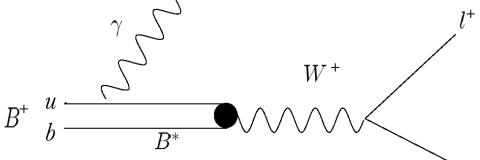


at **BABAR** (arXiv: 0907.1681)

Dana Lindemann Steven Robertson McGill University, Montreal, Canada Representing the BABAR Collaboration

> APS Division of Particles & Fields July 27, 2009

Theoretical Motivation for $B^+ \rightarrow l^+ v \gamma$


Note: $\ell = \mu$ *or* e, *complex conjugates implied*

Leptonic decay BF measurements provide clean predictions of SM parameters without hadronic (QCD) final-state uncertainties

BF(B→ℓν) ∝ m_ℓ² due to helicity suppression: BF(B→ev) ≈ 10⁻¹¹, BF(B→μν) ≈10⁻⁷
 Radiative mode has no helicity suppression

Photon release causes W⁺ to couple to a spin-1 virtual state

Theoretical Motivation for $B^+ \rightarrow \ell^+ v \gamma$

Note: $\ell = \mu$ or e, complex conjugates implied $\overline{\nu}$

SM prediction: $BF(B \rightarrow \ell v \gamma) \approx 10^{-6}$ Published Limits (CLEO '97) $BF(B \rightarrow ev \gamma) < 2.0 \times 10^{-4}$ $BF(B \rightarrow \mu v \gamma) < 5.2 \times 10^{-5}$ Browder, *et al.* [CLEO Collab], PRD 56, 11 (1997).

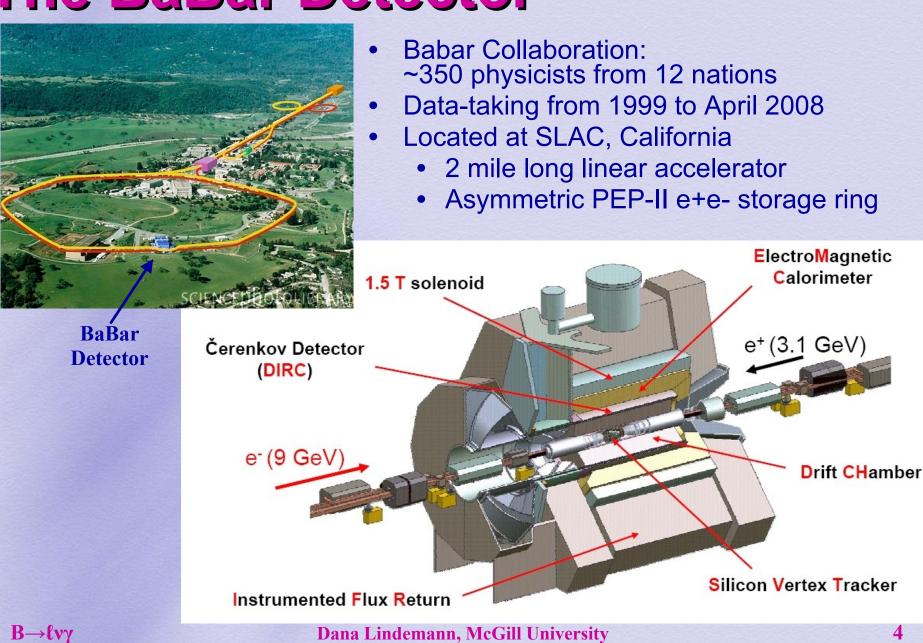
• $BF(B \rightarrow \ell v) \propto m_{\ell}^2$ due to helicity suppression: $BF(B \rightarrow ev) \approx 10^{-11}$, $BF(B \rightarrow \mu v) \approx 10^{-7}$

- Radiative mode has no helicity suppression
 - Photon release causes W⁺ to couple to a spin-1 virtual state
- Branching Fraction is independent of lepton-type

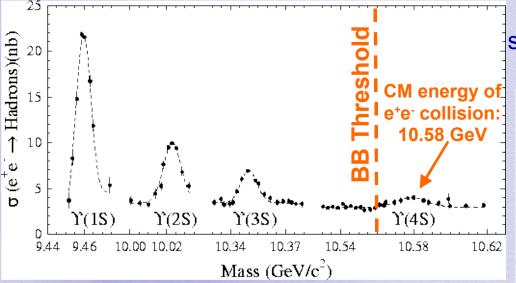
$$BF\left(B^{+} \rightarrow \ell^{+} \nu\gamma\right) \approx \frac{\alpha G_{F}^{2}}{288 \pi^{2}} |V_{ub}|^{2} f_{B}^{2} m_{B}^{5} \tau_{B} \left(\frac{2}{3\lambda_{B}} + \frac{1}{3m_{b}}\right)^{2}$$

Korchemsky, Pirjol, and Yan, PRD 61 114510 (2000).

