<u>Neutrino</u> <u>Scattering</u> <u>On</u> <u>Glass</u>

André de Gouvêa Northwestern University

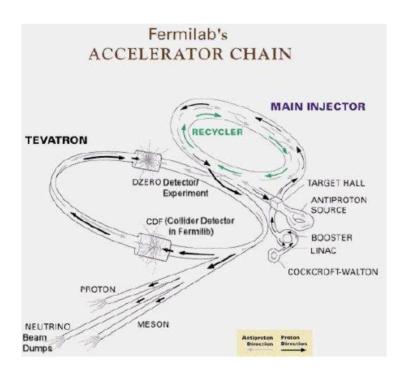
NuSOnG:

DPF 2009 Conference Wayne State University July 26–31, 2009

References

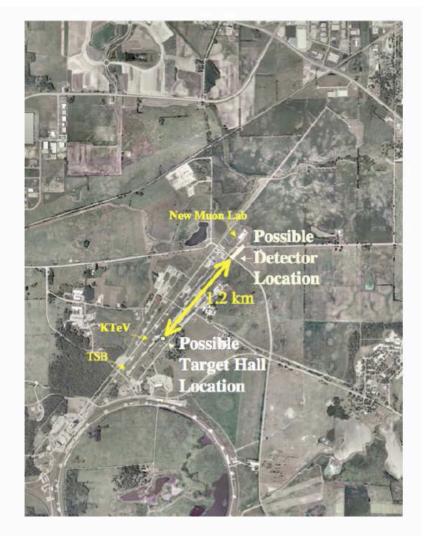
- 1. "Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG," 0803.0354 [hep-ph].
- 2. "Renaissance of the ~ 1 TeV Fixed-Target Program," 0905.3004 [hep-ex].
- "QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG," 0906.3563 [hep-ex].
- "Expression of Interest for Neutrinos Scattering on Glass: NuSOnG," 0907.4864 [hep-ex].

Effort of about 40 people (about 20 institutions, including FNAL and ANL), including 10 theorists.

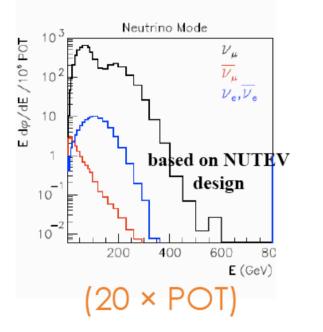

http://www-nusong.fnal.gov

Neutrino Scattering On Glass

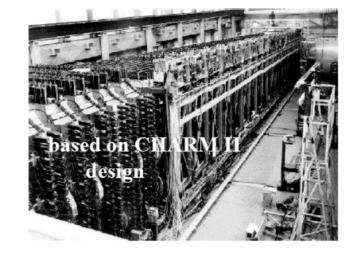
NuSOnG is a proposal to study fixed-target neutrino – matter interactions


- High Energies protons from the Tevatron
- High Statistics lots of protons from the Tevatron, large detector
- "Rare" Processes highly segmented detectors capable of "seeing" electrons
- Well Understood Neutrino Flux "ratio-like" measurements

NuSOnG will use 800 GeV Protons from the Tevatron (Another Option: SPS+ at CERN)

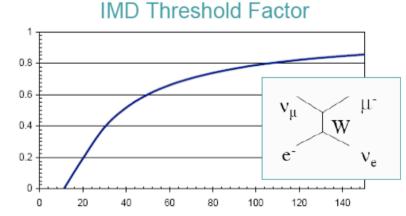

This requires the TeVatron to achieve new records:

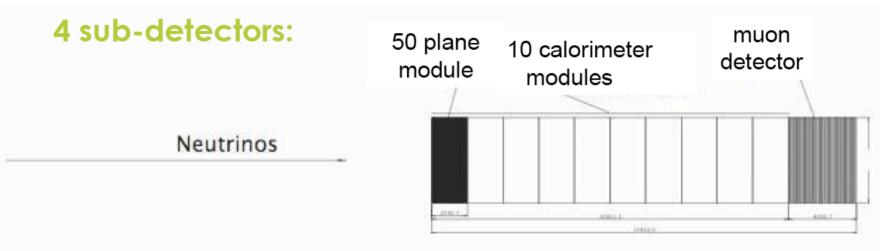
 $5 \times$ the number of protons per fill, $1.5 \times$ faster cycle time, 66% uptime per year July 30, 2009



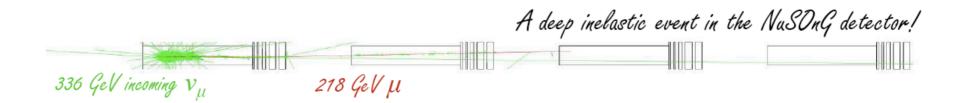
[but it doesn't need any antiprotons...]

