Search for electron neutrino appearance at MINOS

Ryan Patterson Caltech

DPF 2009, Detroit

July 27, 2009

Two detectors, 735 km apart

- Near and far detectors: Magnetized tracking calorimeters
- Alternating layers of steel (1" thick) and scintillator (1 cm thick, 4.1 cm wide strips)
- Exposed to NuMl neutrino beam Few-GeV ν_{μ} beam, FNAL to Soudan

Neutrino oscillations from near to far

(Monte Carlo)

- Use events in near detector to construct a far detector prediction
- - clear signature in MINOS
- Is any of the disappearance due to

[Phys. Rev. Lett. 101, 131802 (2008)]

Event topologies in v_e appearance search

v_e charged current

- Signal (and irreducible beam background)
- Electron leaves characteristic deposition pattern (compact shower)

$v_{_{\parallel}}$ charged current

- What MINOS was made for...
- If μ track is very short, event can be mistaken for signal

neutral current

- Esp. with π^0 , looks quite like signal!
- Energy deposition more transversely distributed

Selecting ν_e charged current events

A first round of cuts removes...

obvious tracks (via event length, etc.) events outside of 1-8 GeV energy range events outside fiducial regions

 Followed by a cut on a discriminant (ANN) derived from shower profile fits and other spatial variables

• Example: Shower fit fall off (parameter b)

Example EM shower profile

- A secondary selection method (Library Event Matching or LEM) also used
- LEM technique compares input event to large library of simulated events, finding those that are the most similar
- Characteristics of the well-matched events are used to form the LEM discriminant

Next talk by **J. P. Ochoa** discusses the **details** of these two selections

transverse position (strip)

Near detector events

v_e candidates in the near detector (ANN selection)

- Data and MC differ by up to 25%, but...
- ... are consistent given the large hadronic model uncertainties (red error band)
- We need not rely on the simulation of the primary backgrounds
- Observed near detector rate is converted to a far detector prediction via the Monte Carlo simulation

Monte Carlo is needed to incorporate, e.g.:

beamline geometry

detector solid angle

readout differences (near vs. far)

Background decomposition

- Transport of ν_{μ} **CC component** to far det. requires application of $P_{\text{osc}}(\nu_{\mu} \rightarrow \nu_{\mu})$
- Could use MC to estimate fraction of background that is $\nu_{_{\mu}}$ CC
- Better: measure NC and CC components by turning off focusing horn, greatly enhancing NC fraction

See S. Swain later today for the details of this technique.

Turn off focusing horn

At the far detector

- Two more small but non-negligible backgrounds, with predictions taken from the Monte Carlo:
 - > v_{τ} charged current (from $v_{\mu} \rightarrow v_{\tau}$ oscillations)
 - ν_e charged current

(intrinsic beam component; constrained by observed v_{μ} rate at near detector)

P Detector differences lead to syst. errors when turning the near det. data into a far det. prediction:

Attenuation Readout (single vs. double) PMT design Crosstalk

ν_e appearance result

With 3.14x10²⁰ protons on target and with the **primary** selector (ANN):

observed v_e charged current candidate events: 35 background-only expectation: 27 ± 5(stat.) ± 2(syst.) (1.5 σ excess)

Using secondary selector

LEM selector gives consistent result:

observed v_e charged current candidate events: 28 background-only expectation: 22 ± 5(stat.) ± 3(syst.) (1.0 σ excess)

Oscillation interpretation

- $\sin^2(2\theta_{13})$ allowed range depends on CP-phase δ and mass hierarchy [$\operatorname{sign}(\Delta m^2)$]
- 90% C.L. allowed ranges ----
- Assumes MINOS best-fit values of:

$$|\Delta m_{32}^2| = 2.43 \text{ eV}^2$$

 $\sin^2(2\theta_{23}) = 1.0$

Oscillation interpretation

• $\sin^2(2\theta_{13})$ allowed range depends on CP-phase δ and mass hierarchy [$\operatorname{sign}(\Delta m^2)$]

• 90% C.L. allowed ranges ----

Assumes MINOS best-fit values of:

$$|\Delta m_{32}^{2}| = 2.43 \text{ eV}^{2}$$

 $\sin^{2}(2\theta_{23}) = 1.0$

MINOS <u>best-fit</u> $\sin^2(2\theta_{13})$ [**black curves**] along with <u>CHOOZ upper limit</u> [**cyan line**].

What's next?

 Full analysis currently underway with more than twice the data (7x10²⁰ protons on target)

Full data sample's sensitivity if...
...best fit stays the same
...or best fit shifts to $\sin^2(2\theta_{13})=0$

- These sensitivities do not include several improvements expected for full analysis:
 - > Enhanced v_e selection algorithm
 - Better cross talk handling
 - Reduction of key systematics (e.g., PMT gains)

• Look for the clarifying 7x10²⁰ p.o.t. result next year!

Backup slides

Muon-removed sample

- Start with an identified ν_{μ} charged current event (clean muon track)
- Remove the hits associated with the muon track
- If a track hit is also part of the shower, subtract out expected muon contribution, leaving some charge remaining

The result:

A sample of "mock" neutral current events ---

Use these to test or adjust the simulation

Muon-removed events in near detector

- Apply v_e selection to muon-removed events in the near detector
- Disagreement is consistent with that seen in "standard" events

Far detector prediction

- Breakdown of far detector background prediction below
- Two decomposition methods:
 - **1. Horn on/off** official method (p. 8)
 - Changing the spectrum changes proportions of CC and NC
 - Extract the CC and NC fractions from data
 - 2. MRCC independent cross check
 - Correct Monte Carlo events using PID response of muon-removed showers in data
- Answers are consistent!

	Total	NC	ν_{μ} CC	$v_{\tau}CC$	v_e beam
Horn on/off	27	18.2	5.1	1.1	2.2
MRCC	28	21.1	3.6		

Inverting the PID cut

- Before looking at the signal region, we tested the signal-free region
- No problems seen (insignificant excess for both selectors)

events observed: 146

events expected: 132 ± 12_{stat.} ± 8_{syst.}

events observed: 176

events expected: 157 ± 13_{stat.} ± 3_{syst.}

 $(1.0\sigma \text{ excess})$

 $(1.4\sigma \text{ excess})$

Applying selection to muon-removed events

- Before looking at the signal region, we tested the signal-free region
- Slight excess for both selectors; more data should clarify situation

events observed: 39
events expected: 29 ± 5_{stat.} ± 2_{syst.}

 $(1.9\sigma \text{ excess})$

events observed: 25 events expected: $17 \pm 4_{stat.} \pm 2_{syst}$

 $(1.8\sigma \text{ excess})$