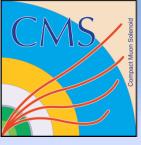
Signal and Physics Backgrounds

- Details in <u>http://cms-physics.web.cern.ch/cms-physics/public/EXO-08-008-pas.pdf</u>
 - Mass points of 400, 500, 600 and 700 GeV for the $T_{5/3}$ and B
 - $T_{5/3}$ and B assumed to be degenerate in mass
 - Principal physical backgrounds
 - $-t \overline{t} W^{\pm} + jets$
 - $-t\overline{t}W^+W^-$
 - $-W^+W^-W^\pm + jets$
 - $-W^{\pm}W^{\pm}+jets$
 - Event processing:
 - QCD multi-jets generated using Pythia
 - All other samples generated with MadGraph
 - Pythia MLM matching for events with fewer than 5 jets

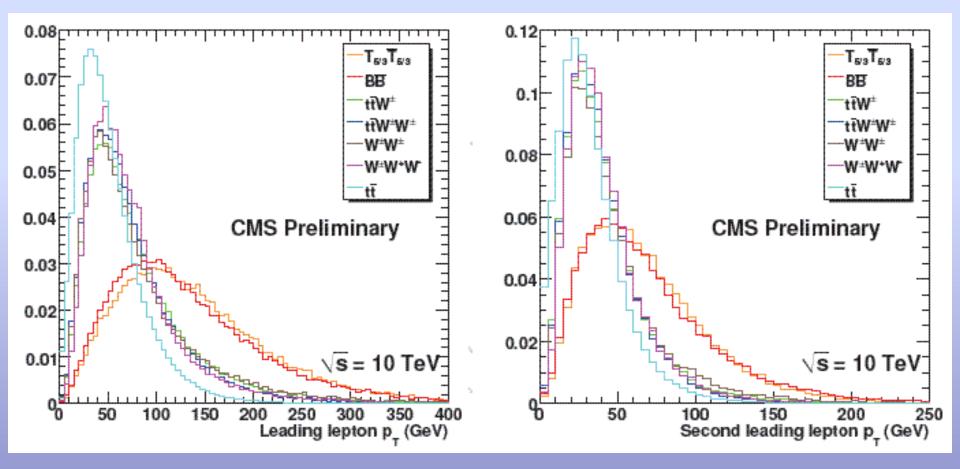

Instrumental backgrounds

$$-t t + jets$$

 $-W^{\pm} + jets$
 $-Z + jets$
 $-QCD multi - jets$

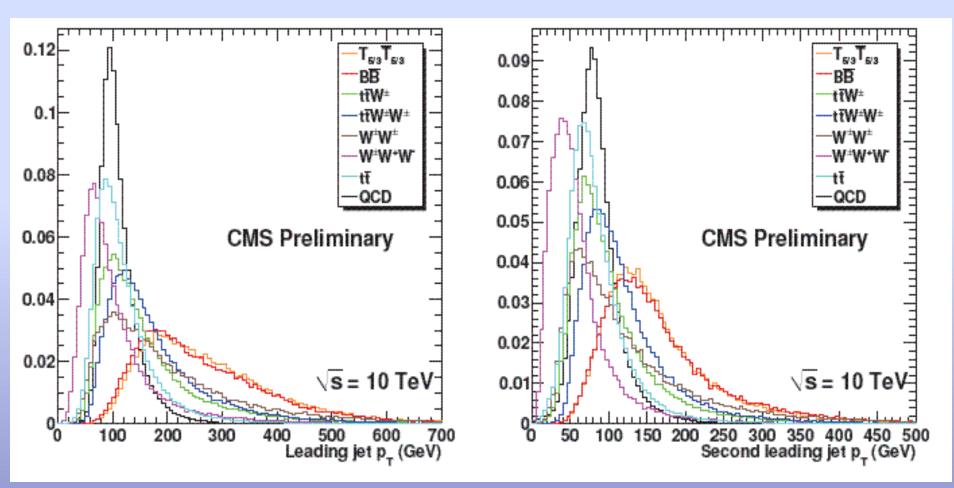

Trigger

- Signature: 2 high p_T leptons (e or μ)
- Require one of two trigger paths:
 - Single muon based on combined muon system and tracker information with $p_T > 9$ GeV
 - Single electron with $E_T > 15 \text{ GeV}$
- Efficiency of trigger selection is more than 99% for events passing kinematic cuts