High-energy, very flavor-pure neutrino beam


Well-segmented, massive detector



(6 × mass)


High-energy, because we'd like to use IMD events to constrain our flux prediction

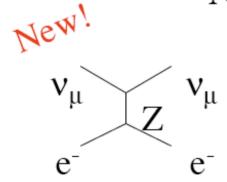
×

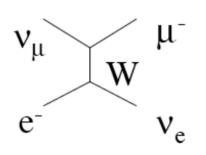
- Glass target, with 1/4 λ_0 segmentation
- Proportional chambers/Scintillator
- Muon Toroid

NuSOnG Neutrino Scattering On Glass

may become

NuSONG Neutrino Scattering On (liquid) Noble Gas


July 30, 2009 _____


_____ NuSOnG Physics

 ν_{μ}

NuSOnG will work with ratios....

 ν_{μ}

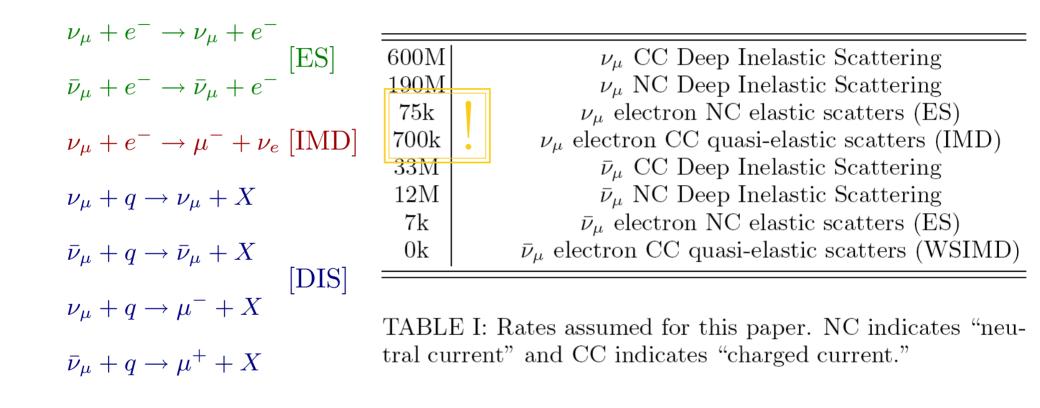
Purely leptonic

Expected errors 0.7% conservative, 0.4% best case $q \qquad q \qquad q \qquad q$ $v_{\mu} \qquad W \qquad \mu^{-} \qquad \overline{v_{\mu}} \qquad W \qquad \mu^{+}$ $q \qquad q' \qquad q' \qquad q'$

 ν_{μ}

Z

 ν_{μ}


NuTeV-style "Paschos-Wolfenstein"

0.4% conservative 0.2% best case

July 30, 2009 -

NuSOnG Physics

In more detail, NuSOnG will measure ...

... with sub-percent precision!

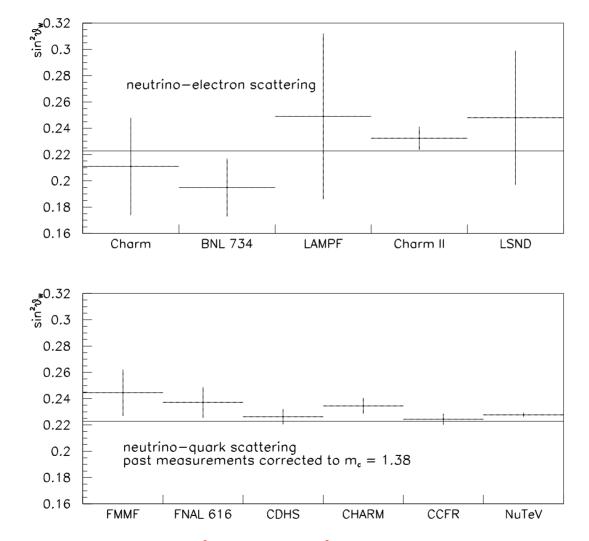
Physics of Neutrino – Charged Fermion Scattering

