
Recent results on twophoton physics at BABAR

Michael D. Sokoloff
University of Cincinnati
Representing the BaBar Collaboration

I.
$$\gamma^* \gamma \rightarrow \pi^0$$
II. $\gamma^* \gamma \rightarrow \eta_c$

Two-photon reaction $e^+e^- \rightarrow e^+e^- P$

- Electrons are scattered predominantly at small angles.
- For pseudoscalar meson production the cross section depends on a form factor $F(q_1^2, q_2^2)$, which describes the $\gamma^* \gamma^* \rightarrow P$ transition.

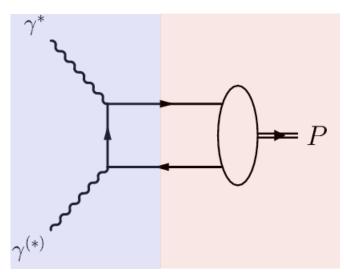
No-tag mode:

✓ both electrons are undetected

$$\sqrt{q_1^2}, q_2^2 \approx 0$$

 $\checkmark\Gamma\gamma\gamma$ or F(0,0)

Single-tag mode:

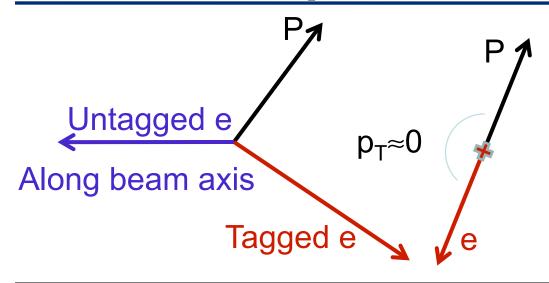

✓one of electrons is detected

$$\sqrt{Q^2} = -q_1^2 = 2EE'(1-\cos\theta),$$

$$\checkmark$$
 d σ /d $Q^2 \sim 1/Q^6$ for π^0

$$\checkmark$$
F(Q²,0)

Two-photon reaction $e^+e^- \rightarrow e^+e^- P$

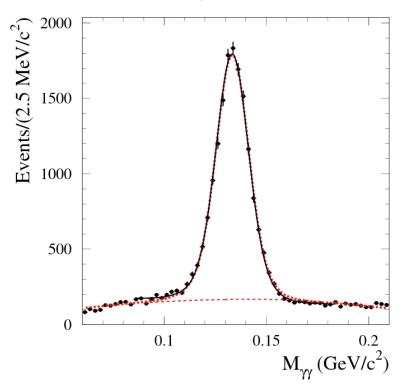


$$F(Q^2) = \int T(x,\mu^2) \varphi(x,\mu^2) dx$$

Hard scattering Nonperturbative amplitude for $\gamma^* \gamma \rightarrow q\bar{q}$ transition amplitude which is calculable describing in pQCD

pion distribution transition $P \rightarrow q\bar{q}$

x is the fraction of the meson momentum carried by one of the quarks in the infinite momentum frame



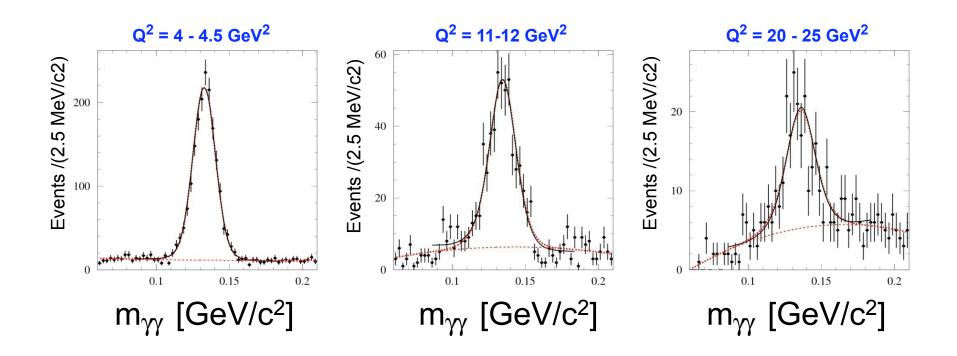
- √ electron is detected and identified
- $\checkmark \pi^0$ or η_c are detected and fully reconstructed
- ✓ electron + meson system has low p
- √ missing mass in an event is close to zero