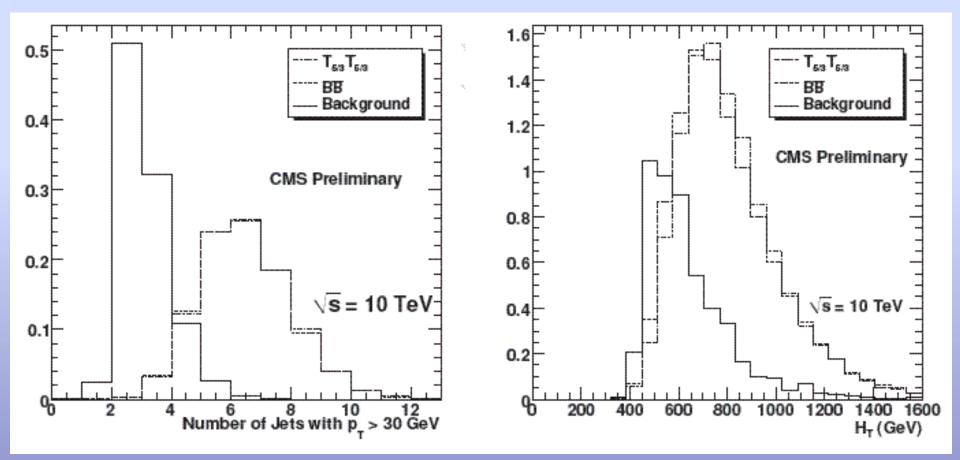



Lepton ID and Isolation

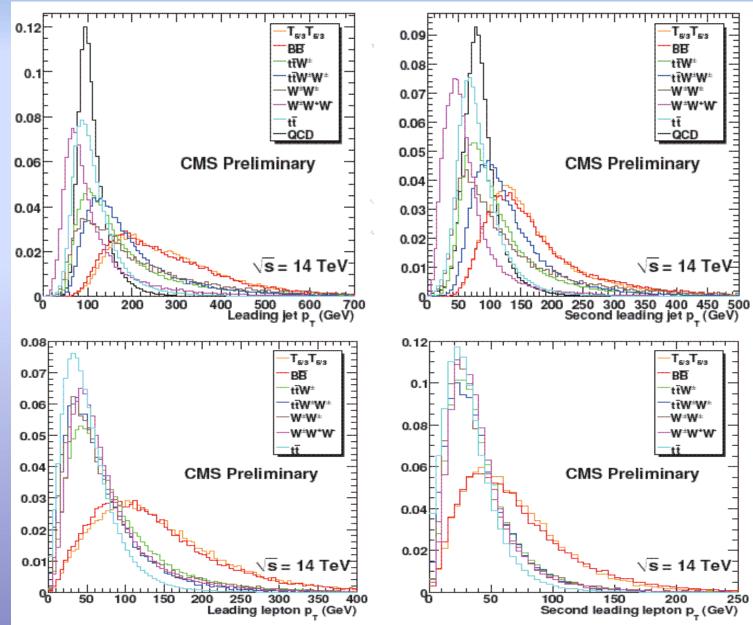
- Let E = scalar sum of the p_T of all particles in the tracker and calorimeters within $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.3$ of the lepton
 - $-\Delta R < 0.4$ in the calorimeter for electrons
- Define CombRelIso = E / p_T (lepton)
- 3 types of electrons:
 - Loose: No CombRelIso cut
 - Medium: CombRelIso < 0.15</p>
 - Tight: CombRelIso < 0.1</p>
- 2 types of muons:
 - Loose: No CombRelIso
 - Tight: CombRelIso < 0.1

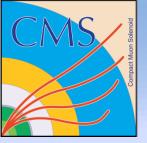


Lepton p_T Distributions (10 TeV)

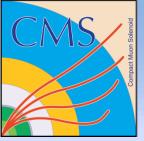


Jet p_T Distributions (10 TeV)




Number of Jets and H_T After Cuts (10 TeV)

Kinematic Distributions (14 TeV)



7/28/2009

Event Selection

- Leptons:
 - $|\eta| < 2.4$
 - Leading $p_T > 50$ GeV, second $p_T > 25$ GeV
 - Same sign charge
 - At least one of
 - "ee": Tight leading electron + Medium second electron
 - "emu": Tight muon + Medium electron
 - "mumu": Two Tight muons
 - 10 GeV veto around Z mass on "ee" channel
- Jets:
 - $|\eta| < 3.5$
 - Leading jet $p_T > 100 \text{ GeV}$
 - Second leading jet $p_T > 80 \text{ GeV}$
 - 5 jets with $p_T > 30 \text{ GeV}$