- Only decay providing clean measurement of λ_B :
 - 1st inverse moment of the B-meson wave function
 - Theoretical significance (QCD factorization, $B \rightarrow \pi\pi$, etc.)
 - Of order Λ_{QCD} (few hundred MeV)

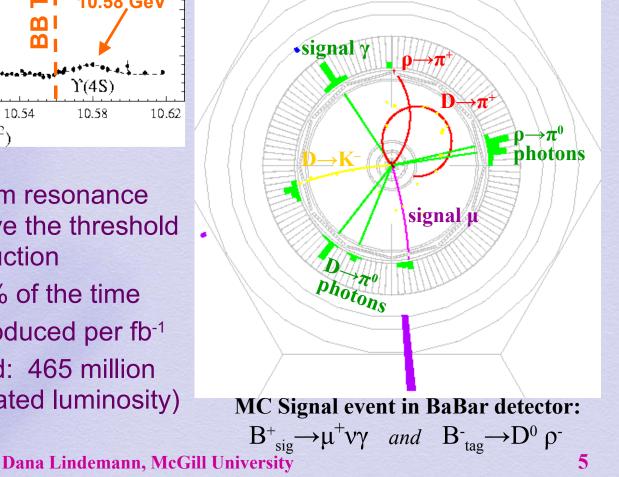

B→ℓνγ

Dana Lindemann, McGill University


Benchmark decay for measuring angle α of the CKM Unitary Triangle

3

The BaBar Detector

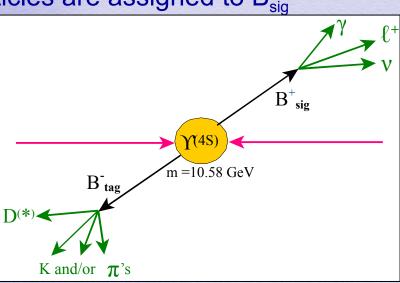


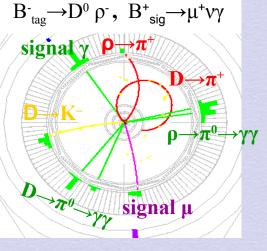
Y(4S) at the B-Factory

- Υ(4S) is a bb quarkonium resonance whose mass is just above the threshold for BB meson pair production
- Υ (4S) decays to BB 99% of the time
- ~1.1 million BB pairs produced per fb⁻¹
- Full BaBar data set used: 465 million BB pairs (423 fb⁻¹ integrated luminosity)

GEANT4-based Monte Carlo (MC) simulations model the detector response. Used to determine signal efficiency and study background

Β→ℓνγ


Hadronic Tag Reconstruction


• How?

- Find $B_{tag} \rightarrow D^{(*)}X_{had}$ events (X_{had} is combination of kaons and/or pions)
- Choose combo with a B_{tag} energy closest to $E_{CM}/2$
- Remaining particles are assigned to B_{sig}

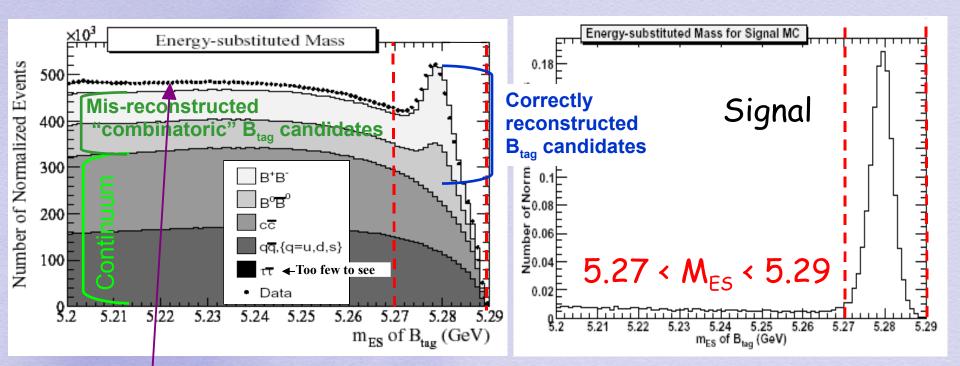
This technique has never been used for this signal decay!

