Muon Ionization Cooling R&D in the MuCool Program DPF 2009

Yağmur Torun

Illinois Institute of Technology

July 28, 2009 - Wayne State U.

Yağmur Torun MuCool – DPF2009 – 7/28/09 – Detroit

- Energy frontier ($\mu^+\mu^-$ collider)
- Neutrino physics (*v* factory)
- Muon physics

- Low-energy cooled muon beam: extraordinarily precise LFV experiments (eg. μ2e)
- Acceleration and storage ring: neutrino mixing with unprecedented precision
- Acceleration to very high energy: energy-frontier collider

Why muons?

- Energy frontier ($\mu^+\mu^-$ collider)
- Neutrino physics (ν factory)
- Muon physics

- Low-energy cooled muon beam: extraordinarily precise LFV experiments (eg. μ2e)
- Acceleration and storage ring: neutrino mixing with unprecedented precision
- Acceleration to very high energy: energy-frontier collider

< □ > < 同 > < 三

Why muons?

- Energy frontier ($\mu^+\mu^-$ collider)
- Neutrino physics (*v* factory)
- Muon physics

- Low-energy cooled muon beam: extraordinarily precise LFV experiments (eg. μ2e)
- Acceleration and storage ring: neutrino mixing with unprecedented precision
- Acceleration to very high energy: energy-frontier collider

< □ > < 同 > < 三

Why muons?

- Energy frontier ($\mu^+\mu^-$ collider)
- Neutrino physics (ν factory)
- Muon physics

- Low-energy cooled muon beam: extraordinarily precise LFV experiments (eg. μ2e)
- Acceleration and storage ring: neutrino mixing with unprecedented precision
- Acceleration to very high energy: energy-frontier collider

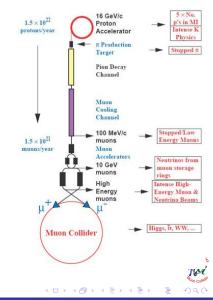
Why muons?

- Energy frontier ($\mu^+\mu^-$ collider)
- Neutrino physics (ν factory)
- Muon physics

- Low-energy cooled muon beam: extraordinarily precise LFV experiments (eg. μ2e)
- Acceleration and storage ring: neutrino mixing with unprecedented precision
- Acceleration to very high energy: energy-frontier collider

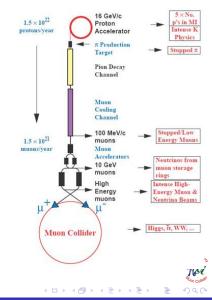
Why muons?

- Energy frontier ($\mu^+\mu^-$ collider)
- Neutrino physics (ν factory)
- Muon physics


- Low-energy cooled muon beam: extraordinarily precise LFV experiments (eg. μ2e)
- Acceleration and storage ring: neutrino mixing with unprecedented precision
- Acceleration to very high energy: energy-frontier collider

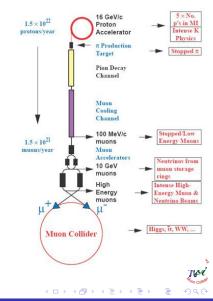
Why muons?

- Energy frontier ($\mu^+\mu^-$ collider)
- Neutrino physics (ν factory)
- Muon physics


- Low-energy cooled muon beam: extraordinarily precise LFV experiments (eg. μ2e)
- Acceleration and storage ring: neutrino mixing with unprecedented precision
- Acceleration to very high energy: energy-frontier collider

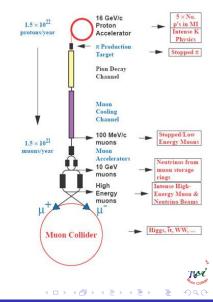
Why muons?

- Energy frontier ($\mu^+\mu^-$ collider)
- Neutrino physics (ν factory)
- Muon physics


- Low-energy cooled muon beam: extraordinarily precise LFV experiments (eg. μ2e)
- Acceleration and storage ring: neutrino mixing with unprecedented precision
- Acceleration to very high energy: energy-frontier collider

Why muons?

- Energy frontier ($\mu^+\mu^-$ collider)
- Neutrino physics (ν factory)
- Muon physics


- Low-energy cooled muon beam: extraordinarily precise LFV experiments (eg. μ2e)
- Acceleration and storage ring: neutrino mixing with unprecedented precision
- Acceleration to very high energy: energy-frontier collider

Why muons?

