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Results on

3D string tension (T=0) (arXiv:0807.1315)

4D string tension (T=0) (Real soon now)

3D string tension (T>Tc) (arXiv:0906.3015)



Quick results

Introduction

Details

Conclusion

Outline



Quick results: T=0

   lattice

N = 47

          = 0.6 to 0.8

Wilson loops 1x1 to 
7x7

                            
(continuum 
extrapolation) 

   lattice

N = 47 and 59

           = 0.3450 to 
0.3500

Wilson loops 1x1 to 
9x9

                       
at b=0.3480 N=47

53

b = 1
g2N

√
σb = 0.1964± 0.0009

3 Dimensions 4 Dimensions
64

b = 1
g2N

σa2 = 0.099± 0.016



Quick result: T>Tc

 L3 lattice  L=4, 5, 6, 7

N = 59

          = 0.9 to 1.75

Wilson loops 1x1 to 10x10

              (High T dimensional reduction)

              

b = 1
g2N

σa2 ≈ 1
4bL

σb2 ≈ T
4b



Introduction

Large N

Large N reduction

Phase structure

Project description



Large N
Expansion parameters          or 1/N

           simplifications

Planar graphs

Factorization

Non-interacting mesons

OZI rule

N →∞

α(Q2)

1/3 ≈ 1/∞



Large N reduction

Reduction to a one point     lattice 
(Eguchi-Kawai)

      center symmetry

But broken at weak coupling

1d

Zd
N



Work-arounds

Quenched E-K

But Bringoltz and Sharpe

Twisted E-K

But Teper and Vairinhos

Continuum or partial reduction
i.e. reduction to finite physical size

l > 1/Tc



Center symmetry breaking at physical scale
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FIG. 2: History of the variable p(P̃µ) for each direction. We
see the evolution from a state where all four Z(N) factors
are preserved to one where one factor is broken. During the
first fifty passes (before the first measurement) Polyakov loops
in direction 3 have acquired some structure but, ultimately,
direction 2 is selected for breakdown and the Polyakov loops
in the other three directions converge to a symmetric state.
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L=9 N=31 b=0.3660:  one broken Z(N)
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FIG. 3: Here we show the difference between the distributions
of the largest inter-angle spacing for smeared Polyakov loops
in different directions in the phase where exactly one Z(N)
factor is broken. (At other couplings, where no Z(N) factor
is broken, all four distributions look like the three unbroken
ones here).
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FIG. 4: Angle distributions in four directions in the 1c phase.
There are twenty seven periods in the superposed oscillations.
The peaks, except close to the gap associated with direction
3, are equally spaced.
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FIG. 5: The transition ranges compared to possible two loop
renormalization group curves with tadpole improvement.

[24]

p(P̃µ) =
1

N2
〈

N
∑

i,j=1

sin2 1

2
(θP̃

i − θP̃
j )2〉 (12)

The averaging is over the 3-plane perpendicular to µ and
over configurations. Equally spaced angles respect the
Z(N) symmetry in the µ direction and maximize p to
0.5. When the angle-spectrum starts getting modulated

Zd
N → Zd−1

N → Zd−2
N → ...

Kiskis, Narayanan, and Neuberger



Details

Wilson gauge field action with bare 
coupling g

Smearing 

           Tadpole improved to        
with e(b) the average plaquette

3d: Space-like and time-like separations K, T 
in lattice units. 

b = 1
g2N bI = e(b)b

k = K/bI t = T/bI



Smearing

U S+12S-12

Iterate n times
τ = fn

U ′ = PSU(N)[(1− f)U + f
4 S+

12 + f
4 S−

12 + f
4 S+

13 + f
4 S−

13]

2

1
3

f = 0.45 n = 5 τ = 2.25
√

τ = 1.5

f = 0.1 n = 25 τ = 2.5

4d:
3d (4->2):

√
τ = 1.6



3-dimensions, T=0

   lattice

N = 47

b = 0.6 to 0.8

Smear space-like links with staples in the 
same time slice

Wilson loops 1x1 to 7x7 (folded loops)

Fit to get quark-antiquark potential and 
string tension

53



3-dimensions, T>Tc

L3 lattice  L=4, 5, 6, 7

N = 59

b = 0.9 to 1.75

Smear space-like links with staples in the 
same time slice

Wilson loops 1x1 to 10x10 (folded loops)

