Computation of the string tension in Yang-Mills theory using large N reduction Joe Kiskis
 UC Davis
 Rajamani Narayanan
 Florida International University

Results on

- 3D string tension ($\mathrm{T}=0$) (arXiv:0807.1315)
- 4D string tension ($T=0$) (Real soon now)
- 3D string tension ($T>T_{c}$) (arXiv:0906.3015)

Outline

- Quick results
- Introduction
- Details
- Conclusion

Quick results: $\mathrm{T}=0$

3 Dimensions

- 5^{3} lattice
- $N=47$
- $b=\frac{1}{g^{2} N}=0.6$ to 0.8
- Wilson loops 1×1 to 7×7
- $\sqrt{\sigma} b=0.1964 \pm 0.0009$
(continuum extrapolation)

4 Dimensions

- 6^{4} lattice
- $N=47$ and 59
- $b=\frac{1}{g^{2} N}=0.3450$ to 0.3500
- Wilson loops 1×1 to 9×9
- $\sigma a^{2}=0.099 \pm 0.016$ $a+b=0.3480 \quad N=47$

Quick result: $T>T_{c}$

- L3 lattice $L=4,5,6,7$
- $N=59$
- $b=\frac{1}{g^{2} N}=0.9$ to 1.75
- Wilson loops 1×1 to 10×10
- $\sigma a^{2} \approx \frac{1}{4 b L}$ (High T dimensional reduction)
- $\sigma b^{2} \approx \frac{T}{4 b}$

Introduction

- Large N
- Large N reduction
- Phase structure
- Project description

Large N

- Expansion parameters $\alpha\left(Q^{2}\right)$ or $1 / N$
- $N \rightarrow \infty$ simplifications
- Planar graphs
- Factorization
- Non-interacting mesons
- OZI rule
- $1 / 3 \approx 1 / \infty$

Large N reduction

- Reduction to a one point 1^{d} lattice (Eguchi-Kawai)
- Z_{N}^{d} center symmetry
- But broken at weak coupling

Work-arounds

- Quenched E-K
- But Bringoltz and Sharpe
- Twisted E-K
- But Teper and Vairinhos
- Continuum or partial reduction
i.e. reduction to finite physical size
$l>1 / T_{c}$

Center symmetry breaking at physical scale

$$
Z_{N}^{d} \rightarrow Z_{N}^{d-1} \rightarrow Z_{N}^{d-2} \rightarrow \ldots
$$

Kiskis, Narayanan, and Neuberger

Details

- Wilson gauge field action with bare coupling g
- Smearing
- $b=\frac{1}{g^{2} N}$ Tadpole improved to $b_{I}=e(b) b$ with $e(b)$ the average plaquette
- 3d: Space-like and time-like separations K, T in lattice units. $k=K / b_{I} \quad t=T / b_{I}$

Smearing

$$
U^{\prime}=P_{S U(N)}\left[(1-f) U+\frac{f}{4} S_{12}^{+}+\frac{f}{4} S_{12}^{-}+\frac{f}{4} S_{13}^{+}+\frac{f}{4} S_{13}^{-}\right]
$$

Iterate n times

$$
\tau=f n
$$

4d: $\quad f=0.45 \quad n=5 \quad \tau=2.25 \quad \sqrt{\tau}=1.5$
3d $(4->2): \quad f=0.1 \quad n=25 \quad \tau=2.5 \quad \sqrt{\tau}=1.6$

- 3-dimensions, $\mathrm{T}=0$
- 5^{3} lattice
- $N=47$
$b=0.6$ to 0.8
- Smear space-like links with staples in the same time slice
- Wilson loops 1×1 to 7×7 (folded loops)
- Fit to get quark-antiquark potential and string tension
- 3-dimensions, T>Tc
- L ${ }^{3}$ lattice $L=4,5,6,7$
- $N=59$
b $=0.9$ to 1.75
- Smear space-like links with staples in the same time slice
- Wilson loops 1×1 to 10×10 (folded loops)
- Fit to get quark-antiquark potential and string tension
- 4-dimensions, $\mathrm{T}=0$
- 6^{4} lattice
(- $N=37,47,59$
© $b=0.3450,0.3480,0.3500$
- Smear space-like links with staples in the same time slice
- Wilson loops 1×1 to 9×9 (folded loops)
- Fit to get quark-antiquark potential and string tension

Compute all Wilson loops 1×1 to 7×7

Fit to $W(k, t)=e^{-a-m(k) t}$

Fit $m(k)$ to $\quad m(k)=\sigma b_{I}^{2} k+c_{0} b_{I}+\frac{c_{1}}{k}$

Extrapolate: $\quad b_{I} \rightarrow \infty \quad \sqrt{\sigma} b_{I} \rightarrow 0.1964 \pm 0.0009$

Are N and L large enough?

Are the results sensitive to smearing?

Compute all Wilson loops 1×1 to 9×9

Fit 2×2 through 9×9 to $W(k, t)=e^{-a-m(k) t}$
$\mathrm{L}=6, \mathrm{~b}=0.348, \mathrm{~N}=47$

Fit $\mathrm{m}(\mathrm{k})$ to $\quad m(k)=\sigma a^{2} k+c_{0}+\frac{c_{1}}{k}$

$\mathrm{b}=0.348, \mathrm{~L}=6, \mathrm{~N}=47$

$$
\mathrm{b}=0.348, \mathrm{~L}=6, \mathrm{~N}=59
$$

Scaling

3d T

Comparison with large L results

3-dimensions, $T=0$

- Karabali, Kim, and Nair $\quad \sqrt{\sigma} b=\frac{1}{\sqrt{8 \pi}} \approx 0.1995$
- Bringoltz and Teper $\sqrt{\sigma} b=0.1975 \pm 0.0002-0.0005$
- J.K. \& R.N. arXiv:0807.1315 $\sqrt{\sigma} b=0.1964 \pm 0.0009$

Comparison with large L results

4-dimensions, $\mathrm{T}=0$

- Lucini, Teper, and Wenger $\frac{T_{c}}{\sqrt{\sigma}}=0.597 \pm 0.004$
- J.K. \& R.N. $\quad \frac{T_{c}}{\sqrt{\sigma}}=0.61 \pm 0.05$
- At the same $b_{I}=0.182$ Lucini, Teper, and Wenger $N=8 \quad \sigma a^{2}=0.116 \pm 0.001$ J.K. \& R.N. $\quad \sigma a^{2}=0.099 \pm 0.016$

Conclusion

(2) In both 3 and 4 dimensions, continuum reduction gives good results for quantities based on the space-time dependence of large Wilson loops, e.g. the heavy quark potential and the string tension.