- Energy frontier ($\mu^+\mu^-$ collider)
- Neutrino physics (ν factory)
- Muon physics

- Low-energy cooled muon beam: extraordinarily precise LFV experiments (eg. μ2e)
- Acceleration and storage ring: neutrino mixing with unprecedented precision
- Acceleration to very high energy: energy-frontier collider

Muon Collider

Iarge muon mass means

 negligible synchrotron radiation for high-energy collider (1.5-4TeV)

- large cross section for some processes (σ ~ m²)
- small beamstrahlung

э

イロト イポト イヨト イヨト

 negligible synchrotron radiation for high-energy collider (1.5-4TeV)

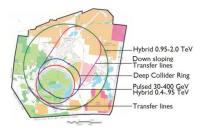
- large cross section for some processes (σ ~ m²)
- small beamstrahlung

・ 回 ト ・ ヨ ト ・ ヨ ト

- negligible synchrotron radiation for high-energy collider (1.5-4TeV) can use recirculating acceleration and storage ring
- large cross section for some processes (σ ~ m²)
- small beamstrahlung

・ 同 ト ・ ヨ ト ・ ヨ ト

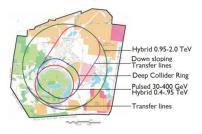
- negligible synchrotron radiation for high-energy collider (1.5-4TeV) can use recirculating acceleration and storage ring small footprint
- large cross section for some processes (σ ~ m²)
- small beamstrahlung



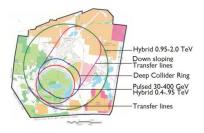
・ 同 ト ・ ヨ ト ・ ヨ ト

Muon Collider

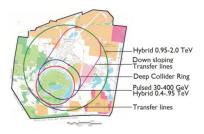
Iarge muon mass means


- negligible synchrotron radiation for high-energy collider (1.5-4TeV) can use recirculating acceleration and storage ring small footprint
- large cross section for some processes (σ ~ m²)
- small beamstrahlung

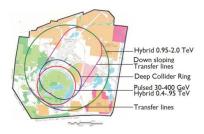
ヘロト ヘ回ト ヘヨト ヘヨト


- negligible synchrotron radiation for high-energy collider (1.5-4TeV) can use recirculating acceleration and storage ring small footprint
- large cross section for some processes (σ ~ m²)
- small beamstrahlung

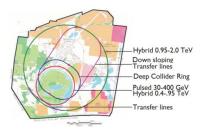
イロト イポト イヨト イヨト


- negligible synchrotron radiation for high-energy collider (1.5-4TeV) can use recirculating acceleration and storage ring small footprint
- large cross section for some processes (σ ~ m²) (eg. s-channel Higgs)
- small beamstrahlung

(日)



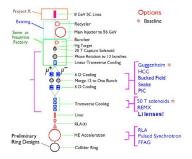
- negligible synchrotron radiation for high-energy collider (1.5-4TeV) can use recirculating acceleration and storage ring small footprint
- large cross section for some processes (σ ~ m²) (eg. s-channel Higgs)
- small beamstrahlung


- negligible synchrotron radiation for high-energy collider (1.5-4TeV) can use recirculating acceleration and storage ring small footprint
- large cross section for some processes (σ ~ m²) (eg. s-channel Higgs)
- small beamstrahlung can achieve excellent dE/E

< □ > < 同 > < 三

- negligible synchrotron radiation for high-energy collider (1.5-4TeV) can use recirculating acceleration and storage ring small footprint
- large cross section for some processes (σ ~ m²) (eg. s-channel Higgs)
- small beamstrahlung can achieve excellent dE/E (eg. low-energy Higgs factory)

< □ > < □ > < □


Technical challenges:

• tertiary muon "beam" produced into broad phase space from pion decay

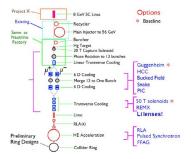
 $p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$

• need high-power p-driver for intensity

- efficient scheme for capturing pions
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)

・ロト ・ 同ト ・ ヨト ・ ヨト


Technical challenges:

 tertiary muon "beam" produced into broad phase space from pion decay

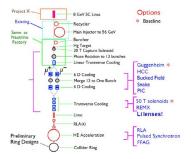
$$p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$$

need high-power p-driver for intensity

- efficient scheme for capturing pions
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)

イロト イポト イヨト イヨト


Technical challenges:

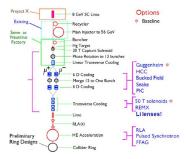
 tertiary muon "beam" produced into broad phase space from pion decay

$$p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$$

need high-power p-driver for intensity

- efficient scheme for capturing pions
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)


イロト 不得 とくほ とくほう

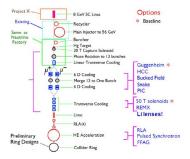
Technical challenges:

 tertiary muon "beam" produced into broad phase space from pion decay

 $p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$

- need high-power p-driver for intensity short bunches for small initial emittance
- efficient scheme for capturing pions
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)


イロト イ理ト イヨト イヨト

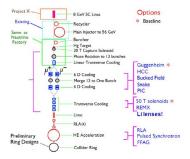
Technical challenges:

 tertiary muon "beam" produced into broad phase space from pion decay

 $p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$

- need high-power p-driver for intensity short bunches for small initial emittance robust target system
- efficient scheme for capturing pions
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)


