
Speeding up simulations of relativistic systems using an optimal boosted frame

J.-L. Vay^{1,3}, W.M. Fawley¹, C. G. R. Geddes¹, E. Cormier-Michel¹, D. P. Grote^{2,3}

¹Lawrence Berkeley National Laboratory, CA ²Lawrence Livermore National Laboratory, CA ³Heavy Ion Fusion Science Virtual National Laboratory

- Concept
- Difficulties
- Examples of application
 - laser wakefield acceleration
 - electron cloud effects
 - free electron laser
- Conclusion

Special relativity

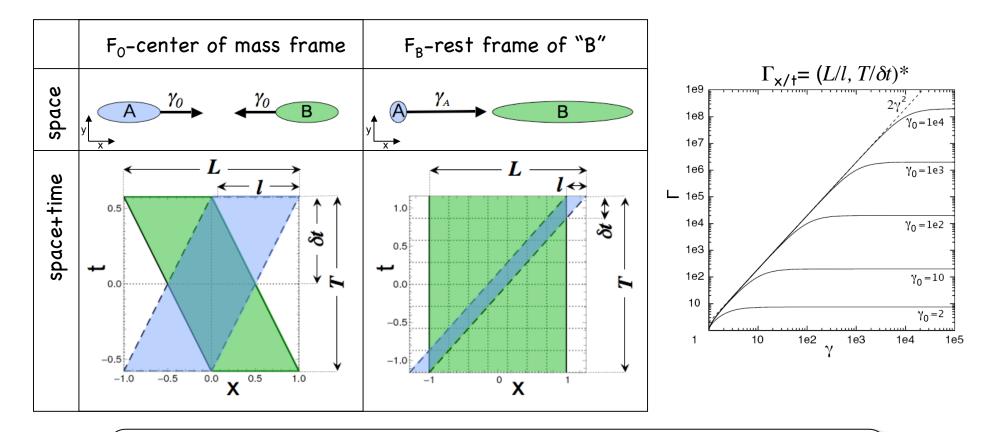
Lorentz transformation (LT) for v along x

$$t' = \gamma (t - vx/c^2) \qquad \gamma = (1 - v^2/c^2)^{-1/2}$$

$$x' = \gamma (x - vt)$$

$$y' = y$$

$$z' = z$$


Time dilation/space contraction

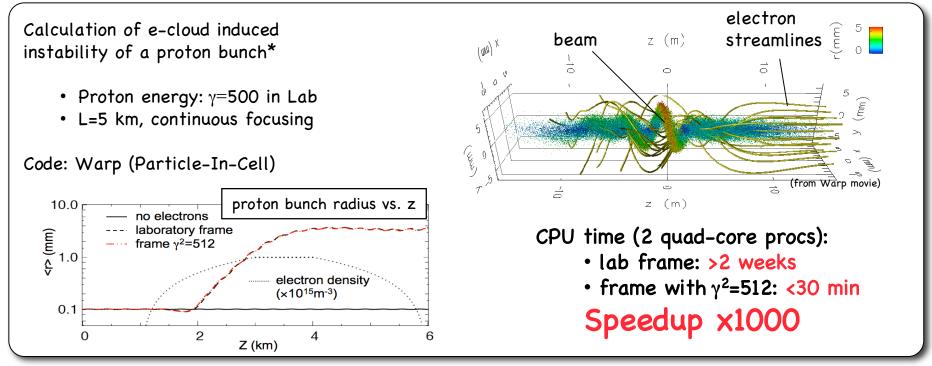
at rest:
$$\Delta t$$
, $\Delta x=0 \rightarrow$ in motion: $\Delta t'=\gamma \Delta t$
 Δx , $\Delta t=0$ $\Delta x'=\Delta x/\gamma$

Lorentz invariant (invariant to change of reference frame) $\Delta s^{2} = \Delta x^{2} + \Delta y^{2} + \Delta z^{2} - c^{2} \Delta t^{2} = \Delta x'^{2} + \Delta y'^{2} + \Delta z'^{2} - c^{2} \Delta t'^{2}$

Range of space and time scales spawned by two identical beams crossing each other

- Γ is not invariant under the Lorentz transformation: $\Gamma_{\text{x/t}} \propto \gamma^2.$
- There exists an "optimum" frame which minimizes it.
- Result is general and applies to light beams too.