$e^+e^- \rightarrow e^+e^-\pi^0$

B.Aubert et al., arXiv:0905.4778, submitted to PRD

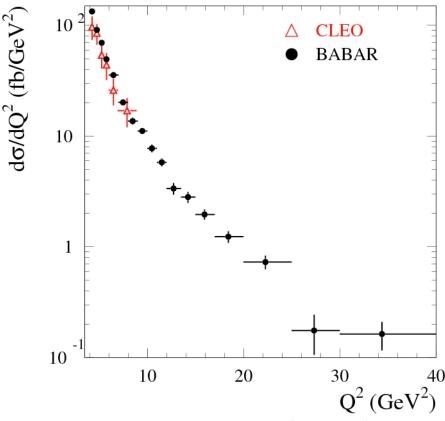
 The main non-resonant background is virtual Compton scattering, the process

$$e^+e^- \rightarrow e^+e^-\gamma$$


with the final e⁺ or e⁻ directed along the beam axis.

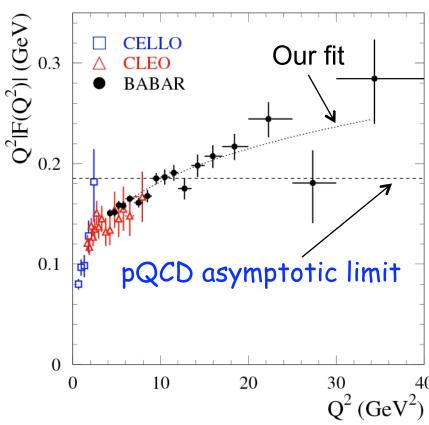
The peaking background comes e⁺ e⁻ → e⁺ e⁻ π⁰ π⁰, about 10% of signal events.

Detector	Q^2 , GeV^2	Events	Year
CELLO	0.7-2.2	127	1991
CLEO	1.6-8.0	1219	1998
BABAR	4-40	13200	2009


$e^+e^- \rightarrow e^+e^-\pi^0$

Data from 3 of 17 Q² intervals studied

$e^+e^- \rightarrow e^+e^-\pi^0$, cross section



Systematic uncertainty independent of Q^2 is 3%.

- Efficiency correction ~ 2.5%
- Radiative correction ~ 1%
- Luminosity uncertainty ~ 1%

$e^+e^- \rightarrow e^+e^-\pi^0$, form factor

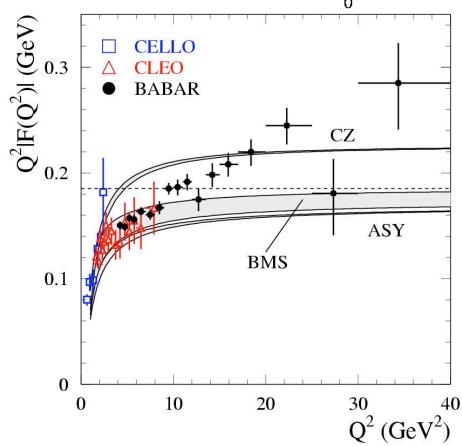
Systematic uncertainty independent of Q² is 2.3%.

- · cross section
- model uncertainty

✓ In Q² range 4-9 GeV² our results are in a reasonable agreement with CLEO data but have significantly better accuracy.

At Q²>10 GeV² the measured form factor exceeds the asymptotic limit $\sqrt{2}f_{\pi}$ =0.185 GeV. Most models for the pion distribution amlitude give form factors approaching the limit from below.

Our data in the range 4-40 GeV² are $Q^2 (GeV^2)$ well described by the formula


$$|Q^2|F(Q^2)| = A \left(\frac{Q^2}{10 \text{ GeV}^2}\right)^{\beta}$$

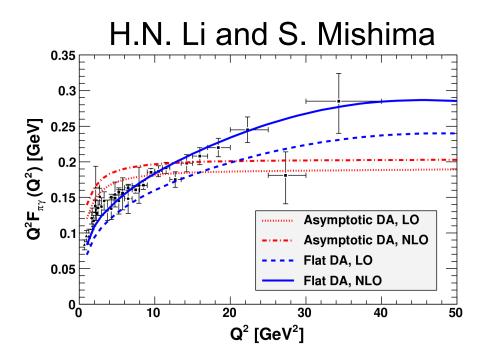
with A=0.182±0.002 GeV and β =0.25±0.02, i.e. F~1/Q^{3/2}.