All previous analyses used inclusive methods

• Why?

- High B purity, removing much of the non-BB background
- B 4-momentum is determined, giving excellent momentum resolution on the B_{sig} daughters (including the undetectable neutrino!)

• The Challenge

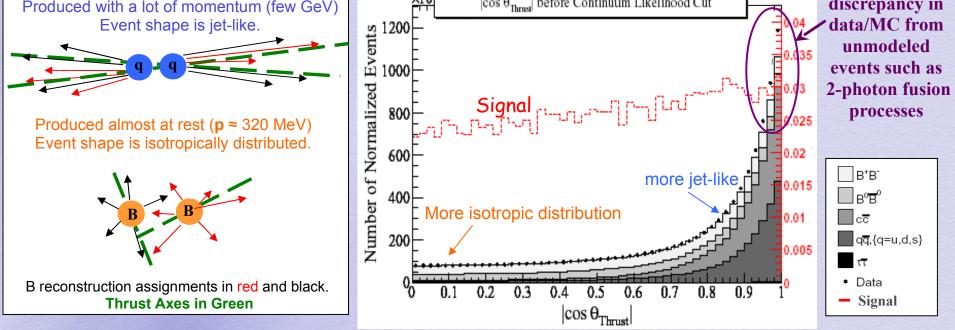

- Low reco efficiency (~0.3% for signal) so statistically limited sample
- We aim to avoid any kinematic or model-dependent constraints

B→ℓνγ

Validating the B_{tag}

We require:

- A reconstructed charged B_{tag} candidate
- Mass of B_{tag} (m_{ES}) matches B mass of 5.279 GeV

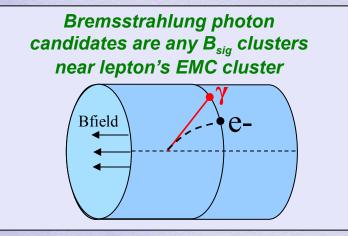

Discrepency between data/MC: avoided by scaling MC to data and estimating non-peaking background from data

Β→ℓνγ

Dana Lindemann, McGill University

 $m_{ES} \equiv \sqrt{E_{CM/2}^2 - \vec{p}_B^2}$

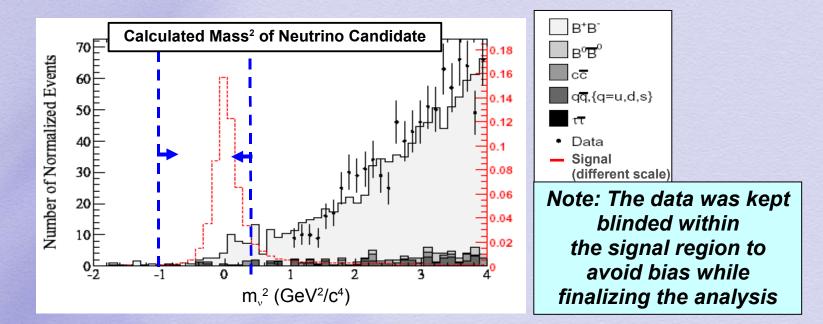
Suppressing non-BB events Produced with a lot of momentum (few GeV)



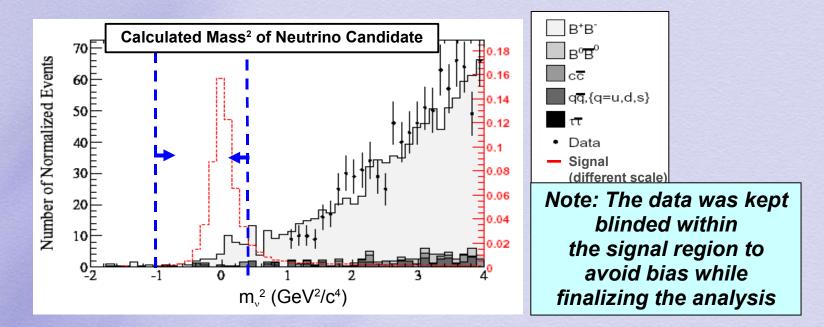
Continuum Multivariate Likelihood

- Continuum (qq or ττ) events are more likely to be jet-like decays, where B_{tag} candidate has a highly linear thrust and a momentum along the beam-pipe
- Discriminate continuum and BB events using 5 event-shape variables

