Model-Independent Search for the Decay $\mathrm{B}^{+} \rightarrow \mathrm{l}^{+} \nu_{\ell} \gamma$

 at BABAR (arXiv: 0907.1681)Dana Lindemann
Steven Robertson
McGill University, Montreal, Canada Representing the BABAR Collaboration

APS Division of Particles \& Fields July 27, 2009

Theoretical Motivation for $\mathbb{B}^{+} \rightarrow t^{+} v y$

Leptonic decay BF measurements provide clean predictions of SM parameters without hadronic (QCD) final-state uncertainties

- $B F(B \rightarrow l v) \propto m_{\ell}^{2}$ due to helicity suppression: $B F(B \rightarrow e v) \approx 10^{-11}, B F(B \rightarrow \mu v) \approx 10^{-7}$
- Radiative mode has no helicity suppression
- Photon release causes W^{+}to couple to a spin-1 virtual state

Theoretical Motivation for $\mathrm{B}^{+} \rightarrow \mathrm{l}^{+} v y$

SM prediction: $B F(B \rightarrow \mathrm{ev} \gamma) \approx 10^{-6}$

Published Limits (CLEO '97) $B F(B \rightarrow \mathrm{ev} \gamma)<2.0 \times 10^{-4}$ $B F(B \rightarrow \mu v \gamma)<5.2 \times 10^{-5}$
Browder, et al. [CLEO Collab], PRD 56, 11 (1997).

- $B F(B \rightarrow l v) \propto m_{\ell}^{2}$ due to helicity suppression: $B F(B \rightarrow e v) \approx 10^{-11}, B F(B \rightarrow \mu v) \approx 10^{-7}$
- Radiative mode has no helicity suppression
- Photon release causes W^{+}to couple to a spin-1 virtual state
- Branching Fraction is independent of lepton-type

$$
\begin{aligned}
& B F\left(B^{+} \rightarrow \ell^{+} v \gamma\right) \approx \frac{\alpha G_{F}^{2}}{288 \pi^{2}}\left|V_{u b}\right|^{2} f_{B}^{2} m_{B}^{5} \tau_{B}\left(\frac{2}{3 \lambda_{B}}+\frac{1}{3 m_{b}}\right)^{2}
\end{aligned}
$$

$$
B F(B \rightarrow e v) \approx 10^{-11}, B F(B \rightarrow \mu v) \approx 10^{-7}
$$

- Only decay providing clean measurement of λ_{B} :
- $1^{\text {st }}$ inverse moment of the B-meson wave function
- Theoretical significance (QCD factorization, $\mathrm{B} \rightarrow \pi \pi$, etc.)
- Of order Λ_{QCD} (few hundred MeV)

Benchmark decay for measuring angle α of the CKM Unitary Triangle

The BaBar Detector

$\mathrm{r}(4 \mathrm{~S})$ at the B-Factory

- $\Upsilon(4 \mathrm{~S})$ is a $\mathrm{b} \overline{\mathrm{b}}$ quarkonium resonance whose mass is just above the threshold for BB meson pair production
- $\Upsilon(4 S)$ decays to $B \bar{B} 99 \%$ of the time
- ~ 1.1 million $B \bar{B}$ pairs produced per fb^{-1}
- Full BaBar data set used: 465 million $B \bar{B}$ pairs ($423 \mathrm{fb}^{-1}$ integrated luminosity)

GEANT4-based Monte Carlo (MC) simulations model the detector response. Used to determine signal efficiency and study background

MC Signal event in BaBar detector:

$$
\mathrm{B}_{\mathrm{sig}}^{+} \rightarrow \mu^{+} v \gamma \text { and } \mathrm{B}_{\mathrm{tag}}^{-} \rightarrow \mathrm{D}^{0} \rho^{-}
$$

Dana Lindemann, McGill University

Hadronic Tag Reconstruction

-How?

- Find $\left.B_{\text {tag }} \rightarrow D^{*}\right) X_{\text {nad }}$ events ($X_{\text {nad }}$ is combination of kaons and/or pions)
- Choose combo with a $\mathrm{B}_{\text {tag }}$ energy closest to $\mathrm{E}_{\mathrm{CM}} / 2$
- Remaining particles are assigned to $\mathrm{B}_{\text {sig }}$

This technique has never been used for this signal decay!

All previous analyses used inclusive methods

- Why?

