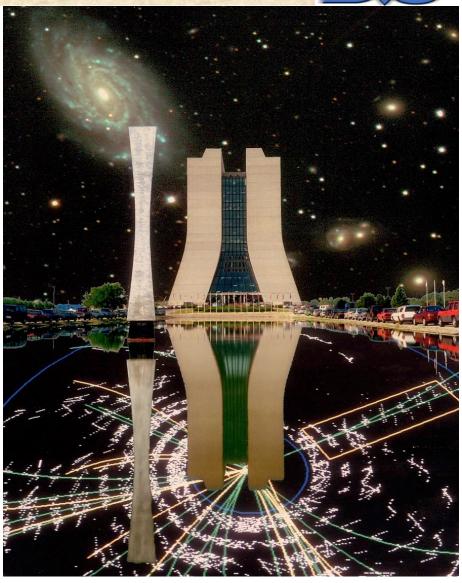
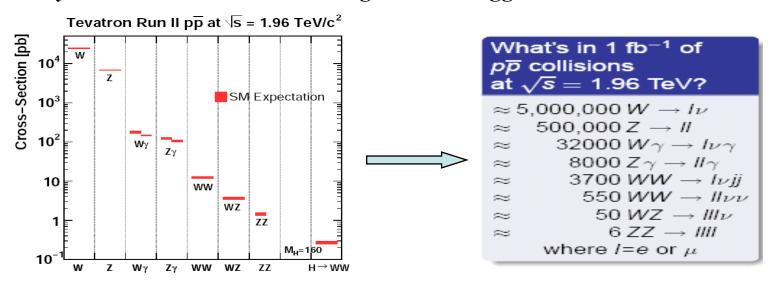
Diboson Production at the Tevatron

Ia Iashvili



Outline

- Introduction
- Wγ production
 - Cross section measurement
 - □ Radiation Amplitude Zero
 - ☐ Triple Gauge Boson Couplings
- WW production
 - □ Cross section measurement
 - ☐ Triple Gauge Boson Couplings
- WZ production
 - □ Cross section measurement
 - ☐ Triple Gauge Boson Couplings
- Semi-hadronic WZ/WW/ZZ decays
- Zy production
 - Cross section measurement
 - ☐ Triple Gauge Boson Couplings
- ZZ production
 - **□** First evidence
 - Cross section measurement
 - **☐** Triple Gauge Boson couplings
- Prospects at LHC
- Summary

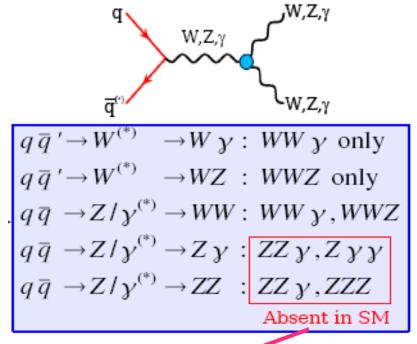


Introduction

- Tevatron diboson program: measure production cross sections, study kinematics and probe gauge boson self-interactions.
- Diboson production is one of the least tested areas of the SM.
- Triple gauge vertices are difficult to access with other than diboson production processes. They are expected to be sensitive to physics beyond the SM.
- Tevatron complementary to LEP: explores higher energies and different combinations of couplings.
- Even in the SM, diboson production is an important process to understand: it shares many characteristics and is a background to Higgs and SUSY.

Introduction

Excursions from the SM can be described via effective Lagrangian:


$$L_{WWV}/g_{WWV} = g_{V}^{1}(W_{\mu\nu}^{+}W^{\mu}V^{\nu} - W_{\mu}^{+}V_{\nu}W^{\mu\nu})$$

$$+ \kappa_{V}W_{\mu}^{+}W_{\nu}V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}}W_{\lambda\mu}^{+}W_{\nu}^{\mu}V^{\nu\lambda}$$
where $V = Z, \gamma$

In SM:
$$g_V^1 = \kappa_V = 1$$
, $\lambda_V = 0$

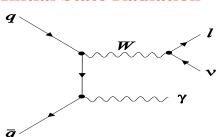
- Anomalous Triple Gauge Copuling's (TGC) increase production cross sections, particularly at high values of the boson E_T $(W/Z/\gamma)$.
- Unitarity violation avoided by introducing a form-factor scale ∧, modifying the anomalous coupling at high energy:

$$\lambda(\hat{s}) = \frac{\lambda}{(1 + \hat{s}/\Lambda^2)^n}$$

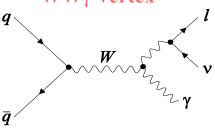
• Two types of effective Lagrangians with:

on-shell
$$\mathbf{Z}\gamma$$
 on-shell $\mathbf{Z}\mathbf{Z}$
 $(\mathbf{Z}\gamma\mathbf{Z}^*,\mathbf{Z}\gamma\gamma^*)$ $(\mathbf{Z}\mathbf{Z}\mathbf{Z}^*,\mathbf{Z}\mathbf{Z}\gamma^*)$
 h_{10}^V,h_{20}^V (CP violating) f_{40}^V
 h_{30}^V,h_{40}^V (CP conserving) f_{50}^V