Neutrino matter scattering provides a unique and clean environment to study purely weakly interacting processes. In the Standard Model, at low enough center of mass energies, $\nu_{\mu} + f$ elastic scattering is governed by the following effective Lagrangian.

$$\mathcal{L} = -2\sqrt{2}G_F \left(g_L^{\nu} \,\bar{\nu}_L \gamma_\mu \nu_L\right) \times \left[g_L^f \,\bar{f}_L \gamma^\mu f_L + g_R^f \,\bar{f}_R \gamma^\mu f_R\right]$$

where

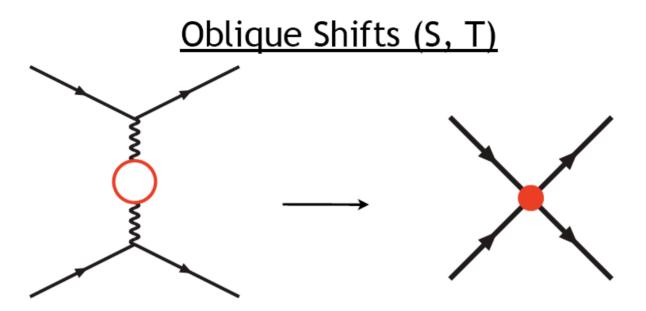
$$g_L^{\nu} = \sqrt{\rho} \left(+\frac{1}{2} \right) ,$$


$$g_L^f = \sqrt{\rho} \left(I_3^f - Q^f \sin^2 \theta_W \right) ,$$

$$g_R^f = \sqrt{\rho} \left(-Q^f \sin^2 \theta_W \right) .$$

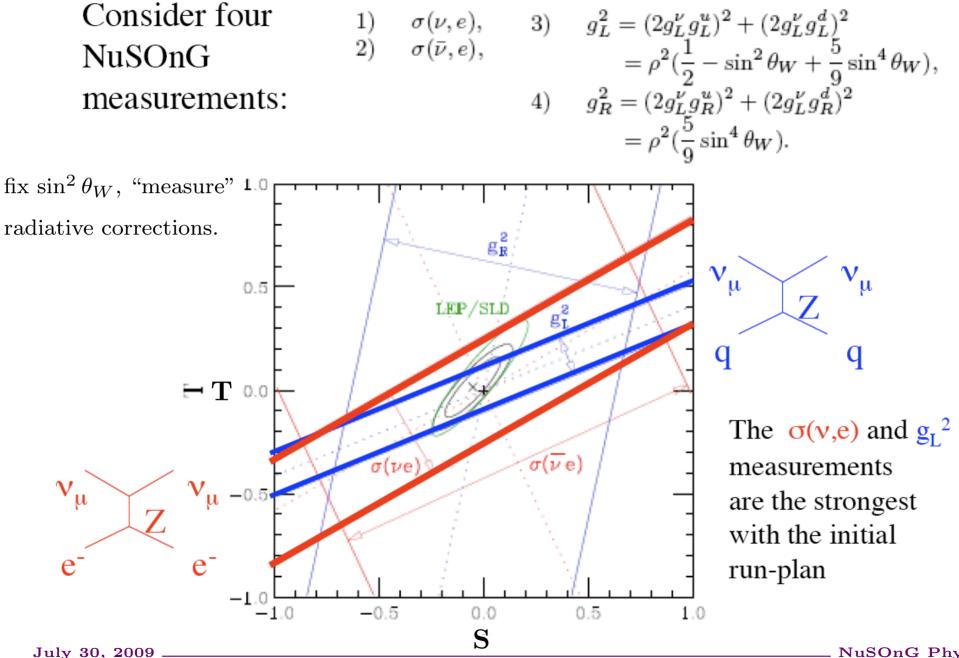
At tree-level, $\rho = 1$. Loop corrections affect both ρ and what we mean by $\sin^2 \theta_W$.