$\mathrm{B}_{\mathrm{tag}}^{-} \rightarrow \mathrm{D}^{0} \rho^{-}, \mathrm{B}_{\mathrm{sig}}^{+} \rightarrow \mu^{+} v \gamma$

- High B purity, removing much of the non- $B \bar{B}$ background
- B 4-momentum is determined, giving excellent momentum resolution on the $\mathrm{B}_{\text {sig }}$ daughters (including the undetectable neutrino!)
- The Challenge
- Low reco efficiency ($\sim 0.3 \%$ for signal) so statistically limited sample - We aim to avoid any kinematic or model-dependent constraints

Validating the $\mathrm{B}_{\text {tag }}$

We require:

- A reconstructed charged $\mathrm{B}_{\mathrm{tag}}$ candidate
- Mass of $\mathrm{B}_{\text {tag }}\left(\mathrm{m}_{\mathrm{ES}}\right)$ matches B mass of $5.279 \mathrm{GeV} \quad m_{E S} \equiv \sqrt{E_{C M / 2}^{2}-\vec{p}_{B}^{2}}$

Suppressing non-BB events

Produced almost at rest ($\mathbf{p} \approx 320 \mathrm{MeV}$)
Event shape is isotropically distributed.

B reconstruction assignments in red and black.
Thrust Axes in Green

Removes discrepancy in data/MC from unmodeled events such as 2-photon fusion processes

Continuum Multivariate Likelihood

- Continuum (qव or $\tau \tau$) events are more likely to be jet-like decays, where $B_{\text {tag }}$ candidate has a highly linear thrust and a momentum along the beam-pipe
- Discriminate continuum and BB events using 5 event-shape variables

Signal Selection

Remaining neutral EMC clusters and charged tracks assigned to $B_{\text {sig }}$.

- Require exactly $1 \mathrm{~B}_{\text {sig }}$ track
- With a charge opposite the $\mathrm{B}_{\mathrm{tag}}$'s charge
- Satisfies particle ID criteria for electron or muon, and not a kaon
- Bremsstrahlung photon candidates identified to correct electron's 4-vector

- Signal Photon candidate chosen as highest energy (non-Brem) cluster
- Missing Momentum within detector's fiducial acceptance
- To ensure missing E is not from a detectable particle "lost down beam-pipe"

Kinematic Requirements

- Kinematics of photon and lepton candidates are consistent with a $3^{\text {rd }}$ massless daughter (neutrino)
- $m_{v}{ }^{2} \equiv-\left|p_{B}-p_{\gamma}-p_{\ell}-p_{\text {brem }}\right|^{2}$
- Requires $B_{\text {sig }} 4$-vector $\left(p_{B}\right)$, determined from $B_{\text {tag }}$ reconstruction

Kinematic Requirements

- Kinematics of photon and lepton candidates are consistent with a $3^{\text {rd }}$ massless daughter (neutrino)
- $m_{v}{ }^{2} \equiv-\left|p_{B}-p_{\gamma}-p_{\ell}-p_{\text {brem }}\right|^{2}$
- Requires $B_{\text {sig }} 4$-vector $\left(p_{B}\right)$, determined from $B_{\text {tag }}$ reconstruction

Note: The data was kept blinded within the signal region to avoid bias while finalizing the analysis

- Lepton's momentum and event's missing momentum are back-to-back ($\cos \theta_{\ell v}<-0.93$) in the "B* rest frame"
- Rest frame recoiling from photon release $\equiv \mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\gamma}$

$\mathbb{B}^{+} \rightarrow \mathrm{X}_{\mathrm{u}}{ }^{0{ }^{+}+v}$ Suppression

The primary background is from $\mathrm{B}^{+} \rightarrow X_{u}{ }_{\mathrm{u}} \ell^{+} v$ events, where $X_{u}{ }^{0}$ is a neutral meson containing an up-quark.

```
For example,
since 99% of \pi\mp@subsup{0}{}{\prime}s\mathrm{ decay to 2 photons,} a \(\mathrm{B} \rightarrow \pi^{0} \mathrm{\ell v}\) decay with a "missing" photon resembles signal \(\mathrm{B} \rightarrow\) थvy decay.
```


To reduce this background, we:

- Reject events with π^{0} or η candidates (signal $\gamma+$ unassigned cluster)
- Reject events with a $\omega \rightarrow \pi^{0} \gamma$ candidate (signal $\gamma+\pi^{0}$ candidate)
- Reject events where the signal γ has a large calorimeter cluster width
- Reduces $B \rightarrow \pi^{\circ} \ell v$ events in which the 2 photons are reconstructed as a single merged photon
mimics signal kinematics!

$$
\pi^{0} \Longrightarrow===\neq 2 \gamma^{\prime} s
$$

Background Estimation

Number of expected background events $\left(\mathrm{N}_{\mathrm{bkg}}\right)$ is split into:

- $N_{\text {peak: }}$: well-reconstructed events that peak within $\mathrm{m}_{\text {ES }}$ signal region
- $\mathrm{N}_{\text {comb }}$: "combinatoric" events

Background Estimation

Number of expected background events $\left(\mathrm{N}_{\mathrm{bkg}}\right)$ is split into:

- $N_{\text {peak }}$: well-reconstructed events that peak within $m_{E S}$ signal region
- According to generically-decaying $\bar{B} \bar{B} M C$, only $B^{+} \rightarrow X_{u}{ }^{0}{ }^{+} v$ events contribute
- We estimate $N_{\text {peak }}$ from exclusive $B^{+} \rightarrow X_{u}{ }^{0}{ }^{\circ} v \mathrm{~V}$ MC for higher statistics
- $\mathrm{N}_{\text {comb }}$: "combinatoric" events
- $\mathrm{B}_{\text {tag }}$ is mis-reconstructed from continuum or using particles from both B mesons
- Extrapolated from m_{ES} sideband in data

Branching Fractions

Branching fraction (BF) defined as:

$$
\underline{N_{o b s}-N_{b k g}}
$$

$$
N_{B \pm} \cdot \varepsilon_{s i g}
$$

Estimated $B^{ \pm}$mesons in data sample $=465 \times 10^{6}$
uncertainties: stat. \pm syst.

	$\mathbf{B} \rightarrow \mathbf{e v} \boldsymbol{\gamma}$	$\mathbf{B} \rightarrow \boldsymbol{\mu} \boldsymbol{\gamma} \boldsymbol{\gamma}$
$\mathrm{N}_{\text {peak }}$	$2.4 \pm 0.3 \pm 0.4$	$2.1 \pm 0.3 \pm 0.3$
$\mathrm{~N}_{\text {comb }}$	$0.3 \pm 0.3 \pm 0.2$	$1.2 \pm 0.6 \pm 0.6$
$\varepsilon_{\text {sig }}\left(\times 10^{-4}\right)$	$7.8 \pm 0.1 \pm 0.3$	$8.1 \pm 0.1 \pm 0.3$

Within the SM range, $\varepsilon_{\text {sig }}$ corresponds to ~ 1 signal events per mode!

- BF interval determined using the Feldman-Cousins method [Phys. Rev. D57 3873 (1998).]
- Systematic uncertainties are incorporated using Gaussian distributions

Unblinded Data

SM prediction: $B F(B \rightarrow \ell v \gamma) \approx 10^{-6}$ Published Limits:

$$
\begin{aligned}
& B F(\mathrm{~B} \rightarrow \mathrm{e} v \gamma)<200 \times 10^{-6}-62 \times 10^{-6} \\
& B F(\mathrm{~B} \rightarrow \mu v \gamma)<50
\end{aligned}
$$

Browder, et al. [CLEO Collab], PRD 56, 11 (1997).
$B F=\frac{N_{\text {obs }}-N_{\text {blg }}}{N_{B \pm} \cdot \varepsilon_{\text {sig }}}$

Dashed: Signal MC at $B F=40 \times 10^{-6}$ Grey: $M_{\text {ES }}$-peaking background
Black: Non-peaking background

	$\mathbf{B} \rightarrow \mathbf{e v} \boldsymbol{\gamma}$	$\mathbf{B} \rightarrow \boldsymbol{\mu} \boldsymbol{\gamma} \boldsymbol{\gamma}$
$\mathrm{N}_{\text {peak }}$	$2.4 \pm 0.3 \pm 0.4$	$2.1 \pm 0.3 \pm 0.3$
$\mathrm{~N}_{\text {comb }}$	$0.3 \pm 0.3 \pm 0.2$	$1.2 \pm 0.6 \pm 0.6$
$\varepsilon_{\text {sig }}\left(\times 10^{-4}\right)$	$7.8 \pm 0.1 \pm 0.3$	$8.1 \pm 0.1 \pm 0.3$
$\mathrm{~N}_{\text {obs }}$	4	7
BF Limits	$<17 \times 10^{-6}$	$<26 \times 10^{-6}$