*J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007)



Consequence for computer simulations

of computational steps grows with the full range of space and time scales involved

Choosing optimum frame of reference to minimize range can lead to dramatic speed-up for relativistic matter-matter or light-matter interactions.

*J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007)

5

- Concept
- Difficulties
- Examples of application
 - laser wakefield acceleration
 - electron cloud effects
 - free electron laser
- Conclusion

Seems simple but <u>1</u>. Algorithms which work in one frame may break in another. Example: the Boris particle pusher.

- Boris pusher ubiquitous
 - In first attempt of e-cloud calculation using the Boris pusher, the beam was lost in a few betatron periods!
 - Position push: $X^{n+1/2} = X^{n-1/2} + V^n \Delta t$ -- no issue
 - Velocity push: $\gamma^{n+1}\mathbf{V}^{n+1} = \gamma^{n}\mathbf{V}^{n} + \frac{q\Delta t}{m} (\mathbf{E}^{n+1/2} + \frac{\gamma^{n+1}\mathbf{V}^{n+1} + \gamma^{n}\mathbf{V}^{n}}{2\gamma^{n+1/2}} \times \mathbf{B}^{n+1/2})$

issue: $E+v \times B=0$ implies $E=B=0 \Rightarrow large errors$ when $E+v \times B\approx 0$ (e.g. relativistic beams).

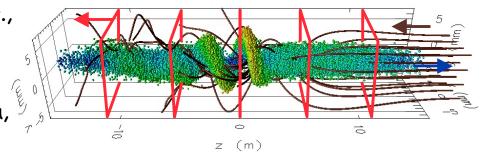
• Solution

- Velocity push:
$$\gamma^{n+1}\mathbf{V}^{n+1} = \gamma^{n}\mathbf{V}^{n} + \frac{q\Delta^{\dagger}}{m} (\mathbf{E}^{n+1/2} + \frac{\mathbf{V}^{n+1} + \mathbf{V}^{n}}{2} \times \mathbf{B}^{n+1/2})$$

• Not used before because of implicitness. We solved it analytically*


$$\begin{cases} \gamma^{i+1} = \sqrt{\frac{\sigma + \sqrt{\sigma^2 + 4(\tau^2 + u^{*2})}}{2}} & \text{(with } \mathbf{u} = \gamma \mathbf{v}, \quad \mathbf{u}' = \mathbf{u}^{\mathbf{i}} + \frac{q\Delta t}{m} \left(\mathbf{E}^{i+1/2} + \frac{\mathbf{v}^i}{2} \times \mathbf{B}^{i+1/2} \right), \quad \tau = (q\Delta t/2m) \mathbf{B}^{i+1/2}, \\ \mathbf{u}^{i+1} = [\mathbf{u}' + (\mathbf{u}' \cdot \mathbf{t})\mathbf{t} + \mathbf{u}' \times \mathbf{t}]/(1+t^2) & u^* = \mathbf{u}' \cdot \tau/c, \quad \sigma = \gamma'^2 - \tau^2, \quad \gamma' = \sqrt{1 + u'^2/c^2}, \quad \mathbf{t} = \tau/\gamma^{i+1}). \end{cases}$$

*J.-L. Vay, Phys. Plasmas 15, 056701 (2008)



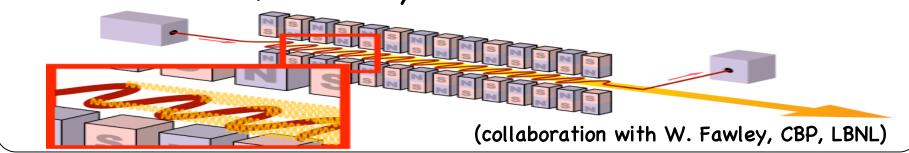
Other possible complication: inputs/outputs

- Often, initial conditions known and output desired in laboratory frame
 - relativity of simultaneity => inject/collect at plane(s) \perp to direction of boost.
- Injection through a moving plane in boosted frame (fix in lab frame)
 - fields include frozen particles,
 - same for laser in EM calculations.