July 30, 2009


One can interpret $\nu + f$ as measuring the Weinberg angle ...

... but it measures $g_L^{\nu}g_L^f$ and $g_L^{\nu}g_R^f$ independently. Much more information.

NuSOnG Physics


 $\sim \frac{1}{\Lambda^2} \left[\bar{\nu}_{L\mu} \gamma^a \nu_{L\mu} \right] \left[\cos \theta \ \bar{e}_L \gamma_a e_L + \sin \theta \ \bar{e}_R \gamma_a e_R \right]$

$$\frac{1}{\Lambda^2} = 4\sqrt{2}G_F$$

$$\frac{\cos\theta}{2} = \frac{\alpha}{2} \left(g_L^e T + \frac{\tan^2\theta_W}{4} \left[S - 2T \right] \right)$$

$$\frac{1}{\Lambda^2} = 4\sqrt{2}G_F$$

$$\sin\theta = \frac{\alpha}{2} \left(g_R^e T + \frac{\tan^2\theta_W}{4} \left[S - 2T \right] \right)$$

_ NuSOnG Physics

Here, I'll concentrate on $\nu_{\mu} + e$ elastic scattering.

- Another channel to study neutral currents with neutrinos (*cf.* NuTeV).
- Significant improvements over world's data sample CHARM II had less than 6000 events, ν and $\bar{\nu}$ combined.
- This is a very, very clean process! (Among First Standard Model calculation, G. 't Hooft, "Predictions For Neutrino Electron Cross-Sections In Weinberg's Model Of Weak Interactions," Phys. Lett. B 37 (1971) 195.)

Neutrino–Electron Elastic Scattering and New Physics

This is what one is able to measure:

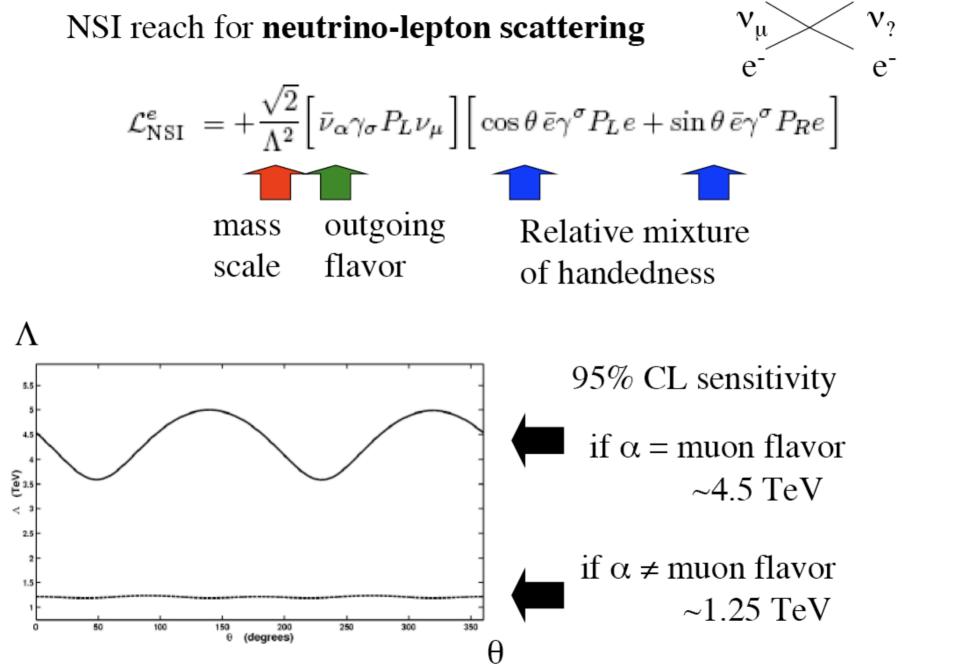
$$\frac{d\sigma}{dy} = \frac{G_F^2 m_e E_{\nu}}{2\pi} \left[\left(g_V^{\nu e} \pm g_A^{\nu e} \right)^2 + \left(g_V^{\nu e} \mp g_A^{\nu e} \right)^2 \left(1 - y \right)^2 \right] ,$$

in the limit $m_e \ll E_{\nu}$, for $y = \frac{T_e}{E_{\nu}}$ for the recoil electron. Sign ambiguity for neutrino and antineutrino scattering, respectively.