\section*{Combined, Model-Independlent Results
 Since BF is expected to be independent of lepton type, we combine both modes using a maximum likelihood function
 | | $\mathbf{B} \rightarrow \mathbf{e v \gamma}$ | $\mathbf{B} \rightarrow \boldsymbol{\mu} \boldsymbol{\gamma} \boldsymbol{\gamma}$ |
| :--- | :---: | :---: |
| $\mathrm{N}_{\text {peak }}$ | $2.4 \pm 0.3 \pm 0.4$ | $2.1 \pm 0.3 \pm 0.3$ |
| $\mathrm{~N}_{\text {comb }}$ | $0.3 \pm 0.3 \pm 0.2$ | $1.2 \pm 0.6 \pm 0.6$ |
| $\varepsilon_{\text {sig }}\left(\times 10^{-4}\right)$ | $7.8 \pm 0.1 \pm 0.3$ | $8.1 \pm 0.1 \pm 0.3$ |
| $\mathrm{~N}_{\text {obs }}$ | 4 | 7 |
| BF Limits | $<17 \times 10^{-6}$ | $<26 \times 10^{-6}$ |}

- $\mathrm{BF}(\mathrm{B} \rightarrow \ell v \gamma)=\left(6.5_{-4.7-0.8}^{+7.6+2.8}\right) \times 10^{-6}$
- $\mathrm{BF}(\mathrm{B} \rightarrow \ell v \gamma)<15.6 \times 10^{-6}$
- Signal Significance: 2.1σ
- $\lambda_{\mathrm{B}}>0.3 \mathrm{GeV}$ (using eq. on slide 3)

These results are:

Model-Dependent Limits

- Theoretically uncertain $\mathrm{B} \rightarrow \gamma$ form factors affect kinematics

Model-Dependent Limits

- Theoretically uncertain $\mathrm{B} \rightarrow \gamma$ form factors affect kinematics

- Model-dependent limits found using the angles between the 3 daughters:
- $\mathrm{f}_{\mathrm{A}}=\mathrm{f}_{\mathrm{V}}$ model: $\mathrm{BF}(\mathrm{B} \rightarrow \ell v \gamma)<3.0 \times 10^{-6}$
- $\mathrm{f}_{\mathrm{A}}=0$ model: $\mathrm{BF}(\mathrm{B} \rightarrow \ell v \gamma)<18 \times 10^{-6}$
- Theoretically uncertain photon energy spectrum below $\wedge_{\text {acd }}$

- $\mathrm{B} \rightarrow \ell v \gamma$ with low $\mathrm{E} \gamma: \mathrm{B} \rightarrow \ell v$ background? [Becirevic, Hass, and Kou, arXiv:0907.1845 (2009).]
- High photon energy cut-off useful for calculation of λ_{B} : [Ball and Kou, JHEPO4, 29 (2003).]
- $\mathrm{E} \gamma>1 \mathrm{GeV}: \Delta \mathrm{BF}(\mathrm{B} \rightarrow \ell v \gamma)<14 \times 10^{-6}$
[Korchemsky, Pirjol, and Yan, PRD 61114510 (2000).]
$B \rightarrow \boldsymbol{l v} \gamma$
Dana Lindemann, McGill University

Conclusion

- The branching fraction measurement of $B \rightarrow \ell \vee \gamma$ is of theoretical interest for the extraction of λ_{B} and other SM parameters, QCD factorization, etc.
- Using the full BaBar dataset, we completed our analysis with:
- Exclusive B reconstruction: a technique never used for this decay
- No theoretical model dependencies and kinematic constraints
- Submitted our paper to Phys. Rev. Lett. (just last week!)
- E-print accessible at: [arXiv: 0907.1681]

Extra Slides

Phasespace Plots

Phasespace for data and $\mathrm{N}_{\mathrm{bkg}}$: Electron mode

Model-Dependent Variable - Sional Models

Model-Dependent Variable - Bkg vs μ^{+}Signal

Uncertainties

- MC-based errors ($\mathrm{N}_{\text {реак }}$ and signal efficiency $\varepsilon_{\text {sig }}$)
- Statistical uncertainty from limited MC (signal: $1.2 \%, N_{\text {peak }}: 13 \%$)
- Efficiency disagreement between data and MC from:
- $\mathrm{B}_{\text {ta }}$ reconstruction
(3.1 \%)
- Tracking
(0.4\%)
- Particle Identification criteria (electron: 0.9\%, muon: 1.3\%)
- Reconstruction of photon candidate's energy (1.8\%)
- $\mathrm{m}_{\mathrm{y}}{ }^{2}$ (signal: $0.5 \%, \mathrm{~N}_{\text {peak }}: 1.4 \%$)
- Continuum multivariate likelihood
(1.4 \%)
- $\mathrm{N}_{\text {peak }}$ also has:
- Branching fraction and form factor uncertainties
(13.6 \%)
- $\mathrm{N}_{\text {comb }}$
- Dominated by sideband data statistics (electron: 100\%, muon: 50.0\%)
- Combinatoric background shape uncertainty (47.4 \%)