イロト イポト イヨト イヨト

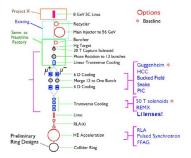
Technical challenges:

 tertiary muon "beam" produced into broad phase space from pion decay

 $p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$

- need high-power p-driver for intensity short bunches for small initial emittance robust target system
- efficient scheme for capturing pions
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)


イロト イポト イヨト イヨト

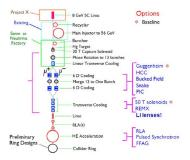
Technical challenges:

 tertiary muon "beam" produced into broad phase space from pion decay

 $p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$

- need high-power p-driver for intensity short bunches for small initial emittance robust target system
- efficient scheme for capturing pions high-field magnet in high radiation
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)


イロト イポト イヨト イヨト

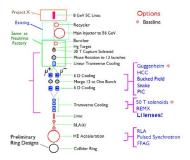
Technical challenges:

 tertiary muon "beam" produced into broad phase space from pion decay

 $p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$

- need high-power p-driver for intensity short bunches for small initial emittance robust target system
- efficient scheme for capturing pions high-field magnet in high radiation
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)


イロト イポト イヨト イヨト

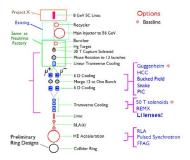
Technical challenges:

 tertiary muon "beam" produced into broad phase space from pion decay

 $p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$

- need high-power p-driver for intensity short bunches for small initial emittance robust target system
- efficient scheme for capturing pions high-field magnet in high radiation
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)


イロト イポト イヨト イヨト

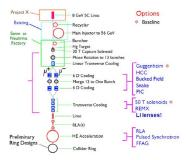
Technical challenges:

 tertiary muon "beam" produced into broad phase space from pion decay

 $p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$

- need high-power p-driver for intensity short bunches for small initial emittance robust target system
- efficient scheme for capturing pions high-field magnet in high radiation
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)


イロト イポト イヨト イヨト

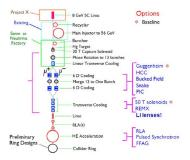
Technical challenges:

 tertiary muon "beam" produced into broad phase space from pion decay

 $p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$

- need high-power p-driver for intensity short bunches for small initial emittance robust target system
- efficient scheme for capturing pions high-field magnet in high radiation
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)


イロト イ理ト イヨト イヨト

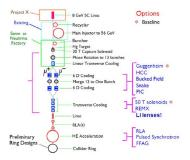
Technical challenges:

 tertiary muon "beam" produced into broad phase space from pion decay

 $p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$

- need high-power p-driver for intensity short bunches for small initial emittance robust target system
- efficient scheme for capturing pions high-field magnet in high radiation
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)


イロト イ理ト イヨト イヨト

Technical challenges:

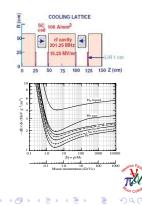
 tertiary muon "beam" produced into broad phase space from pion decay

 $p + A \rightarrow X + \pi \rightarrow \nu_{\mu} + \mu$

- need high-power p-driver for intensity short bunches for small initial emittance robust target system
- efficient scheme for capturing pions high-field magnet in high radiation
- and lots of beam cooling to fit muons into accelerator acceptance
- within muon lifetime (2.2µs)
- storage/collider ring magnets and detectors have to cope with muon decay background

- complicated accelerator complex
- final stages of cooling (50T magnets)

イロト イ理ト イヨト イヨト


Ionization Cooling

Normalized transverse emittance ε of muon beam in solenoidal channel

$$rac{darepsilon}{ds} \simeq -rac{\left\langle rac{dE}{ds}
ight
angle}{eta^2 E} \ (arepsilon - arepsilon_0), \ \ arepsilon_0 \simeq rac{0.875 {
m MeV}}{\left\langle rac{dE}{ds}
ight
angle X_0} \ rac{eta_\perp}{eta}$$

 $\varepsilon_{\rm 0}:$ equilibrium emittance (multiple scattering \sim cooling) Efficient cooling requires:

- Energy absorbers with large dE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and phase focusing performance degraded in B-field (critical R&D)
- tight packing to minimize decay losses
- Iow muon momentum
- emittance exchange for 6D cooling (or twisted field - helical cooling)

- dE/dx in LH2 ${\sim}30$ MV/m
- Accelerating cavities need to provide lost energy
- Phase focusing requires 2× gradient
- $4 \times$ space for RF (as LH2) for 15 MV/m gradient
- must work reliably in large (multi-Tesla) magnetic field
- lots of plumbing for vacuum, cryo, rf power and diagnostics
- large beam sizes force low frequency RF (201 MHz)
- thin windows for LH2 containment and RF cavities
- safety issues with absorbers

• design, prototype and test components for ionization cooling

- Energy absorbers
 - Liquid hydrogen.
 - Solid LiH
- RF cavities
 - 201 MHz pillbox (MICE prototype)
 - 805 MHz program for systematic studies