Event Efficiencies

Sample	σxBR (fb)	Efficiency	Expected # of events per fb ⁻¹	
Signal				
$T_{5/3}T_{5/3}$ (BB) M = 400 GeV	127	0.27 (0.25)	33.56 (31.01)	
$T_{5/3}T_{5/3}$ (BB) M = 500 GeV	33	0.32 (0.32)	10.83 (10.84)	
$T_{5/3}T_{5/3}$ (BB) M = 600 GeV	10.9	0.34 (0.35)	3.70 (3.80)	
T _{5/3} T _{5/3} (BB) M = 700 GeV	4.0	0.35 (0.35)	1.38 (1.44)	
Background				
ttW [±] +jets	6.6	0.041	0.27	
ttW [±] W [±]	7.7	0.10	0.20	
W [±] W ⁺ W ⁻ +jets	2.0	0.0055	0.04	
W [±] W [±] +jets	5.7	0.010	0.06	
tt+jets	4.14 x 10 ⁵	8 x 10 ⁻⁶	3.32	
Z+jets	3.7 x 10 ⁶	8 x 10 ⁻⁸	0.30	
W [±] +jets	4.0×10^7	< 1.5 x 10 ⁻⁹	< 0.06	

Lepton Charge Misidentification

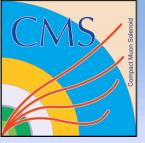
- Tag and Probe method
 - Use Z \rightarrow ee and Z $\rightarrow \mu\mu$ events where the charge of one lepton is relatively well known
 - Muon Tag: Muon with $E_T > 20$ GeV identified by both the tracker and the muon system
 - Electron Tag: Electron with $|\eta| < 2.5$ passing the trigger
- Muon misID rate is low
 - Use constant value of 5E-4
- Average electron misID rate of approximately 1%
 Use array of misID values as a function of p_T and |η|
- Net effect of charge misID on signal is small

– Included in efficiencies on the previous slide

Z+Jets Background Estimation

- Mostly due to charge mis-identification
- Data driven method:
 - Count number of l^+l^- events with 5 jets in 10 GeV Z mass window
 - Apply two correction factors:
 - For leptons to be identified as same sign
 - For the number of 5 jet events outside the Z mass window
- Leptons being identified as same sign:
 - Obtained from ratio of like sign to unlike sign electrons in Z mass window
 - The ratios inside and outside the window are the same (0.0252 and 0.0256 respectively)
- Number of events with 5 jets outside Z mass window:
 - Extrapolate from the ratios of events inside to outside in 2, 3 and 4 jet events (4.13 in 0.34 fb⁻¹)
- Total Z+Jets background: 0.30 events per fb⁻¹ ^{7/28/2009}

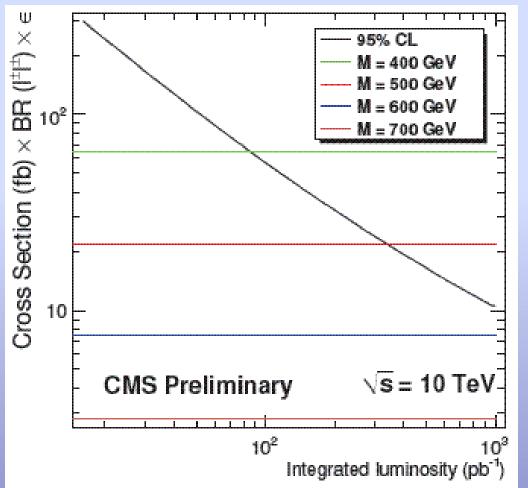
Lepton Misidentification


- Jets can be misidentified as leptons
- Two components to multi-jet background: either just 1 or both leptons are misidentified
- Data driven method for case of both leptons (leads to 0.80 events per fb⁻¹):
 - From QCD multi-jet events, select a sample of events with loose leptons
 - Use factorization method assuming jet and lepton requirements are uncorrelated to get an estimate from data.
 - Derive probability of loose leptons being identified as medium or tight from back to back dijet events (one loose lepton + one jet)
 - Require all jet cuts
 - Relax lepton cuts to allow two loose leptons
 - Multiply by probability of loose leptons being medium or tight
- One misidentified lepton: W+jets sample
 - Allow one loose lepton (the other has to be medium or tight)
 - L_{2009} Less than 0.06 events per fb⁻¹