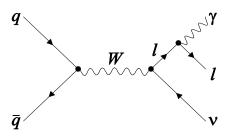
SM predicts all to be 0



Wy analysis at DØ



Three main diagrams for Wy production at the Tevatron:


Initial State Radiation

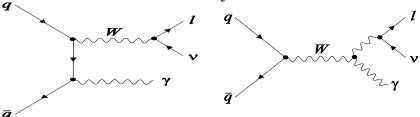
WWy Vertex

Final State Radiation

- Deviation from the SM prediction would be a sign of new physics
 - > Particularly at high p_T region of photon
 - \triangleright Sensitive to WW γ coupling
 - > Interference of photons radiated from quark and W lines yield a peculiar experimental feature
- Basic $W\gamma \rightarrow l \ \upsilon \ \gamma$ event selection $(l = e, \mu)$:
 - \triangleright High p_T electron or muon and high E_T^{miss}
 - $ightharpoonup E_T^{\gamma} > 9$ GeV either in Central ($|\eta| < 1.1$) or Endacp (1.5 < $|\eta| < 2.5$) calorimeter
 - \rightarrow dR(l, γ) > 0.7
 - \Rightarrow dR(I, γ) > 0.7 \Rightarrow M_T($l\nu\gamma$) > 110 (120) GeV

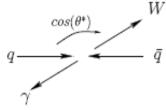
To reduce FSR contribution

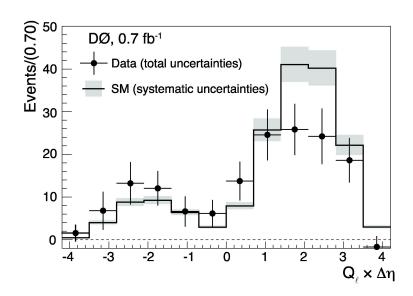
• Main background processes: W+jets, "leX" – events with l and e faking γ, $W(\rightarrow \tau \upsilon)\gamma$, $Z\gamma$.

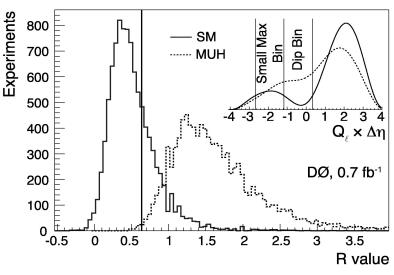


Wγ analysis: Radiation Amplitude Zero

6

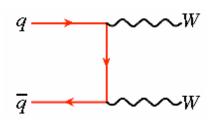

 Photons radiated from quark and W lines interfere destructively


□ Zero amplitude at


$$> \cos\theta^* = +1/3 \text{ for u dbar } \rightarrow W^+ \gamma$$

$$> \cos\theta^* = -1/3 \text{ for d ubar } \rightarrow W^-\gamma$$

- □ No measurement of p_z of v: use $Q_l \times (\eta_{\gamma} \eta_{\nu})$ to observe "dip" in the distribution
- □ Non-SM coupling may fill the "dip"
- DØ: No dip hypothesis ruled out at 2.6 σ level \Longrightarrow constitutes first indication for radiation-amplitude zero in $W\gamma$.



PRL 100, 241805 (2008)

WW→lvlv production

- ullet Dilepton channel provides cleanest signature: ee, $\mu\mu$ or e μ accompanied by missing ${f E}_{
 m T}$
- Main background processes: W+j/γ, dijet, Drell-Yan, top pairs, WZ, ZZ
- Theory prediction for production cross section is 12.0-13.5 pb (J. Ohnemus, PRD 50, 1931 (1994); J.M. Campbell and R.K. Ellis, PRD 60, 113006 (1999)) accessible at Tevatron Run II already with a couple of 100 pb⁻¹.
- Cross section measurements
 - $D\emptyset$, $L \approx 1$ fb⁻¹, arXiv.org:0904.0673

$$\sigma = 11.5 \pm 2.1(\text{stat} + \text{sys}) \pm 0.7(\text{lumi}) \text{ pb}$$

• CDF, $L \approx 3.6 \text{ fb}^{-1}$, preliminary

$$\sigma = 12.1 \pm 0.9(\text{stat})_{-1.4}^{+1.6}(\text{sys}) \text{ pb}$$

WW →*l*ν*l*ν production: probing **WWZ** and **WW**γ couplings

- Use p_T spectra of leptons to probe WWZ and WWγ couplings:
 - \triangleright Non-SM TGC enhances cross-section at high p_T.
- Test various assumptions for WWZ and WWγ coupling relations:

$$\triangleright$$
 equal couplings $\Delta \kappa_Z = \Delta \kappa_{\gamma}$, $\Delta g_1^Z = \Delta g_1^{\gamma} = 1$, and $\lambda_{\gamma} = \lambda_Z$

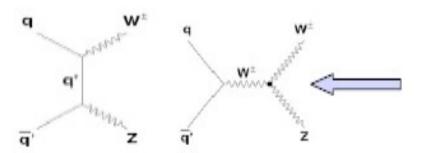
$$-0.12 < |\Delta \kappa| < 0.35$$

-0.14 < |\lambda| < 0.18 (\Lambda_{NP}=2 TeV)