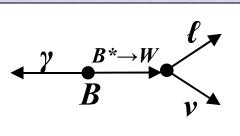
Signal Selection


- Remaining neutral EMC clusters and charged tracks assigned to B_{sig}.
- Require exactly 1 B_{sig} track
 - With a charge opposite the B_{tag}'s charge
 - Satisfies particle ID criteria for electron or muon, and not a kaon
- Bremsstrahlung photon candidates identified to correct electron's 4-vector

- Signal Photon candidate chosen as highest energy (non-Brem) cluster
- Missing Momentum within detector's fiducial acceptance
 - To ensure missing E is not from a detectable particle "lost down beam-pipe"


Kinematic Requirements

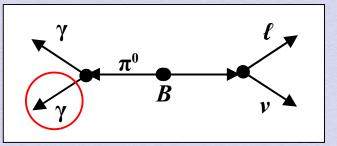
- Kinematics of photon and lepton candidates are consistent with a 3rd massless daughter (neutrino)
 - $m_v^2 \equiv -|p_B p_\gamma p_\ell p_{brem}|^2$
 - Requires B_{sig} 4-vector (p_B), determined from B_{tag} reconstruction


Kinematic Requirements

- Kinematics of photon and lepton candidates are consistent with a 3rd massless daughter (neutrino)
 - $m_v^2 \equiv -|p_B p_\gamma p_\ell p_{brem}|^2$
 - Requires B_{sig} 4-vector (p_B), determined from B_{tag} reconstruction

• Lepton's momentum and event's missing momentum are back-to-back (cos θ_{ev} < -0.93) in the "B* rest frame"

• Rest frame recoiling from photon release $\equiv p_B - p_{y}$



B→ℓνγ

$B^+ \rightarrow X_u^0 \ell^+ v$ Suppression

The primary background is from $B^+ \rightarrow X_u^0 \ell^+ \nu$ events, where X_u^0 is a neutral meson containing an up-quark.

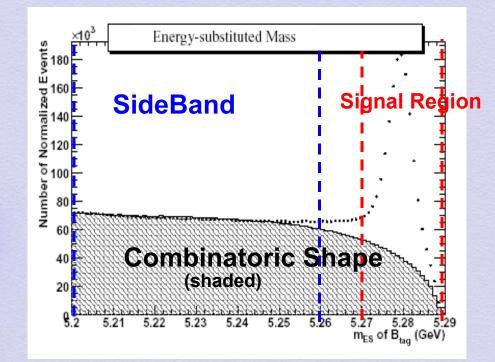
For example, since 99% of π^{0} 's decay to 2 photons, a $B \rightarrow \pi^{0} \ell \nu$ decay with a "missing" photon resembles signal $B \rightarrow \ell \nu \gamma$ decay.

To reduce this background, we:

- Reject events with π^0 or η candidates (signal γ + unassigned cluster)
- Reject events with a $\omega \rightarrow \pi^0 \gamma$ candidate (signal $\gamma + \pi^0$ candidate)
- Reject events where the signal γ has a large calorimeter cluster width
 - Reduces $B \rightarrow \pi^0 \ell v$ events in which the 2 photons are reconstructed as a single merged photon

mimics signal kinematics!

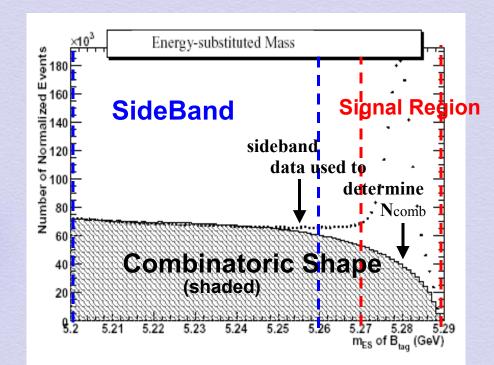
$$\pi^0$$
 === \Rightarrow 2 γ 's


B→ℓνγ

Background Estimation

Number of expected background events (N_{bkg}) is split into:

N_{peak}: well-reconstructed events that peak within m_{ES} signal region



Background Estimation

Number of expected background events (N_{bkg}) is split into:

- N_{peak}: well-reconstructed events that peak within m_{ES} signal region
 - According to generically-decaying $B\overline{B}$ MC, only $B^+ \rightarrow X_u^0 \ell^+ v$ events contribute
 - We estimate N_{peak} from exclusive $B^+ \rightarrow X_u^0 \ell^+ \nu$ MC for higher statistics
- N_{comb}: "combinatoric" events
 - B_{tag} is mis-reconstructed from continuum or using particles from both B mesons
 - Extrapolated from m_{ES} sideband in data

Branching Fractions

Branching fraction (BF) defined as:

$$N_{obs} - N_{bkg}$$

$$N_{B\pm} \cdot \boldsymbol{\varepsilon}_{sig}$$

Estimated B^{\pm} mesons in data sample = 465 x 10⁶

 $\begin{array}{|c|c|c|c|c|c|} \hline & B & \rightarrow & ev\gamma & B & \rightarrow & \mu v\gamma \\ \hline N_{peak} & 2.4 \pm 0.3 \pm 0.4 & 2.1 \pm 0.3 \pm 0.3 \\ \hline N_{comb} & 0.3 \pm 0.3 \pm 0.2 & 1.2 \pm 0.6 \pm 0.6 \\ \hline \epsilon_{sig} (x10^{-4}) & 7.8 \pm 0.1 \pm 0.3 & 8.1 \pm 0.1 \pm 0.3 \end{array}$

uncertainties: stat. ± syst.

Within the SM range, ϵ_{sig} corresponds to ~1 signal events per mode!

- BF interval determined using the Feldman-Cousins method [Phys. Rev. D57 3873 (1998).]
- Systematic uncertainties are incorporated using Gaussian distributions

Β→ℓνγ

Unblinded Data

SM prediction: $BF(B \rightarrow \ell \nu \gamma) \approx 10^{-6}$ Published Limits: $BF(B \rightarrow e\nu \gamma) < 200 \times 10^{-6}$ $BF(B \rightarrow \mu \nu \gamma) < 52 \times 10^{-6}$ Browder, *et al.* [CLEO Collab], PRD 56, 11 (1997).

$$BF = \frac{N_{obs} - N_{bkg}}{N_{B\pm} \cdot \varepsilon_{sig}}$$

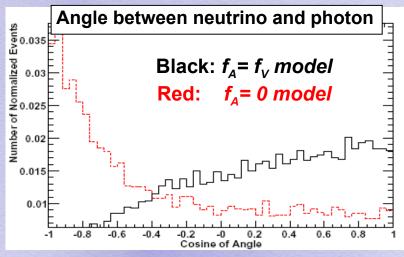
$$Dashed: Signal MC at BF = 40 \times 10^{\circ}$$
Grey: M_{es} -peaking background
Black: Non-peaking background
 $M_{es} = \frac{1}{1-0.5} + \frac{1}{0} + \frac{1}{5} + \frac{1}{2} + \frac{1}{25} + \frac{1}{3} + \frac{1}{3} + \frac{1}{5} + \frac{1}{2} + \frac{1}{2} + \frac{1}{5} + \frac{1}{2} + \frac{1}{5} + \frac{1}{3} + \frac{1}{5} +$

Β→ℓνγ

Dana Lindemann, McGill University

16

Combined, Model-Independent Results

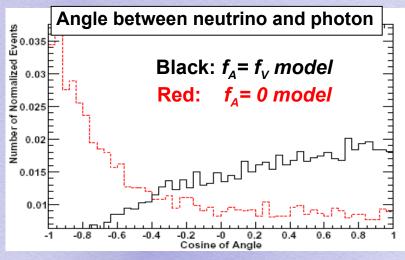

Since BF is expected to be independent of lepton type, we combine both modes using a maximum likelihood function

Service Services		Β→ e νγ	Β→μνγ
	N_{peak}	$2.4 \pm 0.3 \pm 0.4$	$2.1 \pm 0.3 \pm 0.3$
	N _{comb}	$0.3 \pm 0.3 \pm 0.2$	$1.2 \pm 0.6 \pm 0.6$
	ε _{sig} (x10 ⁻⁴)	7.8 ± 0.1 ± 0.3	8.1± 0.1 ± 0.3
	N _{obs}	4	7
	BF Limits	< 17 x 10⁻ ⁶	< 26 x 10 ⁻⁶