$e^+e^- \rightarrow e^+e^-\pi^0$, comparison with theory

$$Q^{2}F(Q^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x, Q^{2}) + O(\alpha_{s}) + O(\Lambda_{QCD}^{2}/Q^{2})$$

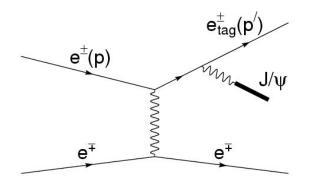
✓ A.P.Bakulev, S.V.Mikhailov, N.G.Stefanis, Phys. Rev. D 67, 074012, light-cone sum rule method at NLO pQCD+twist-4 power corrections.


✓ Q²<20 GeV²: large difference between the data and the theory in Q² dependence. For Q²<15 GeV², none of the models describes the Q² dependence well.

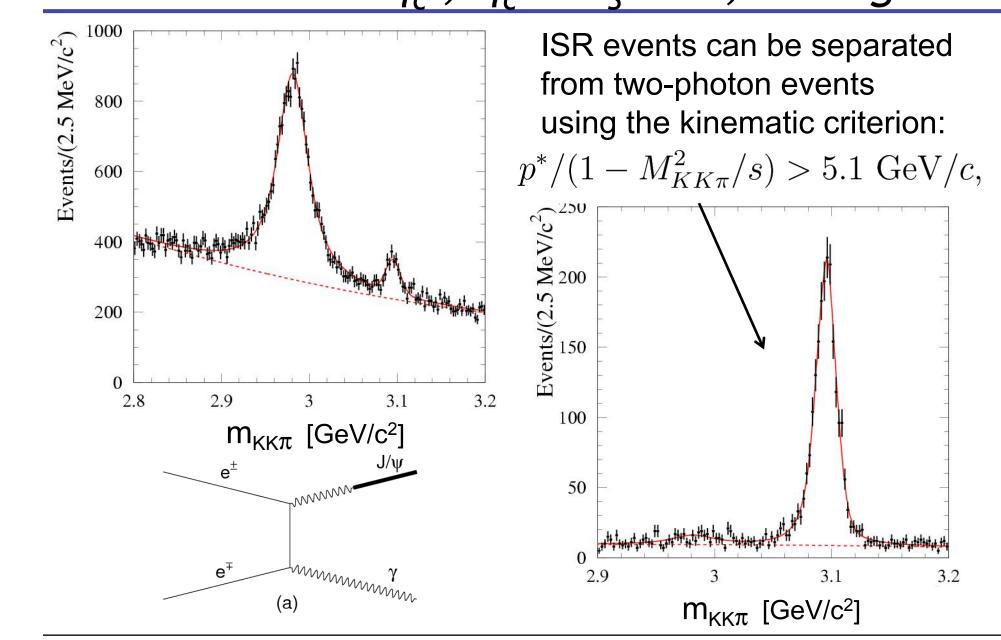

✓ Q² > 20 GeV²: theoretical uncertainties are expected to be smaller. Our data lie above the asymptotic limit at high Q², as does the prediciton of theChernyak-Zhitnitsky (CZ) model, Nucl. Phys. B **201**, 492(1982) [Erratum – ibid B 214, 547 (1983)]

$e^+e^- \rightarrow e^+e^-\pi^0$ calculations, after public release

- S.V. Mikhailov and N.G.Stefanis, arXiv:0905.4004, the growth of the form factor cannot be explained by NNLO pQCD corrections and power corrections
- A.V. Radyuskin, arXiv:0906.0323; M.V. Polyakov, arXive:0906.0538; H.N. Li and S. Mishima, arXiv:0907.0166. A flat pion distribution amplitude is used to reproduce the Q² dependence of BABAR data.