> HISZ parametrization: imposes SU(2)×U(1) symmetry on the coupling parameters

DØ

$$\begin{array}{l} \text{-0.54} < \mid \Delta \kappa_{\gamma} \mid < 0.83 \\ \text{-0.14} < \mid \lambda \mid & < 0.18 \\ \text{-0.14} < \mid \Delta g_{1}^{\ Z} \mid < 0.30 \end{array}$$


CDF

$$\begin{array}{lll} -0.57 < \mid \Delta \kappa_{\gamma} \mid & < 0.65 \\ -0.14 < \mid \lambda \mid & < 0.15 \\ -0.22 < \mid \Delta {g_1}^Z \mid & < 0.30 \end{array}$$

WZ → *lll*v production

- Sensitive to WWZ coupling only
 (WW is sensitive to both WWZ and WWγ).
- WZ production is unavailable at e⁺e⁻ colliders.

WZ Production Branching Ratios

- Search for WZ production in 3 leptons (eee,ee μ , e $\mu\mu$, $\mu\mu\mu$) + missing E_T
- Distinct, but rare signature:
 - $\triangleright \sigma(ppbar \rightarrow WZ) = 3.7 \pm 0.1 pb$
 - ➤ Branching fraction ~1.5%
- Background processes: Z+jet(s), ZZ, Zγ, ttbar production

Cleanest Signal Mode Fully leptonic W to hadrons Tau Final States Z to Hadrons Z to Neutrinos

Fully Hadronic

$WZ \rightarrow lllv$ production

- First evidence at $> 3 \sigma$ in summer 2006 with $\sim 0.8 \text{ fb}^{-1}$ at DØ
- First observation at $> 5 \sigma$ in fall 2006 with ~1.1 fb⁻¹ at CDF (*PRL 98, 161801 (2007*))
- Cross section measurements

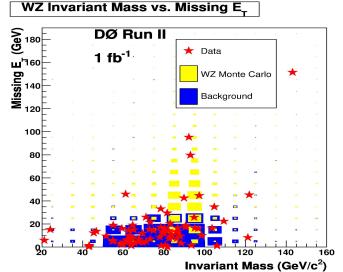
$$\Box$$
 DØ, $L = 1.0 \text{ fb}^{-1}$:

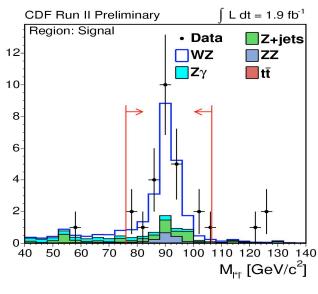
Events observed 13

Expected background 4.5 ± 0.6

Expected signal 9.2 ± 1.0

$$\sigma(WZ) = 2.7^{+1.7}_{-1.3} \text{ pb}$$
 PRD 76, 111104(R) (2007) PRD 76, 111104(R) PRD 76, 11110

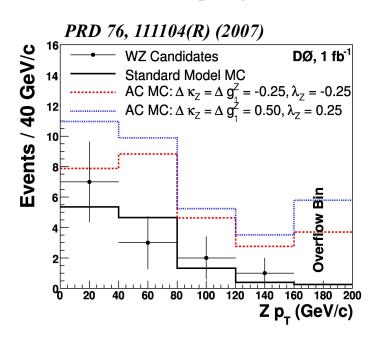

\Box CDF, $L = 1.9 \text{ fb}^{-1}$:

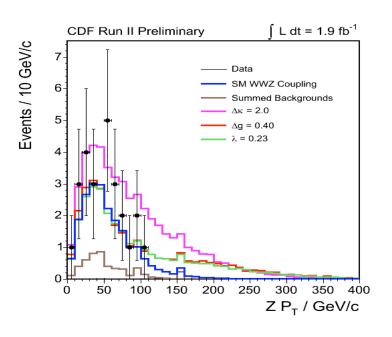

Expected background 4.7±1.5

Expected signal 16.5±2.0

$$\sigma(WZ) = 4.3^{+1.3}_{-1.0}(stat) \pm 0.2(syst) \pm 0.3(lumi)$$
 pb

NLO prediction: $\sigma(WZ) = 3.7 \pm 0.3 \text{ pb}$



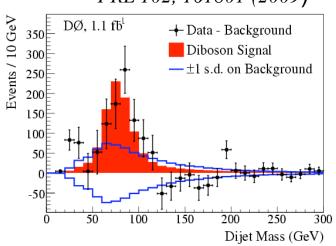


WZ → *lll*v production: probing WWZ coupling

Non-SM WWZ coupling enhances cross section at high values of Z p_T

95% C.L. limits for Λ =2 TeV

DØ published, 1.1 fb ⁻¹	CDF preliminary, 1.9 fb ⁻¹
$-0.17 < \lambda_Z < 0.21$	$-0.13 < \lambda_Z < 0.14$
$-0.14 < \Delta g_Z < 0.34$	$-0.13 < \Delta g_Z < 0.23$
$-0.12 < \Delta \kappa_Z = \Delta g_Z < 0.29$	$-0.76 < \Delta \kappa_Z < 1.18$