Magnets

- "Lab-G" magnet (similar to focus coll in MICEE)
- Coupling coil under construction
- Diagnostics
- including associated simulation and theoretical studies
- support system tests
 - MICE
 - ▶ Future cooling experiments (MANX, ...) → (@) (E) (E)

э

design, prototype and test components for ionization cooling

- Energy absorbers
 - Liquid hydrogen
 - Solid LiH
- RF cavities
 - 201 MHz pillbox (MICE prototype)
 - 805 MHz program for systematic studies

Magnets

- "Lab-G" magnet (similar to focus coil in MICE)
 - Coupling coil under construction
- Diagnostics
- including associated simulation and theoretical studies
- support system tests
 - MICE

э

design, prototype and test components for ionization cooling

- Energy absorbers
 - Liquid hydrogen
 - Solid LiH
- RF cavities
 - 201 MHz pillbox (MICE prototype)
 - 805 MHz program for systematic studies

Magnets

- "Lab-G" magnet (similar to focus coil in MICE)
 - Coupling coil under construction
- Diagnostics

including associated simulation and theoretical studies

- support system tests
 - MICE

ure cooling experiments (MANX, 🎝 🖬 🗸 🗗 🗸 🖘 🔹

Э

design, prototype and test components for ionization cooling

- Energy absorbers
 - Liquid hydrogen
 - Solid LiH
- RF cavities
 - 201 MHz pillbox (MICE prototype)
 - 805 MHz program for systematic studies

Magnets

- "Lab-G" magnet (similar to focus coil in MICE)
- Coupling coil under construction
- Diagnostics
- including associated simulation and theoretical studies
- support system tests
 - MICE

- design, prototype and test components for ionization cooling
 - Energy absorbers
 - Liquid hydrogen
 - Solid LiH
 - RF cavities
 - 201 MHz pillbox (MICE prototype)
 - 805 MHz program for systematic studies

Magnets

- "Lab-G" magnet (similar to focus coil in MICE)
- Coupling coil under construction
- Diagnostics
- including associated simulation and theoretical studies
- support system tests
 - MICE

★ ≥ > ≥

- design, prototype and test components for ionization cooling
 - Energy absorbers
 - Liquid hydrogen
 - Solid LiH
 - RF cavities
 - 201 MHz pillbox (MICE prototype)
 - 805 MHz program for systematic studies

Magnets

- "Lab-G" magnet (similar to focus coil in MICE)
- Coupling coil under construction
- Diagnostics
- including associated simulation and theoretical studies
- support system tests
 - MICE
 - Future cooling experiments (MANX, ...)

★ E → E

- design, prototype and test components for ionization cooling
 - Energy absorbers
 - Liquid hydrogen
 - Solid LiH
 - RF cavities
 - 201 MHz pillbox (MICE prototype)
 - 805 MHz program for systematic studies

Magnets

- "Lab-G" magnet (similar to focus coil in MICE)
- Coupling coil under construction
- Diagnostics
- including associated simulation and theoretical studies
- support system tests
 - MICE

(B) B

- design, prototype and test components for ionization cooling
 - Energy absorbers
 - Liquid hydrogen
 - Solid LiH
 - RF cavities
 - 201 MHz pillbox (MICE prototype)
 - 805 MHz program for systematic studies
 - 6-cell cavity (dark current and magnetic field effects)
 - pillbox (breakdown, magnetic field, materials)
 - rectangular cavity (magnetic field angle)
 - high-pressure test cells (gas, pressure, materials)

Magnets

- "Lab-G" magnet (similar to focus coil in MICE)
- Coupling coil under construction
- Diagnostics
- including associated simulation and theoretical studies
- support system tests
 - MICE
 - Future cooling experiments (MANX, ...) • • •

ъ

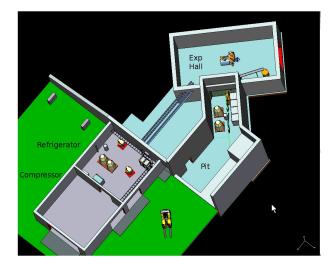
- design, prototype and test components for ionization cooling
 - Energy absorbers
 - Liquid hydrogen
 - Solid LiH
 - RF cavities
 - 201 MHz pillbox (MICE prototype)
 - 805 MHz program for systematic studies
 - 6-cell cavity (dark current and magnetic field effects)
 - pillbox (breakdown, magnetic field, materials)
 - rectangular cavity (magnetic field angle)
 - high-pressure test cells (gas, pressure, materials)
 - Magnets
 - "Lab-G" magnet (similar to focus coil in MICE)
 - Coupling coil under construction
 - Diagnostics
- including associated simulation and theoretical studies
- support system tests
 - MICE

ъ

- design, prototype and test components for ionization cooling
 - Energy absorbers
 - Liquid hydrogen
 - Solid LiH
 - RF cavities
 - 201 MHz pillbox (MICE prototype)
 - 805 MHz program for systematic studies
 - 6-cell cavity (dark current and magnetic field effects)
 - pillbox (breakdown, magnetic field, materials)
 - rectangular cavity (magnetic field angle)
 - high-pressure test cells (gas, pressure, materials)
 - Magnets
 - "Lab-G" magnet (similar to focus coil in MICE)
 - Coupling coil under construction
 - Diagnostics
- including associated simulation and theoretical studies
- support system tests
 - MICE
 - Future cooling experiments (MANX, ..)