$$\gamma^* \gamma \rightarrow \eta_c$$


- ullet $e^+e^ightarrow e^+e^-\eta_c$
- $\eta_c \rightarrow K_S K^+ \pi$
- no-tag mode used for single-tag form factor normalization; also extract mass and width
 - − background from $e^+e^- \rightarrow J/\psi \gamma$, $J/\psi \rightarrow \eta_c \gamma$
- single-tag mode extract form factor
 - background from $e^+e^- \rightarrow e^+e^- J/\psi$, $J/\psi \rightarrow \eta_c \gamma$

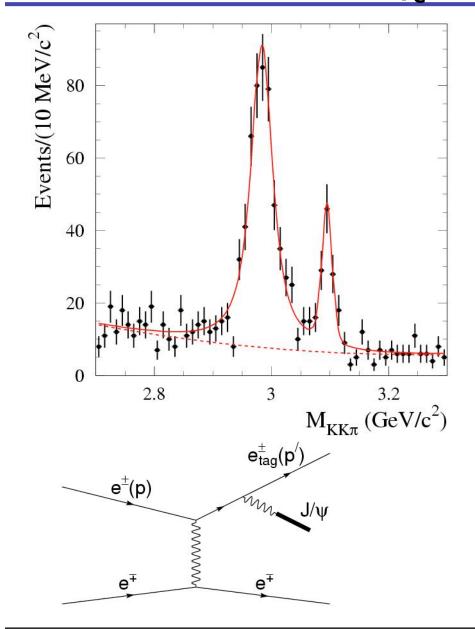
$e^+e^ightarrow e^+e^-\eta_c$, $\eta_c ightarrow K_S K^+\pi^-$, no-tag

$e^+e^- ightarrow e^+e^- \eta_c$, no-tag mode

- The sources of non-resonant background are two photon and ISR processes.
- •The peaking background is $e^+e^- \rightarrow J/\psi\gamma$, $J/\psi \rightarrow \eta_c\gamma \rightarrow K_SK^+\pi^-\gamma$. It is calculated from the fitted number of $J/\psi \rightarrow K_SK^+\pi$ events. 4%.

	Mass, MeV	Width,MeV
PDG	2980.3±1.2	26.7±3.0
BABAR(88 fb ⁻¹)	2982.5±1.1±0.9	34.3±2.3±0.9
BABAR(470 fb ⁻¹), preliminary	2982.2±0.4±1.5	31.7±1.2±0.8

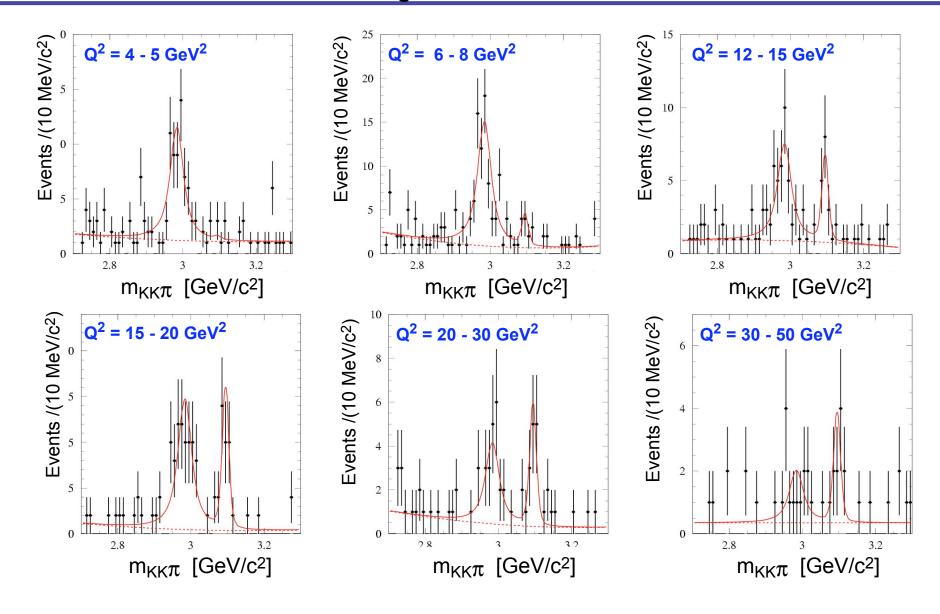
Main sources of systematic uncertainties are unknown background shape and possible interference between η_c and non-resonant two-photon amplitudes.