WW/WZ→lvjj production

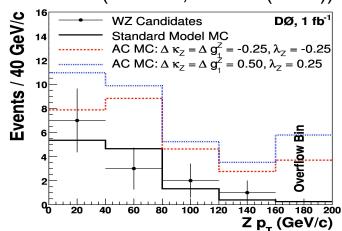
- Combined analysis of WW→lvjj and WZ→lvjj channels
- Final state similar to WH→lvbb
- Experimentally challenging:
 - > 5-10 × more data than in leptonic channels
 - > 1000 × more background: W+jets, Z+jets, QCD multijet, ttbar.
- Select events with
 - **→** High p_T electron or muon
 - \rightarrow High missing E_T and $M_T(l, E_T^{miss})$
 - \geq 2 jets
- S/B < 1% after selection
 - > Use multivariate discriminant
 - Look for "bump" in M(jj) distribution
- Cross section measurements

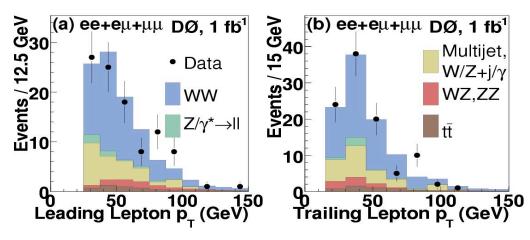
D0 (1.1 fb⁻¹)
$$\sigma(WW + WZ) = 20.2 \pm 4.4(stat + syst) \pm 1.2(lumi)pb$$

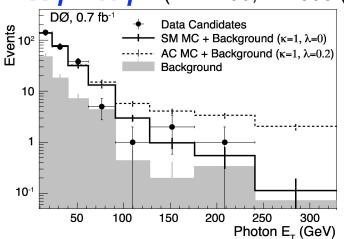
CDF (2.7 fb⁻¹) $\sigma(WW + WZ) = 17.7 \pm 3.1(stat) \pm 2.4(sys)pb$
SM NLO calculation $\sigma(WW + WZ) = 16.1 \pm 0.9pb$

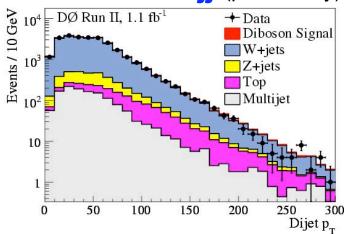
PRL 102, 161801 (2009)

- Observed significance
- \triangleright 4.4 σ at D0 \Rightarrow First evidence
- > 5.4 σ at CDF ⇒ First observation




WV Combination

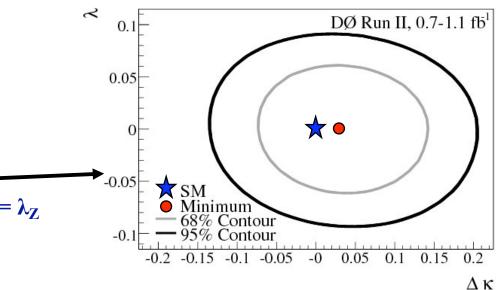

● Combination of four DØ analysis with ~ 1fb⁻¹



Wy→**/vy** (PRL 100, 241805 (2008))

WW+WZ→**Ivjj** (preliminary)

WV Combination



- Combination of four DØ analysis with ~ 1fb⁻¹
- 95% CL limits on γWW and ZWW TGCs under various assumptions
 - > Requiring SU(2)xU(1) symmetry

$$\Delta \kappa_Z = \Delta g_1^{\ Z} - \Delta \kappa_{\gamma} \cdot tan^2 \theta_W$$
 and $\lambda_{\gamma} = \lambda_Z$

$$(\Lambda_{NP}=2 \text{ TeV})$$

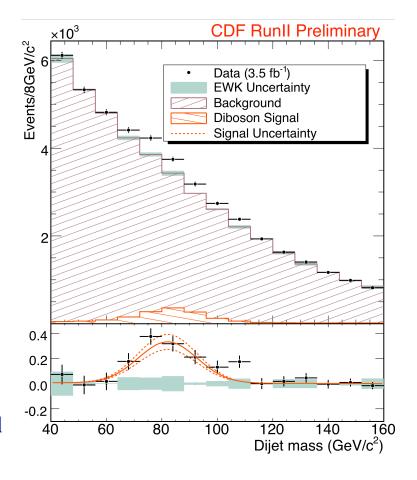
$$\begin{array}{l} -0.54 < \mid \Delta \kappa_{\gamma} \mid < 0.83 \\ -0.14 < \mid \lambda \mid & < 0.18 \\ -0.14 < \mid \Delta g_{1}^{\ Z} \mid < 0.30 \end{array}$$

