Pavel Snopok
University of California Riverside

July 28, 2009

wwwwwwwwwwwwwwwwww



e Introduction

© Cooling lattices

e RF in magnetic field

e Magnetically insulated lattice

© Wedge absorber in MICE
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6D Cooling Simulations for the Muon Collider

Cooling lattices

Helical Cooling Channel

faCk" ( PHASE III?

ANX, a possible6D cooling experiment using an helicoidal solenoid

7/ Magnet < $5M
Z,

. L WL %

Requires transverse
displacement of
downstream
spectrometer

Very interesting ... but still a lot of work to do!
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6D Cooling Simulations for the Muon Collider

Cooling lattices
FOFQO snake

altemating solenoids absorbers RF cavities
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6D Cooling Simulations for the Muon Collider

Cooling lattices
FOFQO snake

altemating solenoids absorbers RF cavities
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Cooling lattices

RFOFO ring and Guggenheim helix

M
L rreter

e RFOFO ring
o Issues: absorber overheating,
injection /extraction,
continuous operation

@ RFOFO-based Guggenheim
helix
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6D Cooling Simulations for the Muon Collider

Cooling lattices

Phase space reduction

100 100 300
) : 0y o)
= s S 250}
= - | = = 200}
x 3 > N
o : o o
-100 -100 150
200 0 200 200 0 200 1 0 1
X, [mm] y, [mm] t, [ns]

RIVERSIDE



RF in magnetic field:
issues and remedies
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Gradient limits are vital to accelerator performance.

+ Muon cooling might be limited by gradients.

+ MICE might be limited by field emission.

+ ILC had major problems with gradient.

+ CLIC is uncertain about gradient.

+ SNS is not reaching its design gradient.

+ JPARC is intensity limited by gradient in its RFQ.

+ ERLs are gradient limited by power consumption.
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II) A Be Cavity test

With Steve Virostek, Mike Zisman, Derun Li

® RF Breakdown in magnetic fields probably due to focused emitted electrons
o Damage caused by cyclic heating from electron dE/dx
o Damage less if:

— density low so less dE/dx
— Radiation length high so electrons not scattered back
Thermal expansion low so less stress from heating

— Thermal conductivity high so heat distributed
® Be is better than copper on all counts
o Cold (77 deg) Be is even better

® Explains lack of observed damage on Be window
even opposite a button with enhanced field

. ‘A cavity with Be walls is the surest solution to the problem‘

e Cold (77 deg) Al may also be a solution, but less assuredly so.
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Grad (MV/m)

What could be done? fast time scale

Copper Buttons

foaom
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s

Reduce curvature radius
Reduce field emission

What material?: W, TiN, Cu
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@ Atomic layer deposition
o Alternative materials

@ Low temperatures

e HPRF
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6D Cooling Simulations for the Muon Collider

ically insulated lattice
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Wedge absorber in MICE Step IV
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6D Cooling Simulations for the Muon Collider

absorber in MICE

MICE experiment

| Muon Ionization Cooling Eexperiment (MICE) Collaboration |
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6D Cooling Simulations for the Muon Collider
absorber in MICE

MICE schedule

MICE Schedule as of April 2009 Caveats: -- cost and schedule review

fact -~ funding issues in UK
é“m STEP I -- technical hurdles
Run: Sep09
*lﬂ/\’lZﬂ STEP 1 e o
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B e
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STEPV
Run: 2011
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6D Cooling Simulations for the Muon Collider
sorber in MICE

y
Simple Wedge %}([

= Simple wedge

= Induce dispersion in input beam

= Measure (reverse) emittance exchange
= To what purpose?

= “Proof-of-principle” - demo for wider community

= Test material physics model in a different geometry
= Open questions

= Which material?

= What opening angle?

= Can we measure an effect?
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RFoFo Model %l

= |nduce some y-pz correlation in particles at the wedge
= Working to approximately follow RFoFo lattice - MUCOOL Note 314
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Non-Linearity

e

Look at these particles at tracker

= Tells us what correlation we need at

the tracker to get dispersion at the
wedge
Pretty non-linear
= Fit using 4th order polynomials
= Probably needs 5th order...
= This is probably generated by
Larmor angle as a function of p,
To get a “non-linear” match
= Insert beam at wedge center
= No material processes
= Transport to tracker
= Apply px, py, t-> -px, -py, -t

= Time Parity operator + reflection in z
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fac

Emittances 100° LH2 Wedge

D, =100 mm
= 100° ~ RFoFo wedge
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= Small longitudinal cooling
= Drowned by non-linearities

= QOverall ~ 5% 6d emittance
reduction E

< [mm]

"

22000-1500-1000 -500 05061000 1500 2000
z [mm]

[AEARERERRS|
T
—~—
- €gp [mm]
8

a 56— 5%
E 5.55—
| ST )

.
22000-1560-1006 -500 0506”1000 7500 2000 -2000-1500-1000 -500 0 500 1000 1500 2000
z [mm]

“TCRIVERSIDE



Emittances 90° LiH Wedge

= D,=200 mm this time .
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Use alternative approach:

o Start with whatever distribution comes from the beamline to
the experiment.

@ Track the distribution to the absorber plane.
o Analyze the resulting distribution.

@ Decide on the shape of the absorber required.
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e RFOFO and Guggenheim studied in detail (except for possible
tapering).

@ "RF in magnetic field” can possibly be mitigated by
magnetically insulating the cavities.

@ To test the emittance exchange, wedge absorber test is
proposed for MICE Step IV.
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