- Diagnostics: collect data at a collection of planes
 - fixed in lab fr., moving in boosted fr.,
 - interpolation in space and/or time,
 - already done routinely with Warp for comparison with experimental data, often known at given stations in lab.

- Concept
- Difficulties
- Examples of application
 - laser wakefield acceleration
 - electron cloud effects
 - free electron laser
- Conclusion

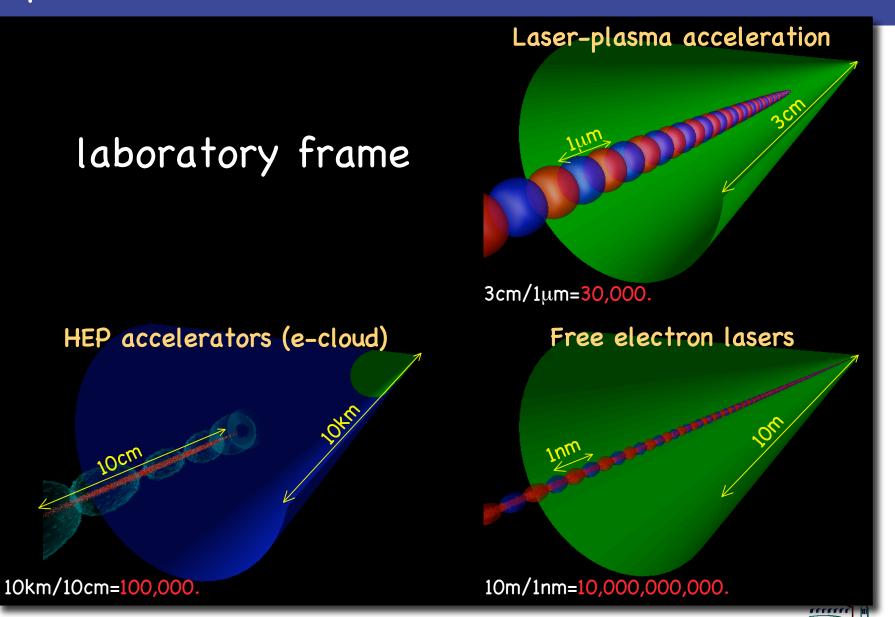
Several areas in which simulations in a boosted may be beneficial were identified


Laser-plasma wakefield accelerators Plasma wake e- beam Laser pulse

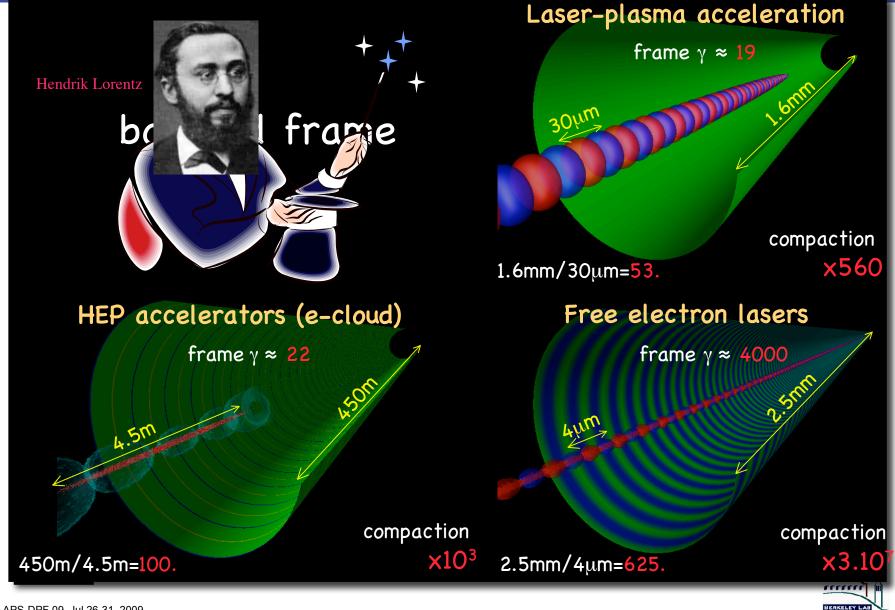
(collaboration with LBNL's LOASIS group, lead by Wim Leemans)