> Equal couplings

$$\Delta \kappa_{\rm Z} = \Delta \kappa_{\gamma}, \ \Delta g_1^{\rm Z} = \Delta g_1^{\gamma} = 1, \ \text{and} \ \lambda_{\gamma} = \lambda_{\rm Z}$$

$$-0.12 < \mid \Delta\kappa \mid < 0.35$$

$$-0.14 < |\lambda| < 0.18$$


Approaching sensitivity to LEP experimets

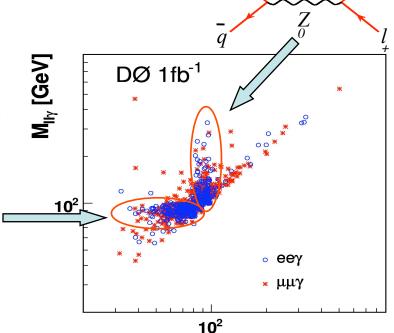
VV → **MET**+jets channel

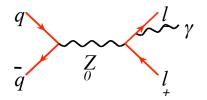
- Combined analysis of ZZ→vvjj, ZW→vvjj/lvjj and WW→lvjj channels
- Challenging
 - > difficult to trigger benefits from L2 met/cal trigger upgrade at CDF
 - large background from W/Z+jets, ttbar and QCD multijet.
- Select events with
 - \triangleright High missing E_T^{miss} and E_T^{miss} significance
 - $\rightarrow \Delta \Phi(E_T^{miss}, jet) > 0.4$
 - > =2 jets
 - ightharpoonup Small $\Delta \phi(E_T^{miss}, trkE_T^{miss})$
- Cross section extracted using unbinned extended maximum Lhood fit of di-jet mass:

arXiv.org:0905.4717

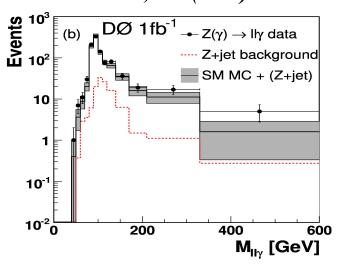
$$\sigma(WW + WZ + ZZ) = 18.0 \pm 2.8(stat) \pm 2.4(sys) \pm 1.1(lumi)pb$$

SM prediction = 16.8 ± 0.5 pb (MCFM+CTEQ6M)


• Observed significance = 5.3σ \Rightarrow First Tevatron observation!



Z y analysis



- Basic $Z\gamma \rightarrow ll \gamma$ ($l=e,\mu$) events selection:
 - Pair of high p_T electrons or muons
 - M(ll) > 30 GeV
 - Photon with $E_T^{\gamma} > 7$ GeV and $dR_{hy} > 0.7$
- Main background process Z(→ee/μμ)+jet production

PLB 653, 378 (2007)

- Cross section:

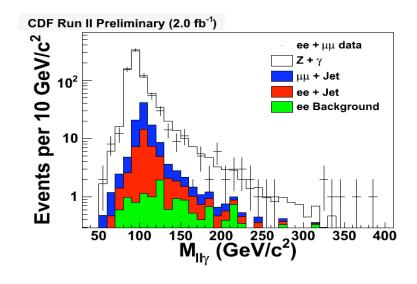
 - **NLO theory**
 - □ DØ measurement $\sigma \times BR(Z\gamma \rightarrow ll\gamma) = 4.96 \pm 0.42 \, pb$

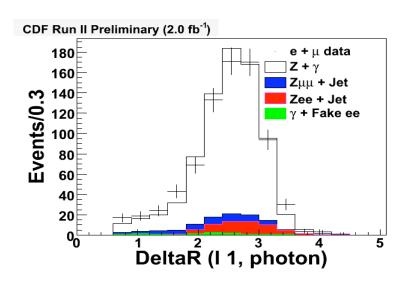
M_{II} [GeV]

 $\sigma \times BR(Z\gamma \rightarrow ll\gamma) = 4.74 \pm 0.22 pb$

Z y analysis

- CDF: separate measurements for ISR and FSR processes:
 - > ISR enriched sample by applying M $(l l \gamma) > 100 \text{ GeV}$
 - **■** Measured

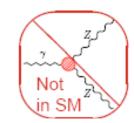

$$\sigma \times BR(Z\gamma \rightarrow ll\gamma) = 1.2 \pm 0.1(stat.) \pm 0.2(syst.) \pm 0.1(lumi)$$
 pb

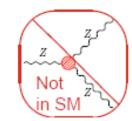

□ NLO theory
$$\sigma \times BR(Z\gamma \rightarrow ll\gamma) = 1.2 \pm 0.1 \ pb$$

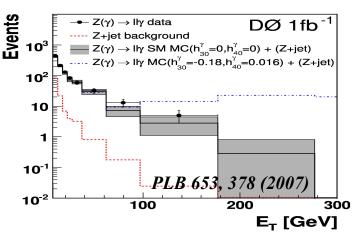
- > FSR enriched applying M $(l l \gamma) < 100 \text{ GeV}$
 - Measured

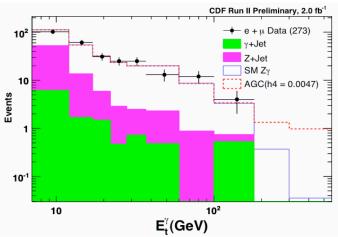
$$\sigma \times BR(Z\gamma \rightarrow ll\gamma) = 3.4 \pm 0.2(stat.) \pm 0.2(syst.) \pm 0.2(lumi)$$
 pb