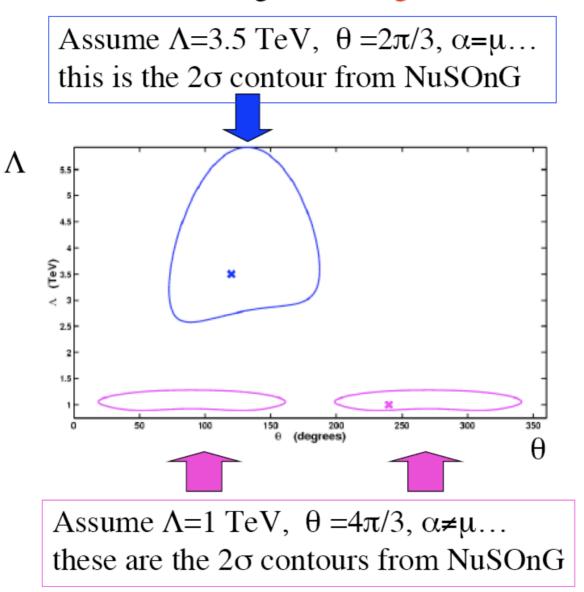
New "heavy" physics will modify the coefficients

$$g_L^{\nu}g_L^e = g_V^{\nu e} + g_A^{\nu e}$$
$$g_L^{\nu}g_R^e = g_V^{\nu e} - g_A^{\nu e}$$

Most general effective Lagrangian one can probe with $\nu_{\mu} + e$ scattering


$$\mathcal{L}_{\rm NSI}^e = + \frac{\sqrt{2}}{\Lambda^2} \Big[\bar{\nu}_{\alpha} \gamma_{\sigma} P_L \nu_{\mu} \Big] \Big[\cos \theta \, \bar{e} \gamma^{\sigma} P_L e + \sin \theta \, \bar{e} \gamma^{\sigma} P_R e \Big] \,.$$

 $\Lambda =$ New Physics scale.


 θ parameterizes "handedness" of the new physics. Note: signs matter.

Assumption 1: no scalar–scalar interaction ("suppressed" by neutrino and electron masses)

Assumption 2: charged current – IMD – NOT modified. This is not true of specific models

But we might see a signal!

How can we learn more about this "new physics"? We need information from other sources, including

- NuSOnG neutrino quark scattering;
- Other TeV-sensitive experiments, including the LHC.

The types of new physics fall under different categories:

- They affect all "electroweak precision" observables in the same way (all loop-level effects that modify the W and Z boson propagators);
- They affect only neutrino neutral current measurements;
- They affect only neutrino-quark or neutrino-lepton measurements;

• . . .