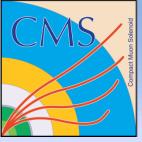
Data Driven TTbar Estimation

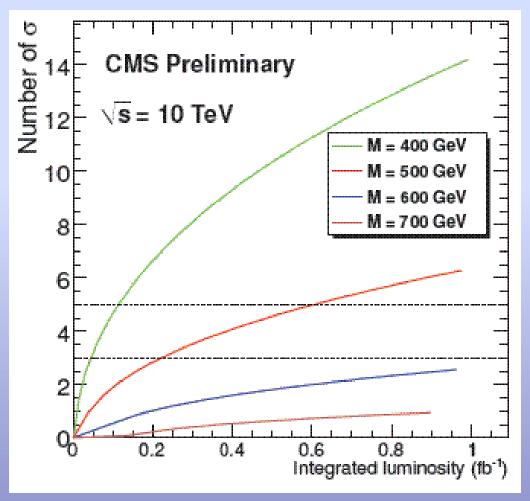
- $t \bar{t} + jets$ is the largest background
 - From charge misidentification
 - From semi-leptonic decays with b quark contributing the second lepton
- Use two samples:
 - N_C : control sample of events which pass all cuts except the same sign requirement
 - N_S : Signal sample
- Subtract out the contributions of Z+jets and QCD multi-jet events
 - The remaining events are then due to t t with some signal contribution
 - Can lead to overestimate of $t \bar{t}$ in signal sample
- Define:
 - f_{tt} : ratio of same sign to opposite sign events for $t \bar{t}$
 - C_{tt} , S_{tt} : *t t* events in the control sample, signal sample.
- Then $S_{tt} = f_{tt} * C_{tt}$

7/28/2009 - $f_{tt} \sim = 0.026$ leading to $S_{tt} \sim = 3.3$ events per fb⁻¹


Systematic Uncertainties

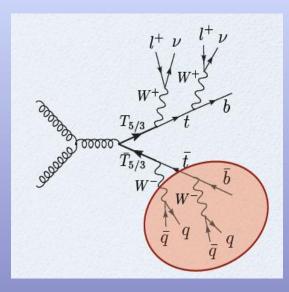
- Physics Samples:
 - Cross-section: $\pm 25\%$
 - MadGraph only calculates to leading order
 - $-\pm 11\%$ for $t\bar{t}$ (NLO)
 - Vary the renormalization scale
 - Lepton efficiency: $\pm 3\%$ relative uncertainty
 - Factor out the jets and vary the electron and muon acceptance
 - Jet energy scale: $\pm 5-10\%$
 - Varied jet p_T by 10%
- QCD backgrounds:
 - Factorization method: ±21%
- Z+Jets: 53% due to statistics

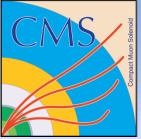

Sample	Expected # of events per fb-1
ttW [±] +jets	0.27 ± 0.07
tt₩ [±] ₩ [±]	0.20 ± 0.05
W [±] W ⁺ W ⁻ +jets	0.04 ± 0.01
W [±] W [±] +jets	0.06 ± 0.02
tt+jets	3.32 ± 0.40
Z+jets	0.30 ± 0.16
QCD Multi-jets	0.80 ± 0.17
Total Background	4.98 ± 0.48


95% C.L. Limits

- 95% confidence limit
 calculated using a Bayesian
 average with the assumption
 of Poisson statistics
- Cross-section lines correspond to sum of T_{5/3} and B expectations
- We can exclude masses of up to 400 GeV with 80 pb⁻¹, 500 GeV with 340 pb⁻¹