Electron cloud driven beam instabilities

Free electron lasers/coherent synchrotron radiation

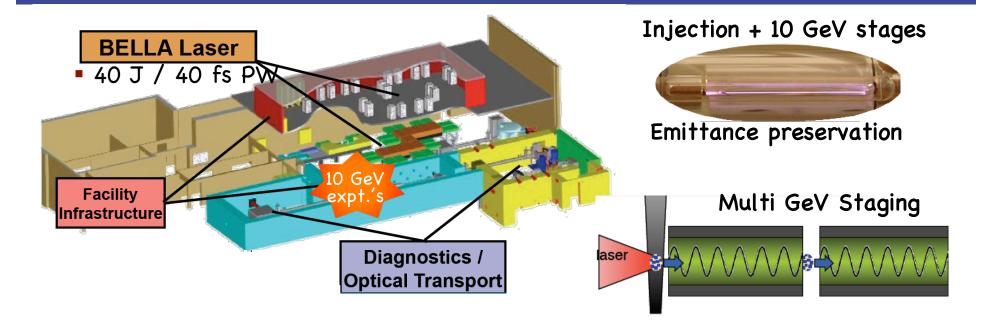


E_{//} (GV/m)


40

Large scale range renders simulation difficult, if not impractical, in lab frame

BERKELEY LAB

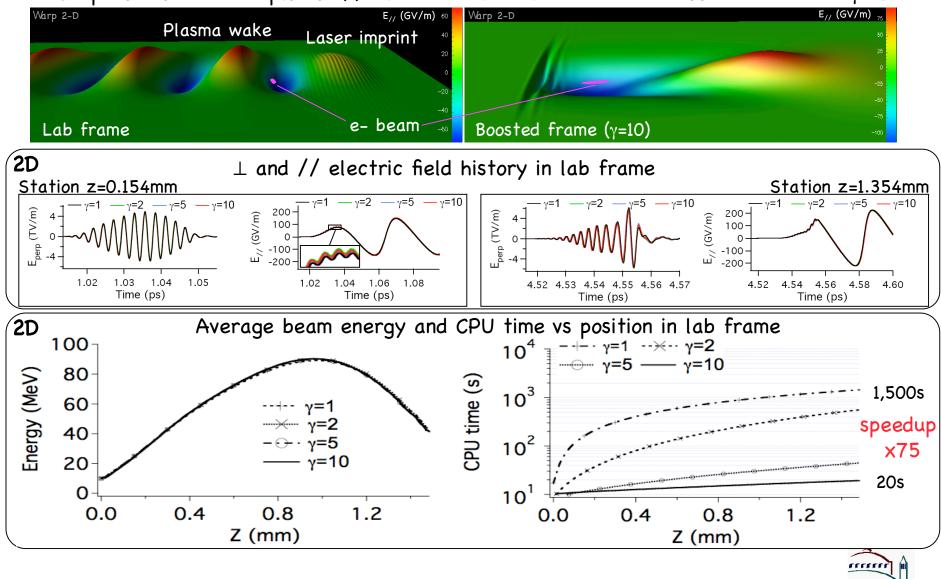

Lorentz transformation => large level of compaction of scales range

- Concept
- Difficulties
- Examples of application
 - laser wakefield acceleration (LWFA)
 - electron cloud effects
 - free electron laser
- Conclusion

BELLA 40 J PW Laser – Components for a Laser Plasma Collider

Simulating 10 GeV stages explicitly (PIC) in lab frame needs ~1G CPU•hours \Rightarrow impractical*