- $BF(B \rightarrow \ell \nu \gamma) = (6.5 + 7.6 + 2.8) \times 10^{-6}$
- BF(B→ℓνγ) < 15.6 x 10⁻⁶
- Signal Significance: 2.1σ
- $\lambda_{\rm B}$ > 0.3 GeV (using eq. on slide 3)
- These results are:
- Valid over the full kinematic phasespace
- Independent of theoretical $B \rightarrow \gamma$ form-factor models because ε_{sig} is independent of the decay kinematics $B \rightarrow \ell \nu \gamma$ Dana Lindemann, McGill University

Model-Dependent Limits

• Theoretically uncertain $B \rightarrow \gamma$ form factors affect kinematics

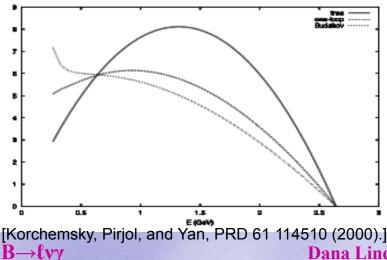

$$\frac{|\Gamma(B^+ \to \ell^+ \nu \gamma)|}{dE_{\gamma}} = \frac{\alpha G_F^2 |V_{ub}|^2 m_B^4}{48\pi^2} \Big[f_V^2(E_{\gamma}) + \frac{f_A^2(E_{\gamma})}{x} \Big] x (1 - x)^3 x \equiv 1 - 2E_{\gamma}/m$$

• Model-dependent limits found using the angles between the 3 daughters:

- $f_A = f_V \text{ model: BF}(B \rightarrow \ell v \gamma) < 3.0 \times 10^{-6}$
- $f_A = 0$ model: BF(B $\rightarrow \ell \nu \gamma) < 18 \times 10^{-6}$

Model-Dependent Limits

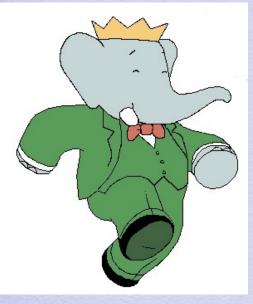
• Theoretically uncertain $B \rightarrow \gamma$ form factors affect kinematics



$$\frac{d\Gamma(B^+ \to \ell^+ \nu \gamma)}{dE_{\gamma}} = \frac{\alpha G_F^2 |V_{ub}|^2 m_B^4}{48\pi^2} \Big[f_V^2(E_{\gamma}) + \frac{f_A^2(E_{\gamma})}{x} \Big] x (1 - x)^3 x \equiv 1 - 2E_{\gamma}/m \Big]$$

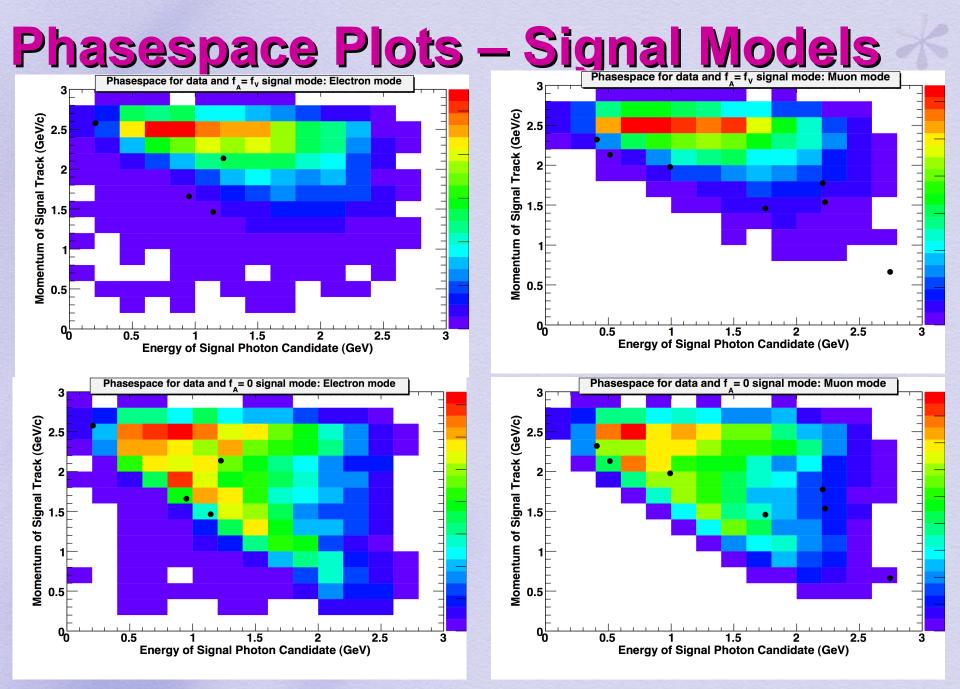
• Model-dependent limits found using the angles between the 3 daughters:

- $f_A = f_V \text{ model: BF}(B \rightarrow \ell v \gamma) < 3.0 \times 10^{-6}$
- $f_A = 0$ model: BF(B $\rightarrow \ell \nu \gamma) < 18 \times 10^{-6}$

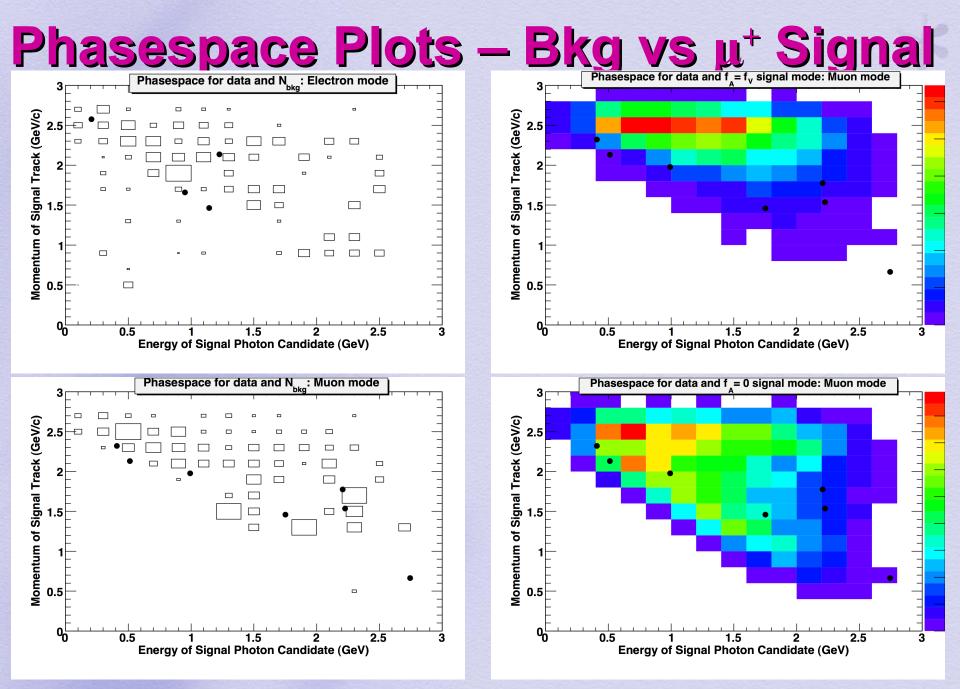

• Theoretically uncertain photon energy spectrum below Λ_{QCD}

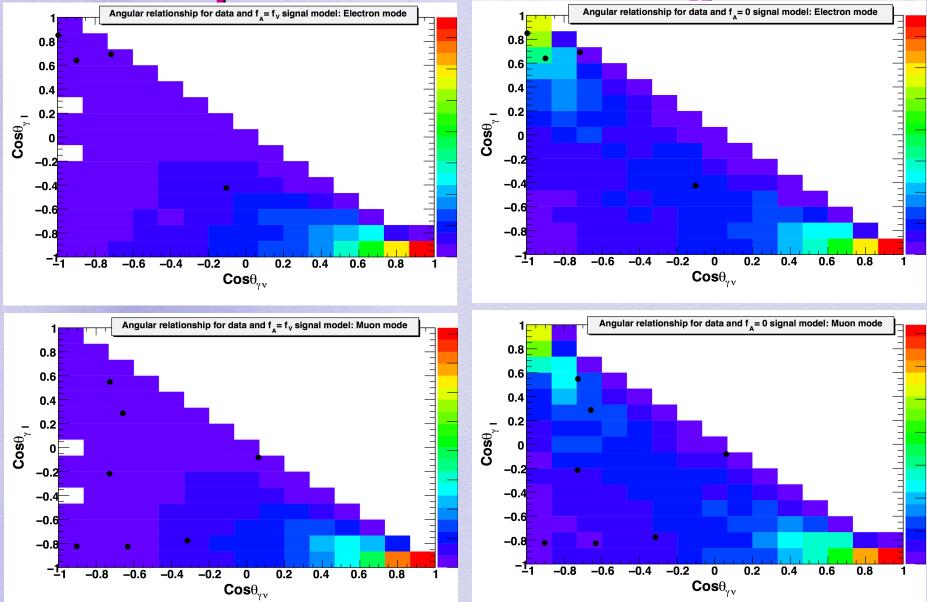
- $B \rightarrow \ell \nu \gamma$ with low $E\gamma$: $B \rightarrow \ell \nu$ background? [Becirevic, Hass, and Kou, arXiv:0907.1845 (2009).]
- High photon energy cut-off useful for calculation of λ_B : [Ball and Kou, JHEP04, 29 (2003).]
 - E_{γ} > 1GeV: Δ BF(B \rightarrow $\ell \nu \gamma$) < 14 x 10⁻⁶


