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q Introduction and Motivation 

qCalibration method
qResults from Monte Carlo data

ØAssessment of in-situ performance with initial data
Ø systematics

q Conclusions and outlook
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Liquid Argon(LAr) CalorimeterLiquid Argon(LAr) Calorimeter
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Cell/Cluster size in middle layer:
Cell size (∆η x ∆φ)=0.025x0.025
Electron cluser (∆η x ∆φ)=0.075x0.175
Photon cluser (∆η x ∆φ)=0.075x0.125
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MotivationMotivation

q H→ γγ : to observe signal peak on top of 
huge γγ background
Ø places severe requirements on the 

performance of the EM Calo.
Ø need mass resolution of ~ 1.2%

v response uniformity (i.e. total constant term 
of energy resolution) ≤ 0.7% over |η| < 2.4

q Energy resolution is parameterized as

where

q From the test beam the local constant(cL) 
term ~0.5%
⇒ the “long range” zone to zone 

non-uniformity(cLR) must  be ≤ 0.5% 
⇒ zone is  ∆η×∆φ=0.2×0.4

q Long range non-uniformities can be 
corrected using electrons from Z boson 
decays

Not using sophisticated methods
developed by Higgs group for 
background subtraction
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In-situ calibration also has to establish
absolute EM scale to an accuracy~0.1%
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A bit of detailsA bit of details

q Some sources of long-range non-uniformities:
Ø High voltage variation due to localized calorimeter defects
Ø Liquid Argon (LAr) temperature variations
Ø Impurities
Ø Mechanical deformation
Ø Material in front of the calorimeter

q By construction the response uniformity is within~1-2% assuming 
perfect knowledge of the material in front of calorimeter

q Material could be mapped out 
using different methods:

v photon conversions, energy flow 
measured in layers of EM calorimeter

q Transverse energy accumulated
in ∆η x ∆φ = 0.1x0.025 middle-layer

q1.8 < η < 1.9
q ϕ > 0 has 25% more materialATLAS
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Description of the Intercalibration MethodDescription of the Intercalibration Method

q The basic idea is to constrain the measured di-electron invariant 
mass to the Z boson line shape

q Method:
Ø Divide EM Calorimeter into 384 regions (zones) of ∆ηx∆φ=0.2x0.4
Ø For region “i”, the long range constant term “ α” in terms of reco. 

energy

di-electron mass in pair of region (i,j):

q Solve for  β’s by minimizing the log-likelihood,

q Where Lk quantifies the compatibility of di-electron mass Mk in event 
“k” with the Z boson line shape
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Solve for α’s with least squares method
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Z boson line shapeZ boson line shape

q Using Z boson line shape as a 
reference
Ø Line shape is modeled with 

relativistic Breit-Wigner 
Ø Corrected with parton 

luminosity factor to best 
describe the Z line shape in pp 
collision 

Ø Convolution with a gaussian to 
take into account finite 
resolution of the calorimeter

q Can also use Z mass distribution 
using ideal data (understood 
material, aligned detector)

In the following slides “α” means long range calibration constants
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Monte Carlo Generator Level TestsMonte Carlo Generator Level Tests

q Events generated with Pythia 6.403
Ø Tested the method with 50K 

events
Ø Smear electron energy as 

Ø Selection cuts:
v at least one electron with 

pT > 10GeV, |η| <2.4
v di-electron mass > 60 GeV

Ø Fit gives an unbiased estimator of 
the injected “α’s” for injected bias 
of mean=0, sigma=2%

Ø For inject bias of mean=-3%, bias 
on energy scale 0.1%

Ø Performing a second iteration 
gives unbiased estimator of “α” 

EE
E %10
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σ

Inject bias sigma = 2%

Inject bias sigma = 2%, mean =0

σ=0.4%
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Constant term as a function of luminosityConstant term as a function of luminosity

q Injected gaussian bias of 
mean=0., sigma=2%

q At 100pb-1 long range constant 
term~0.4% 

q Combining with local term 
0.5% gives total constant term 
~0.6%

q assume perfect  knowledge of 
material in front of calorimeter 
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Results from realistic MC simulationResults from realistic MC simulation

q Results reported for ~200pb-1 pseudo-
data
Ø Events were 

simulated/reconstructed with Atlas 
misaligned geometry

Ø Added extra material in the Inner 
Detector and Calorimeter

Ø Realistic misalignment 
q Selection criteria:

Ø Two medium electrons
Ø Opposite sign
Ø pT>20 GeV, |η| <2.4
Ø Mass window,  80< Mee<100 GeV

v Selection efficiency~21.5%

intrinsic true “α’s” are derived by fitting 
the peak position of ( pT(reco)-pT(true) ) /pT(true) 

due to extra material added in simulation 

mean = 0.1%
σ = 0.4%

α

αfit- αtrue
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Calibration constants vs eta/phi Calibration constants vs eta/phi 

q Comparison between nominal 
(open circles) and realistic (full 
circles) simulation

q Effect of extra material visible 
between positive and negative 
φ
Ø Difference~0.6%

αfit
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Realistic simulation plus injected biasRealistic simulation plus injected bias

q Injecting bias from a gaussian distribution of mean=0., sigma=2% 
q Estimating true “α’s” as before using truth information
q Good agreement between data driven fitted “α’s” and true alpha’s 
q Could recover constant term~0.5%
q Absolute energy scale accuracy~0.1%

Mean=0.1%
σ = 0.5%

q With 200 pb-1 and initial non-uniformity of 2% the long range constant term is within~0.5%
q Repeating the same exercise at 100 pb-1 give constant term~0.8%, bias on absolute scale~0.1%

α αfit - αinj - αtrue
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A word about systematicsA word about systematics

q Bias due to QCD background  
Ø Contribution from QCD 

background with two jets faking 
electrons is small

Ø Negligible effect on determination 
of energy scale 

q Extrapolation to low or high pT
Ø Electron pT from Z boson has 

peak~45 GeV
Ø For electron in |η| <0.6, pT

dependence is within ~0.5%
Ø Effect is worse for non central 

electrons
Ø Non-linearity is due to the 

presence of extra material
Ø Study has been ongoing to cross 

check calibration constants in the 
low pT region with J/psi→ee

q At Z boson scale uncertainty~0.2% for 
central electron

q For non central electron~1%

Corrections derived with Z→ee were 
applied to single electron samples in 
different pT range

mean alpha vs pT

uncertainty~0.2%
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Z boson massZ boson mass

q The data driven way to check 
the performance of the 
calibration machinery is to 
compare the di-electron 
invariant mass before and 
after corrections

Example plot
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ConclusionsConclusions

q Methods to calibrate ATLAS Electromagnetic calorimeter 
are in in place

q Performance studied on realistic Monte Carlo data
Ø With 200pb-1 the long range constant term is ~0.5%

v hence the total constant term~0.7%
Ø Absolute energy scale accuracy ~0.1%
Ø For central electron corrections can be extrapolated to full 

pT spectrum within 0.5%
Ø For non-central electrons linearity is degraded due to extra 

material
q Studies are in progress to improve/cross check Z→ee 

calibration by using isolated electrons from W boson and 
in the low pT region using electrons from J/psi
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Backup Backup 

LRLtot ccc ⊕=
q a = stochastic term (sampling fluctuation)
q b = noise term (electronic, pile-up)
q c = constant term (non-uniformities, inter-channel calibration)
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