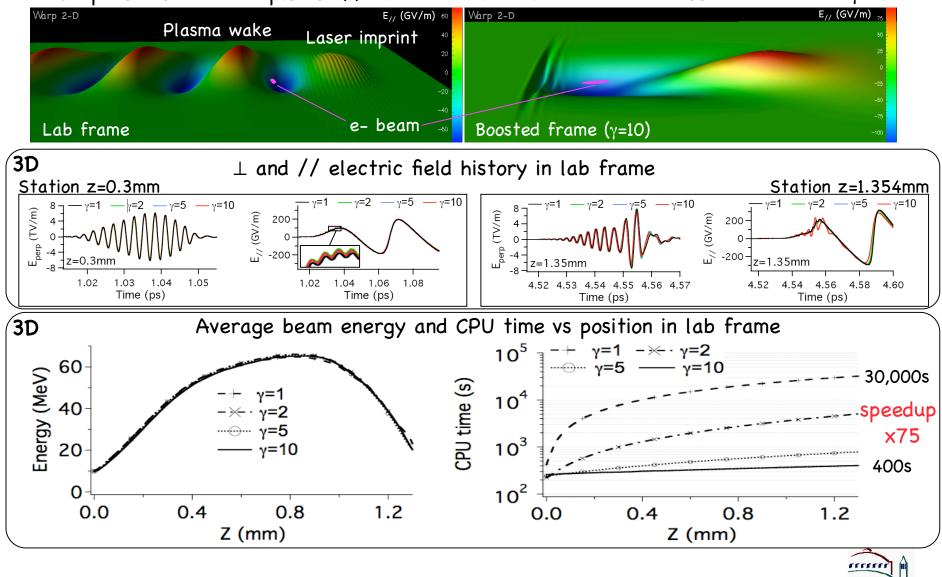
Predictions have relied on theory, reduced models (fluid, envelope, quasistatic), scaling:


- Energy gain $\propto n^{-1}$: 10 GeV at 10¹⁷/cc \Rightarrow 100 MeV at 10¹⁹/cc
- Length $\propto n^{-3/2}$: 1m at 10¹⁷/cc \Rightarrow 1mm at 10¹⁹/cc
- Gradient $\propto n^{1/2}$: 10 GV/m at 10¹⁷/cc \Rightarrow 100 GV/m at 10¹⁹/cc

Can simulations of full scale 10 GeV stages be practical using a Lorentz boosted ref. frame?

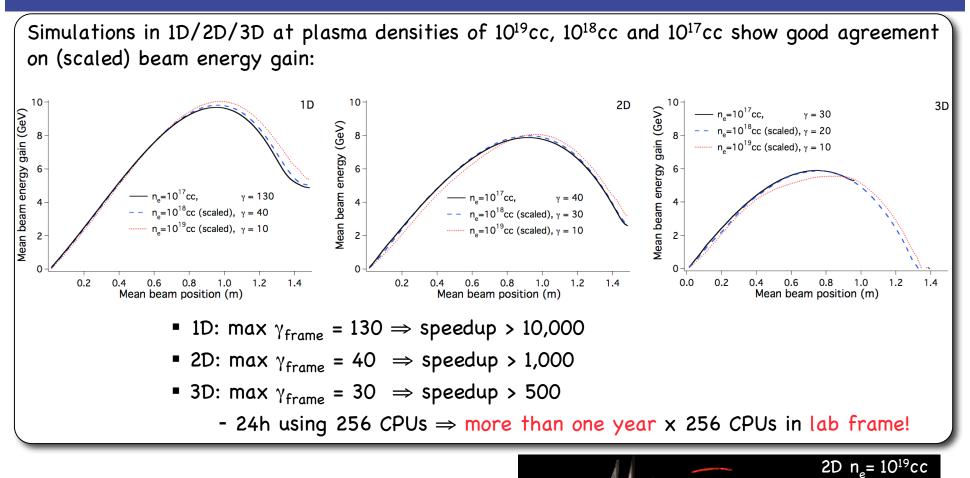
- difficulty: backward emitted radiation frequency upshifted in boosted frame.