□ NLO theory
$$\sigma \times BR(Z\gamma \rightarrow ll\gamma) = 3.3 \pm 0.3$$
 pb



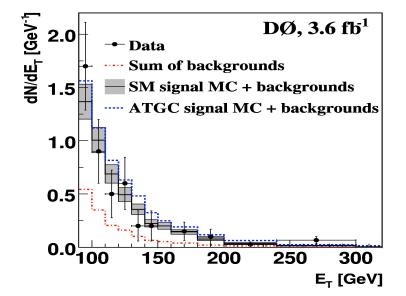



Z γ analysis: probing **Z**γ**Z** and **Z**γγ couplings



- No ZγZ and Zγγ vertices in SM
- Non-SM ZγZ and Zγγ TGCs enhance production cross section
 - > Particularly at high p_T region of photon
 - \triangleright Probes $h_{3,4}^Z$ and $h_{3,4}^Y$ parameters (both zero in SM)

95% C.L. limits for Λ =2 TeV


	DØ published ~1 fb ⁻¹	CDF preliminary 1.1fb ⁻¹ e, 2.0 fb ⁻¹ μ	LEP-II 2003
$egin{array}{c} \mathbf{h_3^{\gamma}} \\ \mathbf{h_4^{\gamma}} \end{array}$	[-0.085, 0.084]	[-0.084, 0.084]	[-0.049, -0.008]
	[-0.0053, 0.0054]	[-0.0047, 0.0047]	[-0.002, 0.034]
$egin{array}{c} \mathbf{h_3^Z} \\ \mathbf{h_4^Z} \end{array}$	[-0.083, 0.082]	[-0.083, 0.083]	[-0.20, 0.07]
	[-0.0053, 0.0054]	[-0.0047, 0.0047]	[-0.05, 0.12]

Z γ → ννγ production

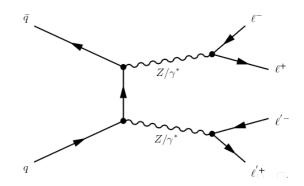
- Final state includes
 - \triangleright Energetic photon with E_T > 90 GeV and large missing E_T > 70 GeV
- Background: W \rightarrow lv and Z \rightarrow ll productions, beam halo, mis-measured missing E_T
- Expected events from
 - \triangleright background: 17.3 ± 2.4
 - > signal: 33.7 ± 3.4
- Observed: 51
- Significance of observation 5.1 σ First Tevatron observation
- Measurement $\sigma(Z\gamma, E_T^{\gamma} > 90 \text{GeV}) \times \text{BR}(Z \rightarrow \nu \nu) = 31.9 \pm 9(\text{stat} + \text{sys}) \pm 2(\text{lumi})$ fb SM NLO prediction = 39 ± 4 fb

• Combined 95 % CL limits on γ ZZ and $\gamma\gamma$ Z TGCs from $Z\gamma \rightarrow vv\gamma$ / ee γ / $\mu\mu\gamma$ channels

$$|\mathbf{h}_3^{\gamma}| < 0.033 \qquad |\mathbf{h}_3^{\mathbf{Z}}| < 0.0017 \\ |\mathbf{h}_4^{\gamma}| < 0.033 \qquad |\mathbf{h}_4^{\mathbf{Z}}| < 0.0017 \qquad (\land_{\mathsf{NP}} = 1.5 \; \mathsf{TeV})$$

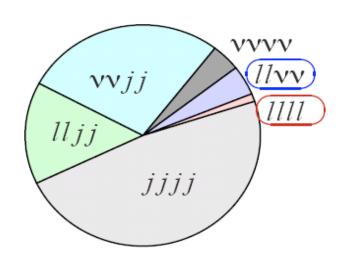
Most restrictive limits so far

ZZ production


• Very small production cross section:

$$\sigma(p\overline{p} \rightarrow ZZ) = 1.4 - 1.6 \text{ pb}$$

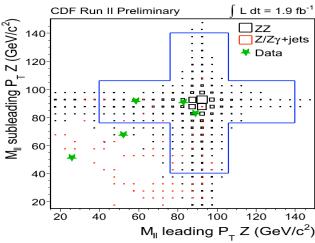
Two main decay modes studied at the Tevatron


$$\square$$
 ZZ \rightarrow 4*l*, with *l*=*e*, μ

- Very clean: low background contamination from \mathbb{Z}/γ +jets and ttbar processes.
- Small BR = $(2 \times 0.033)^2 = 0.0044$

$$\square$$
 ZZ \rightarrow *llvv*, with $l = e$, μ

- Several significant background processes:
 WW, Z+jets, WZ, Drell-Yan productions
- 6 times larger BR = $2 \times 0.2 \times (2 \times 0.033) = 0.026$
- Use multivariate approach to discriminate between signal and background:
 - > Matrix Element method by CDF
 - > Likelihood method by DØ



ZZ at CDF

• Z→4l channel

- □ Split 4e, 4mu and 2e2mu channels into 7 exclusive categories depending whether a lepton has a track and/or is identified explicitly.
- □ One pair of leptons with M(ll) in [76 GeV 106 GeV]; other pair with M(ll) in [40 GeV -140 GeV].

