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MINOS Overview
Main Injector Neutrino Oscillation Search

using high intensity neutrino beam created by 
the Main Injector at Fermilab

ν interactions are detected by two functionally 
identical magnetized tracking-calorimeter 
detectors to reduce systematics:
● Near detector measures ν -beam composition 

and energy spectra close to the source
● Far detector looks for differences after a ν's 

travel a long distance (735 km)



  

 ν
μ
 oscillation result

● Flagship measurement using the dominant  ν
μ
  beam component (~92%)

● Far detector ν
μ
 deficit is interpreted as a result of ν

μ
→ν

τ
 oscillation

● Disappearance probability as a function of energy gives oscillation 
parameters – best measurement of atmospheric mass splitting!

P(ν
μ
→ν

μ
)=1 – sin2(2θ)sin2(1.27Δm2L/E) |Δm2| = (2.43±0.13)x10-3 eV2 

        (68% CL)

PRL 101 131802 (2008)



  

ν
μ
 physics motivation (1)

● Anti-neutrino oscillation would lead to ν
μ
 disappearance in the far det.

● Does ν
μ
 oscillate the same                                                                      

way as ν
μ 
?

● If not that would indicate CPT violation or some new physics

● Loose constraint on ν
μ
 oscillation parameters from global fit (dominated 

by indirect measurements from Super-K)

P(ν
μ
→ν

τ
) = sin2(2θ)sin2(1.27Δm2L/E)

      A. Strumia and F. Vissani, 
Nucl. Phys. B726, 294 (2005)
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ν
μ
 physics motivation (2)

● It is plausible that the observed neutrino deficit in the far detector is 
caused by ν

μ
→ ν

μ
 transition

● Then these missing ν
μ
 would show up as a ν

μ
 excess

● Transition probability for Majorana neutrinos is predicted to be very 
small in the Standard Model:  

● Transition is also allowed at low level in 
exotic models like large ν magnetic 
moment or ν decay (Langacker & Wang, 
Phys. Rev. D 58, 093004)

● Simple empirical parametrization:

α is the fraction of ν
μ
 reappearing as ν

μ
  

P(ν
μ
→ ν

μ
) ~ (m/E)2 ~ 10-18



  

NuMI neutrino beam

● Neutrinos are created by in-flight decay of secondary/tertiary particles (mainly 
pion, kaon, and also muons)

● Magnetic horns (de-)focus positive 
(negative) particles

● Only neck-to-neck π−, K− from the 
target will reach the decay region

 Charge current interactions in near det.:

● ~91.7% ν
μ
       +          ~7% ν

μ
 

~1.3% ν
e
  +  ν

e



  

Difference in ν
μ
 and ν

μ
 spectra

● ν
μ
 spectrum peaks ~8 GeV due 

to de-focusing on π−

● more sensitive to higher Δm2

● Significant contribution from 
particles produced  downstream 
in/around the decay pipe

● ν
μ
 spectrum peaks around ~3 

GeV due to focusing effect on 
the parent particles (π+, K+)

● Close to oscillation maximum  
E

ν
~2 GeV



  

ν
μ
 in MINOS detector

● Charged current (CC) ν
μ
 and ν

μ
 interactions produce a muon that typically 

leaves a long prominent track in the detector

● the ν
μ
 and ν

μ
 CC interactions can be separated event-by-event using the 

charge sign of the muon in the magnetic field of the detector

μ+μ−

μ− bends inward

μ+ bends outward

ν
μ
 CC ν

μ
 CC

Neutral 
Current (NC)



  

ν
μ
 selection

● Large contamination when only simple 
selection on charge-sign from fit 
applied (q/p>0)

● ~8% of ν
μ
-CC produce a positive track 

(mostly high inelasticity interactions)
● 50% of NC events have a positive track

● Use three additional variables to 
improve ν

μ
 selection:

● Significance of charge-sign 
determination: (q/p)/σ(q/p)

● Relative angle of last track hit wrt 
projected hit w/o field

● Likelihood variable for NC and CC 
event separation

● Selection is optimized for maximum 
sensitivity at CPT conserving osc.



  

NC discriminator
● Combines three event topology 

variables:
● Track length (muon energy)
● Track pulse height fraction 

(inelasticity)
● Average track pulse height per plane 

(dE/dx)
● It is also suppresses misidentified high-

inelasticity ν
μ
-CC events



  

Far detector prediction

● Near and far detector spectra are not identical due to different solid angle and 
decay kinematics (neutrino energy depends on decay angle)

● Far detector spectrum is obtained from the near detector spectrum using a beam 
extrapolation matrix which encapsulates kinematics and beam-line geometry

● MC is used to correct for energy smearing and acceptance

Monte Carlo

X =



  

Far detector spectrum
● 42 events are observed in 

3.1x1020 PoT

First direct observation of nu-bar 
events in long-baseline accelerator 
experiment

● Number of observed events is 
1.9σ below prediction with CPT 
conserving oscillation:

58.3 ± 7.6 (stat.) ± 3.6 (syst.)

     Predicted events with no oscillation:

64.6 ± 8.0 (stat.) ± 3.9 (syst.)