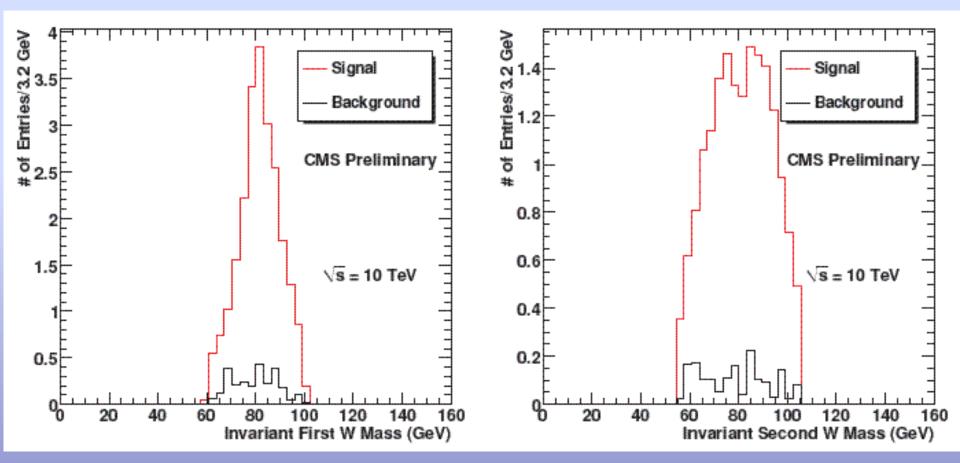
Significance

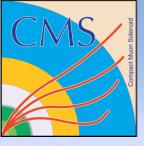



- For M = 400 GeV
 - -3σ at ~50pb⁻¹
 - -5σ at ~115pb⁻¹
- For M = 500 GeV
 - -3σ at ~220pb⁻¹
 - -5σ at ~600pb⁻¹
- Only 150pb⁻¹ at 14 TeV for M =500 GeV

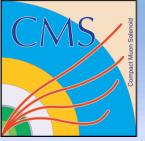
T_{5/3} Invariant Mass

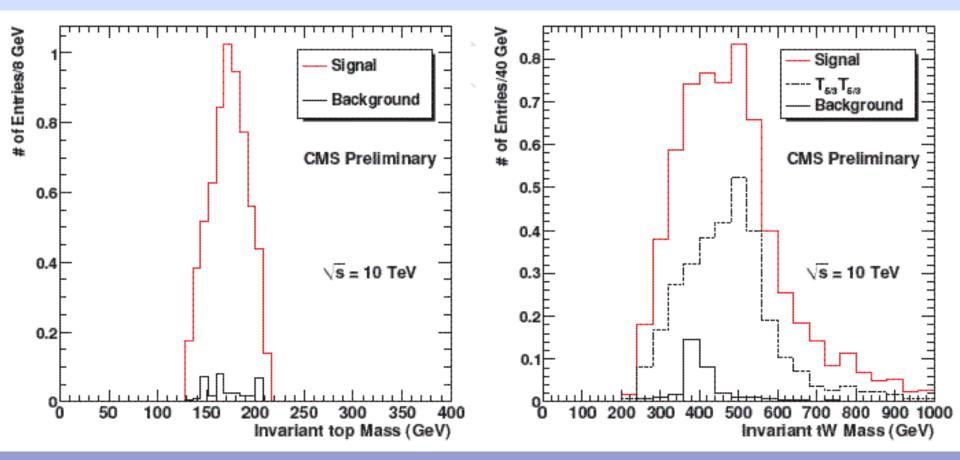
- The $T_{5/3}$ can be reconstructed from the hadronic fraction branch of the decay
- Require all cuts from above and that two jets be tagged as bjets
- b-jet closest to the lepton with the second highest p_T is assumed to come from leptonic branch of decay
- The remaining jets are then used to reconstruct the two W's, the top and the $T_{5/3}$




Reconstruction of W bosons

- Reconstruct the best W:
 - Pair of jets with invariant mass closest to W (must be within 20 GeV)
 - Jets must have $\Delta R < 1.5$ and are discarded if used
 - W must have $p_T > 50 \text{ GeV}$
- Reconstruct the other W:
 - Pair of jets with invariant mass closest to W (must be within 25 GeV)
 - Jets must have $\Delta R < 2.0$ and are also discarded if used
 - W must have $p_T > 30 \text{ GeV}$


Reconstruction of W's (10 TeV)



Reconstruction of top and $T_{5/3}$

- Reconstruct top quark:
 - Consider all (W, b-jet) pairs
 - Take combination with invariant mass closest to top quark
 - Must be within 40 GeV
- Reconstruct $T_{5/3}$ from top quark and the unused W
 - At 10 TeV, ~1.6fb⁻¹ of integrated luminosity needed for a 5σ observation of sum of T_{5/3} and B

Reconstruction of top and $T_{5/3}$ (10 TeV)

Conclusions

- Constructed a means of searching for exotic partners of the top quark, the $\rm T_{5/3}$ and B
- Exclusion at 95% confidence level:
 - Up to M = 400 GeV with less than 100pb^{-1} of integrated luminosity
 - Up to M = 500 GeV with $\sim 340 \text{pb}^{-1}$
- A 5 σ observation of the top partners with M = 400 GeV is possible with ~115pb⁻¹ of data.
- For M = 500 GeV, 220pb⁻¹ of data is needed for a 3σ evidence