- Z→llvv channel
 - \square Select events with ee/ $\mu\mu$ + large E_T^{mis} . Veto central jets to suppress ttbar bkgd
 - □ Observe 276 events in the pre-selected sample
 - \square expect only 14 ± 2 signal events
 - □ Use full kinematic information (Matrix Method) to extract the signal
- Combine ZZ \rightarrow 4l and ZZ \rightarrow 2l2 ν channels: 4.4 σ significance
- Cross-section measurement $\sigma(ZZ) = 1.4^{+0.7}_{-0.6}(stat + sys)$ pb

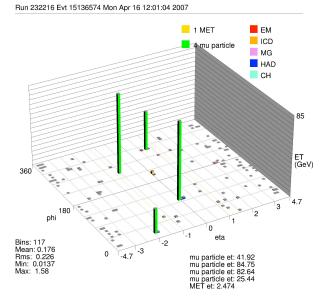
PRL 100, 201801 (2008)

 $\sigma(ZZ)=1.4\pm0.1$ pb predicted by NLO

ZZ at DØ

• Z→4l channel:

- □ Split 4mu, 2e2mu, 4e channels into 7 exclusive categories depending on the number of electrons in CC ($|\eta|$ <1.1) region.
- \square Dilepton mass M(II) > 70, 50 GeV
- □ Predicted background: 0.14^{+0.03}_{-0.02}
- \square Predicted signal: 1.89 \pm 0.08
- □ Observe 3 candidate events (one 4mu, two 4e)



Measured cross section

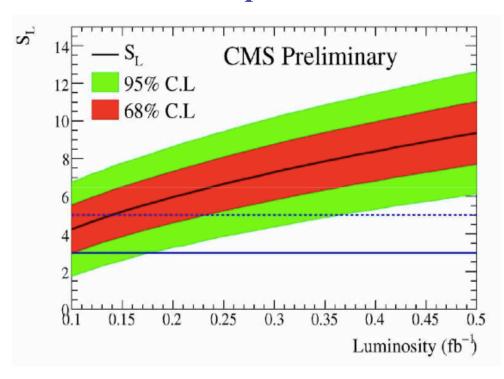
$$\sigma(ZZ) = 1.60 \pm 0.63(stat)^{+0.16}_{-0.17}(sys)$$
 pb

 $\sigma(ZZ)=1.4\pm0.1$ pb predicted by NLO

- Expected significance: 4.8σ
- Observed significance: 5.7σ first Tevatron Observation

4μ candidate event

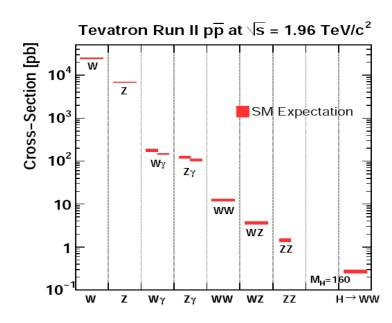
PRL 101, 171803 (2008)



Prospects at LHC

- At LHC, diboson cross sections can be measured at low luminosity
 - $> \sigma (WW) = 110 \text{ pb}$
 - \rightarrow σ (WZ) = 49 pb
 - \rightarrow σ (ZZ) = 15 pb
- WWZ, WWγ, ZZZ, and ZZγ TGCs will be probed
 - > Expect to reach better accuracy than at LEP2
- With high luminosity, polarization measurements in ZZ and WZ events are feasible

WZ production



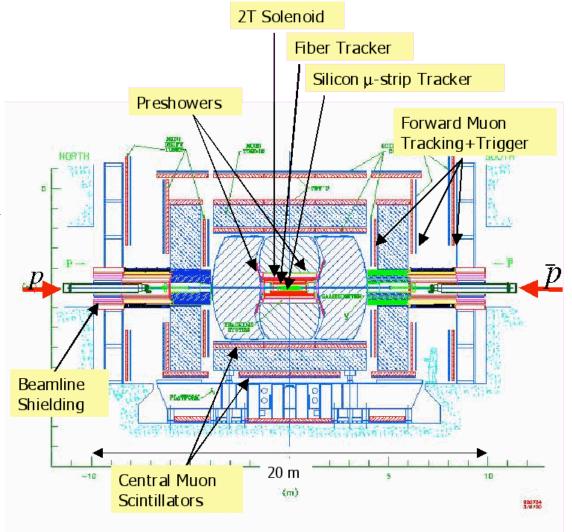
Summary

- Tevatron experiments are exploring radically new territories:
 - □ Observation of diboson processes not accessible previously
 - ☐ Testing various triple gauge boson couplings with increasingly higher precisions
 - □ Probing peculiar features predicted by the Standard Model
 - **■** Extending studies beyond leptonic final states
 - □ So far ... Standard Model wins again

note: this is σ , not $\sigma \times BR$

- Even more exciting times ahead
 - □ Presented results based on up to 0.7-3.6 fb⁻¹
 - □ Tevatron experiments have recorded more 6 fb⁻¹ of data. More to come
 - > entering precision diboson physics era