 $N(\eta_c)=13890\pm320\pm670$

BABAR preliminary: $\Gamma(\eta_c \rightarrow \gamma \gamma)B(\eta_c \rightarrow KK\pi) = 0.379 \pm 0.009 \pm 0.031 \text{ keV}$

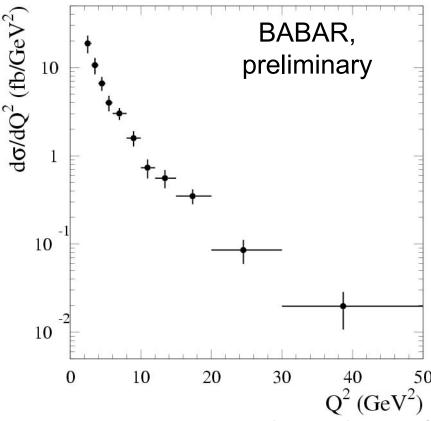
PDG: 0.44±0.04 keV, CLEO: 0.407±0.022±0.028 keV

$e^+e^- ightarrow e^+e^- \eta_c$, single-tag mode



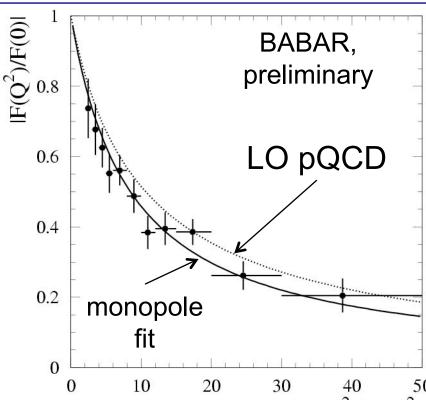
m=2985.7±2.0 MeV/c² Γ=31.9±4.3 MeV N=530±41±17

Peaking background from $e^+e^- \rightarrow e^+e^- J/\psi$, $J/\psi \rightarrow \eta_c \gamma \rightarrow K_S K^+\pi^- \gamma$ is calculated from the fitted number of $J/\psi \rightarrow K_S K^+\pi^-$ events. It varies from about 1% at Q²<10 GeV² to about 5% at Q²≈30 GeV²



$e^+e^- ightarrow e^+e^-\eta_c$, single-tag mode

$e^+ e^- ightarrow e^+ e^- \eta_c$ cross section



Systematic uncertainty independent of Q² is 6.7%.

 detection efficiency 	5.9%
 background subtraction 	2.5%
 radiative corrections 	1%
 luminosity 	1%

$e^+e^- \rightarrow e^+e^-\eta_c$ form factor

Systematic uncertainty $Q^2 (GeV^2)$ independent of Q^2 is 4.3%.

- detection efficiency
- number of no-tag events
- stat. error on no-tag efficiency
- background subtraction
- radiative correction uncertainty

- ✓ The form factor is normalized to F(0) obtained from no-tag data
- ✓ We fit the function

$$F(Q^2) = \frac{F(0)}{1 + Q^2 / \Lambda}$$

to the form factor data. The result

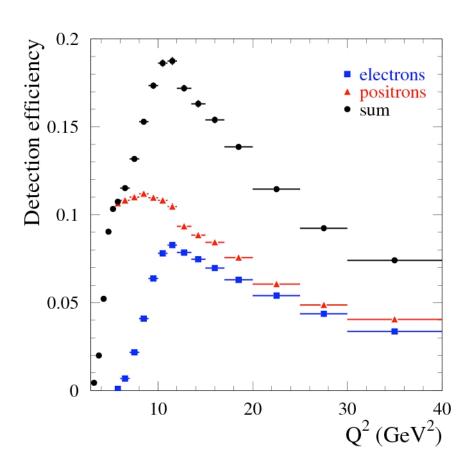
$$\Lambda = 8.5 \pm 0.6 \pm 0.7$$
 GeV²

50 does not contradict the vector dominance model with

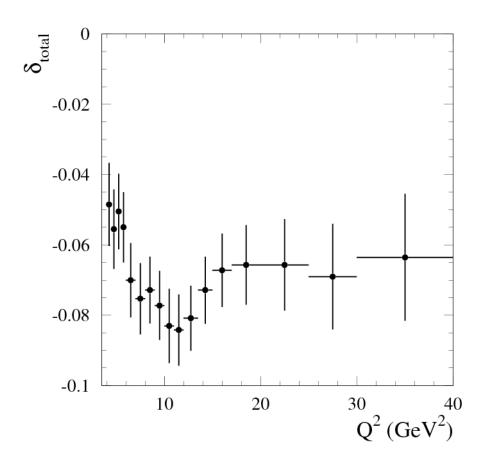
$$\Lambda = m^2_{J/\psi} = 9.6 \text{ GeV}^2$$
.