● Deficit seems to be statistical 
fluctuation (no sign of 
reconstruction or selection 
inefficiency)



  

Oscillation result

Global fit: M. C. Gonzales-Garcia and             
                M. Maltoni, Phys. Rept. 460 (2008)

● 2-parameter and 1-parameter (at sin2(2θ)=1) 
binned maximum likelihood fit

● Best fit point at high Δm2 due to overall 
deficit – Feldman-Cousin limits with 
systematic uncertainty incorporated

● No-oscillation scenario excluded at 99% , 
CPT invariance within 90%

● Excluded region at maximal mixing:

           (5.1 < Δm2 < 81) x 10-3 eV2 (90% C.L.)

max
sensitivityCPT



  

Transition result
● No evidence for ν

μ
 appearance 

in the far detector
● 1-parameter fit for α using the 

parametrization

(θ and Δm2 set to best ν
μ
 oscillation 

parameter values)

● FC limit on the fraction of nu 
that transition to nu-bar is

              α < 2.6% (90% C.L.)



  

Future prospects
● Dedicated ν

μ
 running starts 

in September after reversing 
the current in the NuMI 
focusing horns

● Plan is to collect ~2x1020 
PoT data in ν

μ
 mode

● Allow precision measurement 
of the oscillation parameters

● Improve limit on |Δm2| by an 
order of magnitude

● 5δ observation of oscillation



  

Conclusion
● First direct measurement of ν

μ
 in long-baseline accelerator experiment

● separation achieved by using the magnetic field of the MINOS 
detectors

● CPT conserving oscillation parameters within 90% confidence limits
● Data excludes oscillation parameters at maximal mixing: 

(5.1 < |Δm2| < 81)x10-3 eV2

● No ν
μ
 appearance observed

Limit on the fraction of ν
μ
 transitioning to ν

μ
 : α < 2.6% (90% C.L.)

● Stay tuned for improved measurement with dedicated ν
μ
 beam in 

near future



  

Extra slides



  

MINOS  data

● ν
μ
 analysis used Run I + II data: 3.1x1020 PoT total

RUN I
1.27x1020 POT

RUN II
1.87x1020 POT

RUN III    >3x1020 POT
(not yet analyzed)

High 
energy 
beam

0.15x1020 
POT



  

Why are the spectra so different?

● Majority of nu-bar 
comes from neck-
to-neck pi- parents 
traveling down the 
center of the horns

● Nu-bar spectrum 
dominated by low-p

t
 

parents 



  

Tunning the hadron production
● Hadron production from target is 

parametrized as a function of p
t
 and p

z
 

and fit to near detector data at different 
beam energies

● Constrains π+ production well but not 
π− 

● ν
μ
 spectrum remains the same 

within 10% in all beam config.

ν
μ

ν
μ



  

● Data driven hadron production 
cross check

● ν
μ
 and ν

μ
 far/near ratio is almost 

identical above 10 GeV

● ν
μ
 high energy tail in data agrees 

well with prediction

● constrains ν
μ
 prediction within 10% 

above 10 GeV

● Ratio of π+/π− production after tuning 
agrees well with recent NA49 data 
(Eur. Phys. J. C49 (2007) 897)



  

MINOS detectors
● 1 inch thick iron planes
● Extruded scintillator strips in orthogonal (u 

and v) orientation in alternating planes
● Light transmitted by optical fiber to multi-

anode PMTs
● Toroidal magnetic field 

Near detector
980 t

Far detector
5400 t

VU

scintillator strip

wls fiber

beam

8 m

4.8 m



  

Magnetic field
● Coils running at the center 

along the detector length 
produce toroidal field

● Average field strength in 
fiducial volume:

ND: <B> ~1.3 T
FD: <B> ~1.4 T

● Existing data is taken in 
forward coil current:

μ− (μ+) are (de-)focused 
towards (away) from the coil



  

Additional nu-bar selection
● At least one reconstructed track

● Longest track identified as muon candidate
● Vertex inside fiducial volume (for hadronic 

shower containment and cosmic muon 
rejection)

● Further cosmic muon suppression in far 
detector by muon angle (cosθ>0.6) and event 
timing (within 14μs of beam spill) requirement

● Charge sign selection



  

Systematic uncertainties
● Uncertainties common with ν

μ
 analysis:

● Normalization: 4% (relative reconstruction eff., detector live time and 
mass)

● Muon energy from range (curvature): 2% (4% , slightly higher due to 
more exiting tracks) 

● Relative (absolute) shower energy: 3% (10%)
● Beam extrapolation

● ν
μ
 uncertainties:

● Downstream (decay pipe) 
production: 40%

● Background: 50%
● Total systematic uncertainty is 

< 10% over all energies



  

Extensive cross checks
● Analysis performed with an independent event selection
● Used two independent extrapolation methods
● Checked muon charge sign assignment with independent track fitter
● Hand scan of all far detector events with positive track; events with 

negative track ending at the detector edge; and events with no 
reconstructed track

● Checked track finding efficiency, in particular exciting track, using 
stopped and through going cosmic muon samples



  

Far detector events



  

●  Typical “missing” events have 
~10 GeV muon that travel ~100 
planes
● Hard to miss or misidentify



  

Selection variables (far detector)
Background agrees with MC 
prediction
● No sign of excess 
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