MuCool Test Area (MTA) - http://mice.iit.edu/mta/

Dedicated facility at the end of the Linac built to address MuCool needs



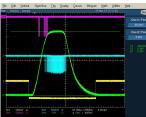
- RF power (13 MW at 805 MHz, 4.5 MW at 201 MHz)
- Superconducting magnet (5 T solenoid)
- Large coupling coil (under construction)
- 805 and 201 MHz pillbox cavities
- Radiation detectors (to be reinstalled)
- Cryo plant (to be commissioned)
- 400 MeV p beamline (commissioned)

MuCool Test Area (MTA)

æ

Yağmur Torun MuCool – DPF2009 – 7/28/09 – Detroit

・ロト ・回ト ・ヨト ・ヨト


MuCool Test Area (MTA)

Experimental Hall

Beamline

X-rays at high gradient

Compressor Room

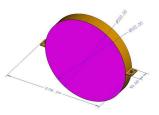
ъ

→ E > < E >

< 🗇 🕨

- LiH test discs engineered
- Vacuum RF program (805 and 201 MHz pillbox) continued; new 805 MHz rectangular cavity designed
- Coupling coil being built in China (Harbin IT)
- Working toward new experiment to test high pressure cavity in beam
 - Beamline commissioned to 1st stop
 - MTA reconfiguration work ongoing
- Modeling effort continuing
 - Cavity arcs with/without axial magnetic fields
 - Electron transport in magnetic field

LiH absorbers are now the "baseline" for the initial 4D cooling


- Replaced LH2
- Material properties of LiH to be confirmed
 - Thermal characteristics
 - Thermal conductivity
 - Stability
 - Radiation Stability
- Program Goal
 - Test Thermal properties of Hot-Isostatic Pressed LiH
 - Claimed to yield material with 98%+ theoretical density
 - Best thermal conductivity

< ∃→

LiH Absorber Disc Fabrication

- Subcontracted for production at Y12
 - Produced by Hot Isostatic Pressing
 - using existing mold design
 - Mechanical properties of final parts will be measured
 - Density, hardness, etc
 - Final Parts to be chemically tested
 - Radiographed to ensure no voids
 - Machined to size
 - Dimensional inspection
 - Coated with vapor barrier
- Production will consist of
 - 30 and 50 cm diameter disks (+2" disks for destructive testing)

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows
 - test buttons with different materials/coatings
- Being rebuilt at JLab (Rimmer)

ヘロト 人間 ト ヘヨト ヘヨト

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows
 - test buttons with different materials/coatings
- Being rebuilt at JLab (Rimmer)

ヘロト 人間 ト ヘヨト ヘヨト

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows
 - test buttons with different materials/coatings
- Being rebuilt at JLab (Rimmer)

ヘロト 人間 ト ヘヨト ヘヨト

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows
 - test buttons with different materials/coatings
- Being rebuilt at JLab (Rimmer)

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows
 - test buttons with different materials/coatings
- Being rebuilt at JLab (Rimmer)

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient significant degradation (40 MV/m at 0 T, 16 MV/m at 2.5 T)
 - establish feasibility of thin windows
 - test buttons with different materials/coatings
- Being rebuilt at JLab (Rimmer)

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient significant degradation (40 MV/m at 0 T, 16 MV/m at 2.5 T)
 - establish feasibility of thin windows

• test buttons with different materials/coatings

Being rebuilt at JLab (Rimmer)

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient significant degradation (40 MV/m at 0 T, 16 MV/m at 2.5 T)
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
- Being rebuilt at JLab (Rimmer)

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient significant degradation (40 MV/m at 0 T, 16 MV/m at 2.5 T)
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient significant degradation (40 MV/m at 0 T, 16 MV/m at 2.5 T)
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look promising
- Being rebuilt at JLab (Rimmer)

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient significant degradation (40 MV/m at 0 T, 16 MV/m at 2.5 T)
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look promising
- Being rebuilt at JLab (Rimmer)

201 MHz MICE prototype cavity

- built very clean (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

201 MHz MICE prototype cavity

• built very clean (electropolished, etc.)

- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

201 MHz MICE prototype cavity

- built very clean (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field reduced performance
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

くロト (過) (目) (日)

- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field reduced performance
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

くロト (過) (目) (日)

- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field reduced performance
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

ヘロト ヘ戸ト ヘヨト ヘヨト

- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field reduced performance
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field reduced performance
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field reduced performance
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field reduced performance
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown
 - may not work with high-intensity beam

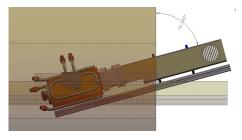
- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field reduced performance
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown but conditions much faster
 - may not work with high-intensity beam

- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field reduced performance
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown but conditions much faster
 - may not work with high-intensity beam

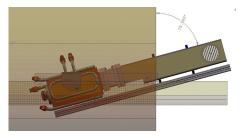
- 201 MHz MICE prototype cavity
 - built very clean (electropolished, etc.)
 - conditioned to design gradient very quickly
 - ran successfully with thin curved Be windows
 - operated in stray magnetic field reduced performance
 - radiation output measured (MICE detector backgrounds)
 - large diameter coil needed for field configuration closer to MICE (under construction at Harbin)
- High-pressure gas (Muons Inc., 805 MHz)
 - breakdown suppressed by gas (Paschen effect)
 - high-pressure H2 could do double duty for cooling
 - still limited by surface breakdown but conditions much faster
 - may not work with high-intensity beam to be tested soon at the MTA

- New simple 805 MHz rectangular cavity design (Moretti)
- RF $\vec{E} \perp$ external \vec{B}
- Support for tilting by 10-15° on existing frame
- Construction started (1st braze completed last week)
- Should be available for installation this year

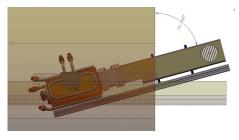
- New simple 805 MHz rectangular cavity design (Moretti)
- RF $\vec{E} \perp$ external \vec{B}
- Support for tilting by 10-15^o on existing frame
- Construction started (1st braze completed last week)
- Should be available for installation this year


- New simple 805 MHz rectangular cavity design (Moretti)
- RF $\vec{E} \perp$ external \vec{B}
- Support for tilting by 10-15^o on existing frame
- Construction started (1st braze completed last week)
- Should be available for installation this year

- New simple 805 MHz rectangular cavity design (Moretti)
- RF $\vec{E} \perp$ external \vec{B}
- Support for tilting by 10-15° on existing frame
- Construction started (1st braze completed last week)
- Should be available for installation this year



- New simple 805 MHz rectangular cavity design (Moretti)
- RF $\vec{E} \perp$ external \vec{B}
- Support for tilting by 10-15^o on existing frame
- Construction started (1st braze completed last week)
- Should be available for installation this year



- New simple 805 MHz rectangular cavity design (Moretti)
- RF $\vec{E} \perp$ external \vec{B}
- Support for tilting by 10-15^o on existing frame
- Construction started (1st braze completed last week)
- Should be available for installation this year

- Experimental data with correct hardware essential for convincing demonstration
- Would also like to understand the underlying physics to drive cavity/channel designs
- Several people claim they understand everything
- Various efforts currently under way
 - interaction with surface plasma (Norem, Huang, Tech-X)
 - multipacting studies (SLAC)
 - single-electron tracking (Palmer, Stratakis)
 - many groups working on details of NC RF in other contexts (CLIC, etc.)

イロト イポト イヨト イヨト

• Experimental data with correct hardware essential for convincing demonstration

- Would also like to understand the underlying physics to drive cavity/channel designs
- Several people claim they understand everything
- Various efforts currently under way
 - interaction with surface plasma (Norem, Huang, Tech-X)
 - multipacting studies (SLAC)
 - single-electron tracking (Palmer, Stratakis)
 - many groups working on details of NC RF in other contexts (CLIC, etc.)

イロト イポト イヨト イヨト

- Experimental data with correct hardware essential for convincing demonstration
- Would also like to understand the underlying physics to drive cavity/channel designs
- Several people claim they understand everything
- Various efforts currently under way
 - interaction with surface plasma (Norem, Huang, Tech-X)
 - multipacting studies (SLAC)
 - single-electron tracking (Palmer, Stratakis)
 - many groups working on details of NC RF in other contexts (CLIC, etc.)

くロト (過) (目) (日)

- Experimental data with correct hardware essential for convincing demonstration
- Would also like to understand the underlying physics to drive cavity/channel designs
- Several people claim they understand everything
- Various efforts currently under way
 - interaction with surface plasma (Norem, Huang, Tech-X)
 - multipacting studies (SLAC)
 - single-electron tracking (Palmer, Stratakis)
 - many groups working on details of NC RF in other contexts (CLIC, etc.)

くロト (過) (目) (日)

- Experimental data with correct hardware essential for convincing demonstration
- Would also like to understand the underlying physics to drive cavity/channel designs
- Several people claim they understand everything but disagree on what the problem is and how to solve it
- Various efforts currently under way
 - interaction with surface plasma (Norem, Huang, Tech-X)
 - multipacting studies (SLAC)
 - single-electron tracking (Palmer, Stratakis)
 - many groups working on details of NC RF in other contexts (CLIC, etc.)