Our data lie below a leading-order pQCD calculation (T. Feldmann, P.Kroll, Phys. Lett. B 413, 410 (1997))

Summary

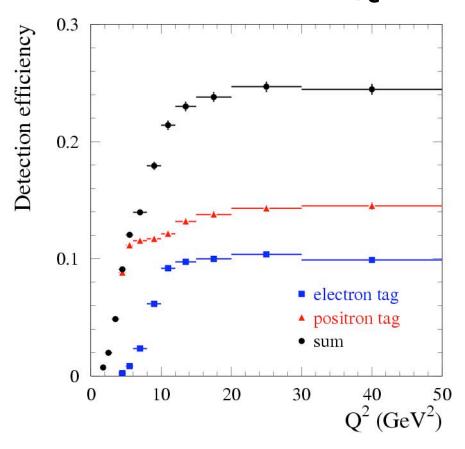

- The $\gamma^* \gamma \rightarrow \pi^0$ transition form factor has been measured for Q² range from 4 to 40 GeV²
- An unexpected Q^2 dependence of the π^0 transition form factor is observed for $Q^2>10$ GeV². The data lie above the pQCD asymptotic limit. This indicates that the pion distribution amplitude is wide.
- This measurement stimulated development of new models for form-factor calculations.
- The γ*γ→η_c form factor has been measured for the Q² range from 2 to 50 GeV²
- The form factor data are well described by the monopole form with Λ=8.6±0.6±0.7 GeV². The data are in reasonable agreement with both QCD and VDM predictions.

BACKUP SLIDES


$e^+e^- \rightarrow e^+e^-\pi^0$, detection efficiency

- Due to the energy asymmetry of our e⁺e⁻ collisions, the Q² region below 7 GeV² is measured only with positron tags.
- We measure the cross section above $Q^2 = 4 \text{ GeV}^2$ to avoid possible systematic error due to data-MC differences near the edges of the detector
- The average π^{o} energy grows with Q². This leads to a decrease of the detection efficiency for Q² > 10 GeV²

$e^+e^- \rightarrow e^+e^-\pi^0$, total efficiency correction



Total systematic error independent of Q² is 2.5% and includes

- 1% π^{o} losses,
- 2% trigger efficiency,
- 1% $\cos \theta_{e\pi}$ cut.

$e^+e^- \rightarrow e^+e^-\eta_c$, detection efficiency

- Due to the energy asymmetry of our e⁺e⁻ collisions, the Q² region below 6 GeV² is measured with positron tags only.
- We measure the cross section above $Q^2 = 2 \text{ GeV}^2$ where the efficiency is about 2%.
- •For no-tag events, the efficiency is (14.5±0.2)%
- •The data Dalitz plot distribution is used to reweight MC events. The shift of efficiency is small, (-1.1±1.6)%.

$e^+e^- \rightarrow e^+e^-\eta_c$, systematic uncertainty

Source	No-tag, %	Single-tag, %
trigger, filters	1.2	_
η_c selection	5.9	5.7
track reconstruction	1.4	1.5
K^{\pm} identification	0.4	0.5
e^{\pm} identification	_	1.0
total	6.2	6.0

- To estimate systematic uncertainties due to selection criteria we vary
 - K_S mass window: 0.4875-0.5075 \Rightarrow 0.475-0.52
 - Limit on transverse momentum: $0.25 \Rightarrow 0.5$
 - $0.387 < \theta < 2.4$ for kaon and pions
 - $-0.02 < r < 0.03 \implies -0.02 < r < 0.06$
- The most significant effect (~6%) is observed for the change of angular restrictions.