Conclusion

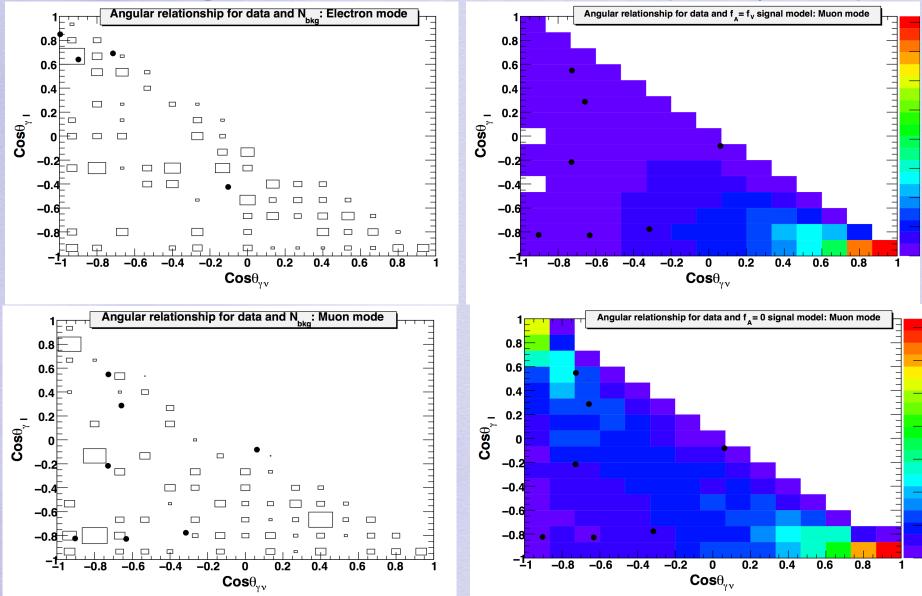

- The branching fraction measurement of $B \rightarrow \ell \nu \gamma$ is of theoretical interest for the extraction of $\lambda_{\rm B}$ and other SM parameters, QCD factorization, etc.
- Using the full BaBar dataset, we completed our analysis with:
 - Exclusive B reconstruction: a technique never used for this decay
 - No theoretical model dependencies and kinematic constraints
- Submitted our paper to Phys. Rev. Lett. (just last week!)
 - E-print accessible at: [arXiv: 0907.1681]

 $B \rightarrow \ell v \gamma$


Extra Slides


Β→ℓνγ

Dana Lindemann, McGill University


Β→ℓνγ

Model-Dependent Variable – Signal Models

B→ℓνγ

Model-Dependent Variable - Bkg vs µ⁺ Signal

 $B \rightarrow \ell v \gamma$

Uncertainties

- MC-based errors (N_{peak} and signal efficiency ε_{sig})
 - Statistical uncertainty from limited MC (signal: 1.2%, N_{peak}: 13%)

(0.4%)

(1.4 %)

(47.4 %)

- Efficiency disagreement between data and MC from:
 - B_{tag} reconstruction (3.1 %)
 - Tracking
 - Particle Identification criteria (electron: 0.9%, muon: 1.3%)
 - Reconstruction of photon candidate's energy (1.8 %)
 - (signal: 0.5%, N_{neak}: 1.4%) • m,²
 - Continuum multivariate likelihood
- N_{peak} also has:
 - Branching fraction and form factor uncertainties (13.6 %)
- N_{comb}
 - Dominated by sideband data statistics (electron: 100%, muon: 50.0%)
- Combinatoric background shape uncertainty $B \rightarrow \ell v \gamma$