ヘロト 人間 ト ヘヨト ヘヨト

- Experimental data with correct hardware essential for convincing demonstration
- Would also like to understand the underlying physics to drive cavity/channel designs
- Several people claim they understand everything but disagree on what the problem is and how to solve it
- Various efforts currently under way
 - interaction with surface plasma (Norem, Huang, Tech-X)
 - multipacting studies (SLAC)
 - single-electron tracking (Palmer, Stratakis)
 - many groups working on details of NC RF in other contexts (CLIC, etc.)

・ロト ・ 同ト ・ ヨト ・ ヨト

- Experimental data with correct hardware essential for convincing demonstration
- Would also like to understand the underlying physics to drive cavity/channel designs
- Several people claim they understand everything but disagree on what the problem is and how to solve it
- Various efforts currently under way
 - interaction with surface plasma (Norem, Huang, Tech-X)
 - multipacting studies (SLAC)
 - single-electron tracking (Palmer, Stratakis)
 - many groups working on details of NC RF in other contexts (CLIC, etc.)

・ロト ・ 同ト ・ ヨト ・ ヨト

- Experimental data with correct hardware essential for convincing demonstration
- Would also like to understand the underlying physics to drive cavity/channel designs
- Several people claim they understand everything but disagree on what the problem is and how to solve it
- Various efforts currently under way
 - interaction with surface plasma (Norem, Huang, Tech-X)
 - multipacting studies (SLAC)
 - single-electron tracking (Palmer, Stratakis)
 - many groups working on details of NC RF in other contexts (CLIC, etc.)

イロト イポト イヨト イヨト

- Experimental data with correct hardware essential for convincing demonstration
- Would also like to understand the underlying physics to drive cavity/channel designs
- Several people claim they understand everything but disagree on what the problem is and how to solve it
- Various efforts currently under way
 - interaction with surface plasma (Norem, Huang, Tech-X)
 - multipacting studies (SLAC)
 - single-electron tracking (Palmer, Stratakis)
 - many groups working on details of NC RF in other contexts (CLIC, etc.)

イロト イポト イヨト イヨト

- Experimental data with correct hardware essential for convincing demonstration
- Would also like to understand the underlying physics to drive cavity/channel designs
- Several people claim they understand everything but disagree on what the problem is and how to solve it
- Various efforts currently under way
 - interaction with surface plasma (Norem, Huang, Tech-X)
 - multipacting studies (SLAC)
 - single-electron tracking (Palmer, Stratakis)
 - many groups working on details of NC RF in other contexts (CLIC, etc.)

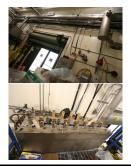
- Commission cryo infrastructure
 - Valve box in hall
 - Transfer lines to cryo plant in surface building
- Rearrange components in hall for RF tests
 - Stand to raise solenoid to beam height
 - Platform for 201MHz cavity
- Beamline
 - Integrate/commission controls
 - Reroute waveguides in hatch
 - New shield walls in pit and hatch

- Commission cryo infrastructure
 - Valve box in hall
 - Transfer lines to cryo plant in surface building
- Rearrange components in hall for RF tests
 - Stand to raise solenoid to beam height
 - Platform for 201MHz cavity
- Beamline
 - Integrate/commission controls
 - Reroute waveguides in hatch
 - New shield walls in pit and hatch

- Commission cryo infrastructure
 - Valve box in hall
 - Transfer lines to cryo plant in surface building
- Rearrange components in hall for RF tests
 - Stand to raise solenoid to beam height
 - Platform for 201MHz cavity
- Beamline
 - Integrate/commission controls
 - Reroute waveguides in hatch
 - New shield walls in pit and hatch

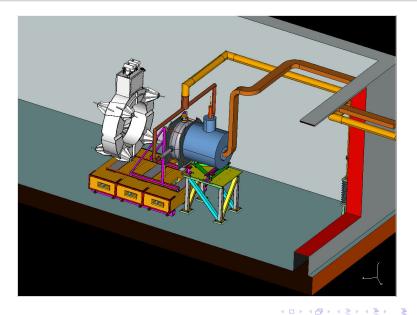
- Commission cryo infrastructure
 - Valve box in hall
 - Transfer lines to cryo plant in surface building
- Rearrange components in hall for RF tests
 - Stand to raise solenoid to beam height
 - Platform for 201MHz cavity
- Beamline
 - Integrate/commission controls
 - Reroute waveguides in hatch
 - New shield walls in pit and hatch

- Commission cryo infrastructure
 - Valve box in hall
 - Transfer lines to cryo plant in surface building
- Rearrange components in hall for RF tests
 - Stand to raise solenoid to beam height
 - Platform for 201MHz cavity
- Beamline
 - Integrate/commission controls
 - Reroute waveguides in hatch
 - New shield walls in pit and hatch


Started Oct 1 - expected completion "mid-2009"