Scaled simulations of a 10 GeV LWFA stage (λ =0.8µm, a_0 =1, k_p L=2, L_p =1.5mm in lab)


Snapshots of surface plot of // electric field in lab frame and boosted frame at γ =10

BERKELEY LAS

Scaled simulations of a 10 GeV LWFA stage (λ =0.8µm, a_0 =1, k_p L=2, L_p =1.5mm in lab)


Snapshots of surface plot of // electric field in lab frame and boosted frame at γ =10

Vay, APS-DPF 09, Jul 26-31, 2009

BERKELEY LA

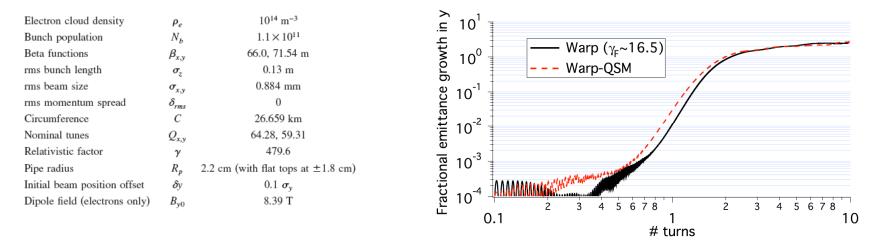
Full scale simulations of a 10 GeV LWFA stage

Max γ_{frame} achieved in 2D and 3D limited by instability developing at front of plasma

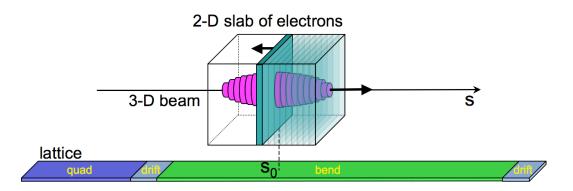
origin and cures are being studied...

*similar work by Bruhwiler et al (Tech X), Martins et al (UCLA/IST)

 $\gamma_{\text{frame}} = 13$


.....

- Concept
- Difficulties
- Examples of application
 - laser wakefield acceleration
 - electron cloud effects
 - free electron laser
- Conclusion

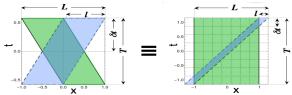


E-cloud: benchmarking against quasistatic model for LHC scenario

Excellent agreement on emittance growth between boosted frame full PIC and "quasistatic" for e-cloud driven transverse instability in continuous focusing model of LHC

The "quasistatic" approximation uses the separation of time scales for pushing beam and ecloud macro-particles with different "time steps"

- Concept
- Difficulties
- Examples of application
 - electron cloud effects
 - laser wakefield acceleration
 - free electron laser
- Conclusion


FEL in Boosted-Frame E&M Code

Physics ignored by Eikonal codes but accessible to boosted frame approach: **Backward wave emission** Wide-angle emission (generally highly red-shifted) CSE for all undulator, e-beam configurations Emission from very short beams Emission from beams with rapidly-varying envelope properties Emission from beams bunched with "multiple colors" Properties of *very* high gain systems ($L_G/\lambda_u < 5$) FEL emission from beams in multiple harmonic undulators Biharmonic (or triharmonic undulators) Effects of adiabatic match sections FEL emission in waveguides where v_{group} strongly varying with ω (normally relevant to microwave FEL's operating near cutoff) Overall computational speed impressive compared to full E&M but much slower than standard eikonal method: Not likely to become dominant paradigm for short wavelength FEL's but *might* be useful for very high gain microwave/far-IR devices or situations with wideband spectral output

Conclusion and outlook

• The range of scales of a system is not a Lorentz invariant ($\propto \gamma^2$), and there exists an optimum frame minimizing it => orders of magnitude speedup predicted for some simulations.

- Calculating in a boosted frame more demanding, eventually:
 - developed new particle pusher for e-cloud problems,
 - added capabilities for injection/diagnostics in boosted frame.
- Orders of magnitude speedup demonstrated for a class of firstprinciple simulations of multiscale problems: laser-plasma acceleration, e-cloud in HEP accelerators, free electron lasers.
- Explore other applications: CSR, astrophysics,...
- Can we develop methods which costs do not depend on frame?