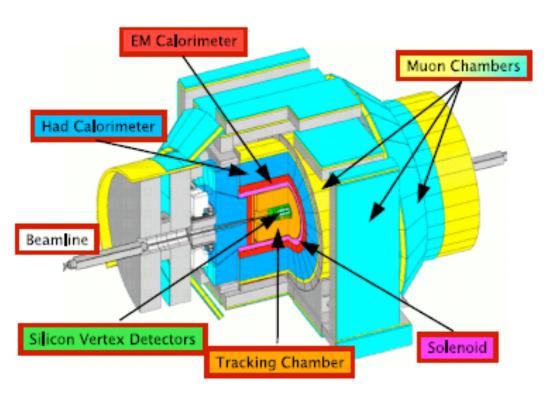
Backup slides


DØ Detector

- Silicon detector and scintillating fiber tracker in 2.0 T solenoidal field
 - -Coverage up to $|\eta| = 2.5$
- Liquid Argon/Uranium calorimeters
 - -Central and two forward calorimeters
 - -Stable, uniform response, radiation hard
 - -Hermetic with coverage up to η | = 4.2

• Muon System

- -Coverage up to $|\eta| = 2.0$
- Three layers of scintillators and drift tubes
- -Central and Forward
- -A layer inside 1.8T toroid magnet
- -Shielding reduces backgrounds by 50-100 x

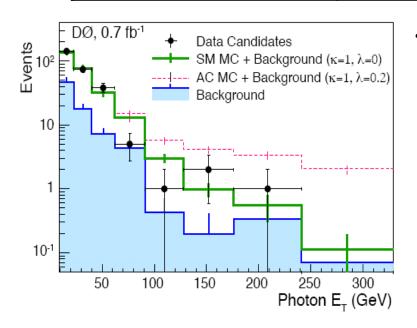


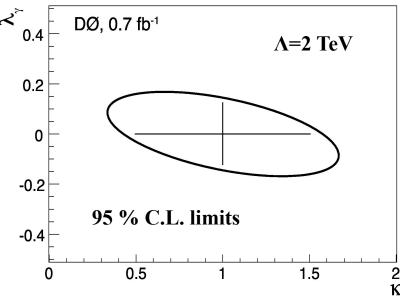
- Three Level Trigger
 - $-L1/L2/L3 \sim 1800/1000/50 Hz$

CDF Detector

- Segmented sampling calorimeters
- Shower maximum detectors
 - Shower shape measurement
 - Central: gas-based
 - Forward: scintillator

- Muon Chambers
 - CMU & CMP ($|\eta| < 0.6$)
 - CMX $(0.6 < |\eta| < 1.0)$


Wy analysis: probing WWγ coupling



- Non-SM WWγ TGC enhances production cross section
 - > Particularly at high p_T region of photon
 - \triangleright Probes Δk_{γ} and λ_{γ} parameters (both zero in SM)

DØ (0.7 fb-1), Λ=2TeV	LEP , $\hat{\mathbf{s}} \approx 2\mathbf{M}_{\mathrm{W}}$
$-0.49 < \Delta \kappa_{\gamma} < 0.51$	$-0.105 < \Delta \kappa_{\gamma} < 0.069$
$-0.12 < \lambda_{\gamma} < 0.13$	$-0.059 < \lambda_{\gamma} < 0.026$

arXiv:0803.0030v1

$ZZ \rightarrow 4l$ at DØ

- Three channels considered: eeee,eeμμ and μμμμ
 - \square M (*ll*) > 30 GeV, includes ZZ/Zy* interference
 - □ Background from
 - Z+jets where two jets are mis-identified as leptons
 - \bullet Zy+jets where the y and a jet are misidentified as leptons
 - ttbar \rightarrow lvb + lvbbar with b/bbar decaying semileptonically

1 fb ⁻¹	eeee	ее $\mu\mu$	$\mu\mu\mu\mu$	Total
ZZ Sig	$0.44{\pm}0.03$	0.81±0.09	0.46 ± 0.05	1.71±0.15
Bkg	0.080±0.021	0.013±0.004	0.033±0.006	0.13±0.03
Observe	0	1	0	1

• 95% C.L. limit on cross section:

$$\sigma(\mathbf{ZZ}) < 4.4$$
pb

The NLO theory calculations:

$$\sigma(ZZ) = 1.6 \pm 0.3$$
pb

• Anomalous Couplings:

- Limit region to M(ll) > 50 (70) GeV for ee ($\mu\mu$)
- Use event yields (all zero) to limit anomalous couplings

95% C.L. limits for $\Lambda=1.2$ TeV

$$-0.28 < f_{40}^{Z} < 0.28 \\ -0.31 < f_{50}^{Z} < 0.29$$

$$-0.31 < f_{50}^{Z} < 0.29$$

$$-0.26 < f_{40}^{\gamma} < 0.26$$

$$-0.30 < f_{50}^{\gamma} < 0.28$$

Phys. Rev. Lett. 100, 131801 (2008)