Fit to get quark-antiquark potential and 
string tension



4-dimensions, T=0

   lattice

N = 37, 47, 59

b = 0.3450, 0.3480, 0.3500

Smear space-like links with staples in the 
same time slice

Wilson loops 1x1 to 9x9 (folded loops)

Fit to get quark-antiquark potential and 
string tension

64



2 4 6 8 10 12
t

-7

-6

-5

-4

-3

-2

-1

0
ln

 W
(k

,t)

Compute all Wilson loops 1x1 to 7x7
W (k, t) = e−a−m(k)tFit to

3d s



Fit m(k) to m(k) = σb2
Ik + c0bI +

c1

k

2 4 6 8 10 12
k

0

0.1

0.2

0.3

0.4

0.5

m
(k

)

b=0.6
0.0296(15)k + 0.129(4) - 0.160(4)/k
0.0296k+0.116
b=0.8
0.0342(11)k + 0.140(3) - 0.101(2)/k
0.0342k+0.132

3d s



0 1 2 3 4 5 6 7
1/bI

2

0.16

0.165

0.17

0.175

0.18

0.185

0.19

0.195

0.2
σ1
/2
b I

0.1964(9)-0.00403(22)/bI
2

Extrapolate: bI →∞
√

σbI → 0.1964± 0.0009

3d



Are N and L large enough?

2 4 6 8 10 12
k

0.1

0.15

0.2

0.25
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0.35

0.4

0.45

0.5

0.55

m
(k

)

N=47
0.0342(11)k +0.140(3)-0.101(2)/k
N=41
0.0341(14)k+0.140(3)-0.100(3)/k
N=37
0.0339(14)k+0.139(4)-0.099(3)/k
N=31
0.0330(17)k+0.143(4)-0.102(3)/k
N=23
0.0323(22)k+0.141(6)-0.097(4)/k

3d s



2 4 6 8 10 12
k

0.1

0.2

0.3

0.4

0.5

m
(k
)

43

0.0316(23)k+0.108(5)-0.117(6)/k
53

0.0296(15)k+0.129(4)-0.160(4)/k

3d s



Are the results sensitive to smearing?

2 4 6 8 10 12
k

0.1

0.2

0.3

0.4

0.5

m
(k

)

τ=1.25
0.0354(12)k + 0.134(3) - 0.093(3)/k
τ=2.5
0.0342(11)k + 0.140(3) - 0.101(2)/k

3d s



Compute all Wilson loops 1x1 to 9x9
W (k, t) = e−a−m(k)tFit 2x2 through 9x9 to

0 2 4 6 8 10
j

-15

-10

-5

0

ln
 W

(k
,j)

Mass fit with 1 < j,k < 10

L=6, b=0.348, N=47

4d



Fit m(k) to

2 4 6 8
k

0

0.5

1

1.5
m

(k
)

1 < k < 10
0.099(16)k+0.34(12)-0.55(19)/k

b=0.348, L=6, N=47

m(k) = σa2k + c0 +
c1

k

4d



2 4 6 8
k

0

0.5

1

1.5
m

(k
)

1 < k < 10
0.098(12)k+0.38(9)-0.64(15)/k

b=0.348, L=6, N=59

4d



Scaling

2 4 6 8 10
ks

0

0.5

1

1.5
m

(k
)s

b=0.345, s=Lc(0.345)/Lc(0.348)=4.4/5.2
b=0.348, s=1
b=0.350, s=Lc(0.350)/Lc(0.348)=5.6/5.2

4d
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Comparison with large L results

Karabali, Kim, and Nair 

Bringoltz and Teper

J.K. & R.N.  arXiv:0807.1315

√
σb = 0.1975± 0.0002− 0.0005

√
σb = 1√

8π
≈ 0.1995

√
σb = 0.1964± 0.0009

3-dimensions, T=0

http://arxiv.org/abs/0807.1315
http://arxiv.org/abs/0807.1315


Comparison with large L results

Lucini, Teper, and Wenger

J.K. & R.N.

At the same bI=0.182
Lucini, Teper, and Wenger N=8
J.K. & R.N.  

Tc√
σ

= 0.597± 0.004

Tc√
σ

= 0.61± 0.05

σa2 = 0.116± 0.001
σa2 = 0.099± 0.016

4-dimensions, T=0



Conclusion
In both 3 and 4 dimensions, continuum reduction 
gives good results for quantities based on the 
space-time dependence of large Wilson loops, 
e.g. the heavy quark potential and the string 
tension. 