- Transfer lines built and installed between hall and refrigerator room (Oct-Feb)
- HVAC unit relocated to accommodate xfer line connection (Oct)
- Valve box installed in hall (Oct), to be connected to magnet
- Plumbing in surface building mostly complete
- Instrumentation, controls, commissioning

Yağmur Torun


MuCool - DPF2009 - 7/28/09 - Detroit

- Detector stands and various small parts removed from hall (Sep)
- Pit shield wall removed, forklift brought in (Oct)
- Solenoid and 201 MHz cavity disconnected/moved (Sep/Oct)

- 805 and 201 MHz waveguide sections removed (Oct)
- New platform parts fabricated and installed (Oct)
- 201 MHz cavity reinstalled at beam height (Oct)
- Valve box stand fabricated and installed (Oct)
- Magnet stand fabricated (Oct), magnet reinstalled (Jan)
- 201 MHz coax line reconnected to cavity (Jan)
- 805 MHz waveguide installed (Feb)
- Clean room legs extended to new cavity height (Mar)

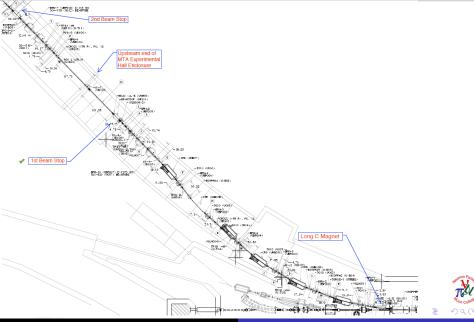
- RF power successfully transmitted through waveguides to 201 MHz cavity and 805 MHz dummy load (Jun 30)
- New cables for future use installed (July)
- Cleanup/wipedown this week
- Still to be installed
 - 805 MHz cavity (Aug?), detectors (Aug)

- RF power successfully transmitted through waveguides to 201 MHz cavity and 805 MHz dummy load (Jun 30)
- New cables for future use installed (July)
- Cleanup/wipedown this week
- Still to be installed
 - 805 MHz cavity (Aug?), detectors (Aug)

- RF power successfully transmitted through waveguides to 201 MHz cavity and 805 MHz dummy load (Jun 30)
- New cables for future use installed (July)
- Cleanup/wipedown this week
- Still to be installed
 - 805 MHz cavity (Aug?), detectors (Aug)

- RF power successfully transmitted through waveguides to 201 MHz cavity and 805 MHz dummy load (Jun 30)
- New cables for future use installed (July)
- Cleanup/wipedown this week
- Still to be installed
 - 805 MHz cavity (Aug?), detectors (Aug)

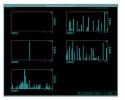
- RF power successfully transmitted through waveguides to 201 MHz cavity and 805 MHz dummy load (Jun 30)
- New cables for future use installed (July)
- Cleanup/wipedown this week
- Still to be installed
 - 805 MHz cavity (Aug?), detectors (Aug)


Beamline

- All components installed and aligned
- Integration with Linac control system started some work required to mitigate impact on Linac beam
- Beam successfully transported to first beam stop upstream of MTA (Nov)
- RF waveguide parts installed in hatch (Nov)
- Steel plates cut for new pit shield wall (Nov)
- Pit and hatch shielding designs approved (Mar)
- Beam absorber installed (May)
- Shield walls installed (Jul)
- Rate limiter hardware being built to control pulses/hour
- Beam to hall when all safety approvals in place

Beamline Commissioning

Beamline Commissioning


- 1 hour beam time approved (Nov 21) used 47 of our 60 allocated beam pulses, beam on 5th pulse
- After C magnet tuning, beam was fully extinguished in 400-MeV transfer and diagnostic lines and fully extracted into MTA beamline
- MW3 profile (3m upstream of beam stop)

- Dedicated timeline generator built
- Extraction into hall after radiation assessment approval
- Rate limiter hardware to be built for initial (low-intensity) running

Beamline Commissioning

- 1 hour beam time approved (Nov 21) used 47 of our 60 allocated beam pulses, beam on 5th pulse
- After C magnet tuning, beam was fully extinguished in 400-MeV transfer and diagnostic lines and fully extracted into MTA beamline
- MW3 profile (3m upstream of beam stop)

- Dedicated timeline generator built
- Extraction into hall after radiation assessment approval
- Rate limiter hardware to be built for initial (low-intensity) running

Outlook

- Reconfiguration to be completed soon
- Rich program to resume afterward
 - Beam test of HPRF cavity after beamline commissioning pending rad-safety assessment
 - 201 MHz RF ready to go surface inspection before applying rf power
 - 805 MHz cavity to be installed when available
 - Magnet cooldown after cryo plant is commissioned (Sep?)
 - Button tests at 805 MHz using various materials and processing techniques
 - E x B study with new rectangular cavity
 - Installation of coupling coil (Jan?) will require removal of pit shield wall

<ロ> (四) (四) (三) (三) (三)