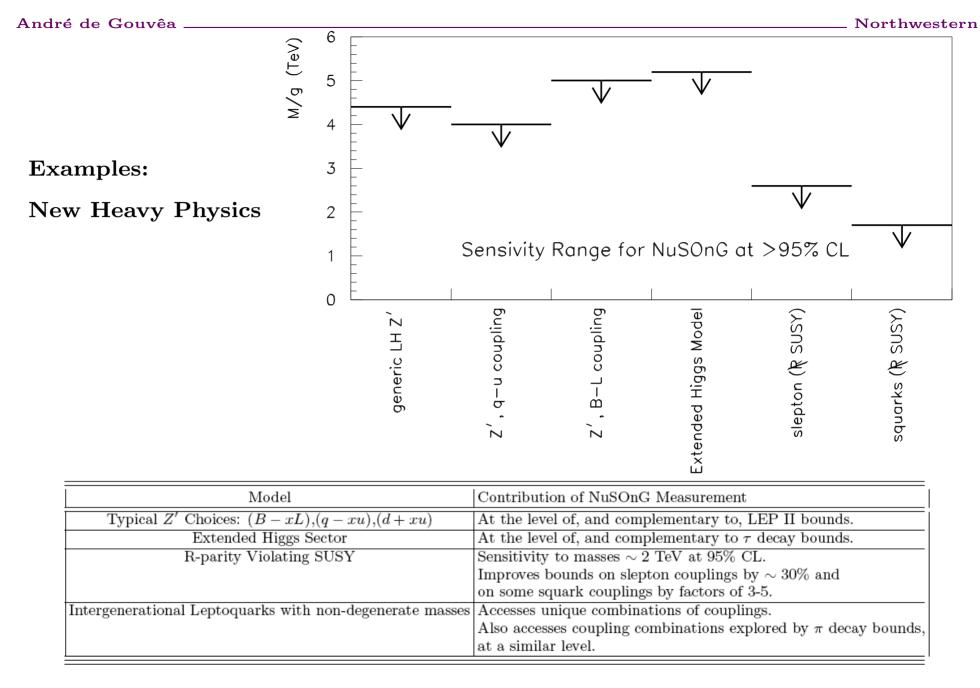


TABLE VI: Summary of NuSOnG's contribution in the case of specific models

A little on Structure Function Measurements (see reference 3!)...

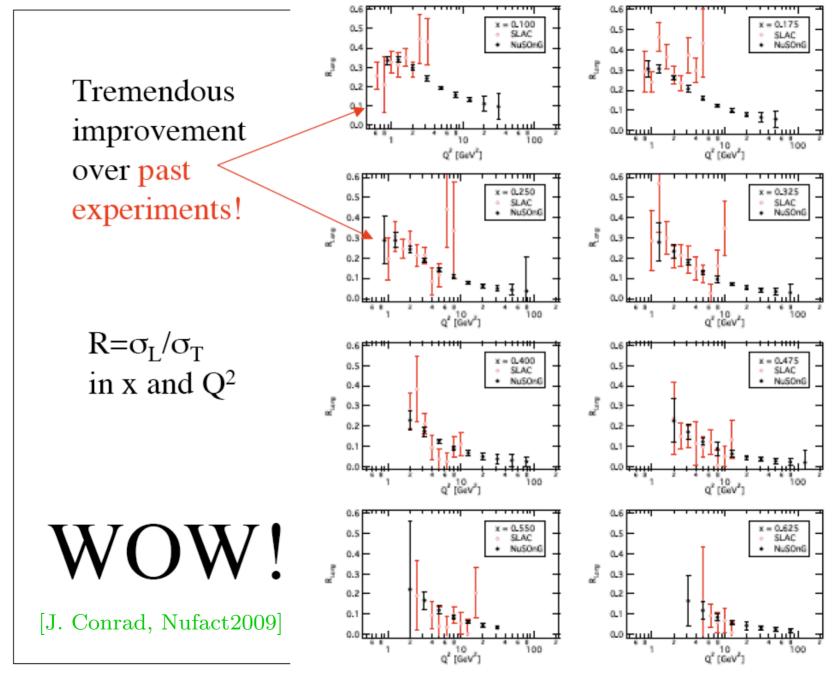
What makes NuSOnG special?

- 1) We have an <u>accurate flux</u> measurement! (via IMD events)
- 2) We have an <u>enormous</u> number of DIS events!

Method: Pick an x and Q² bin
 Plot the data as a function of y
 Vary the structure functions to
 get the same y-distribution

$$\frac{d^2 \sigma^{\nu(\overline{\nu})N}}{dxdy} = \frac{G_F^2 M E_{\nu}}{\pi \left(1 + Q^2 / M_W^2\right)^2} \left[F_2^{\nu(\overline{\nu})N}(x, Q^2) \left(\frac{y^2 + (2Mxy/Q)^2}{2 + 2R_L^{\nu(\overline{\nu})N}(x, Q^2)} + 1 - y - \frac{Mxy}{2E_{\nu}} \right) \left(\pm x F_3^{\nu(\overline{\nu})N} y \left(1 - \frac{y}{2}\right) \right]$$

[from J. Conrad's talk at Nufact2009]

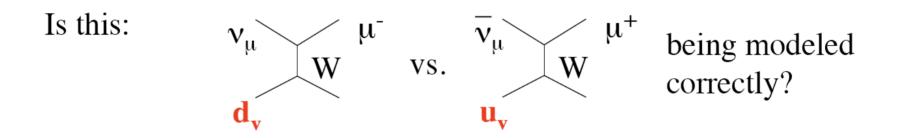

July 30, 2009 ____

- NuSOnG Physics

And

~

[▶] rthwestern



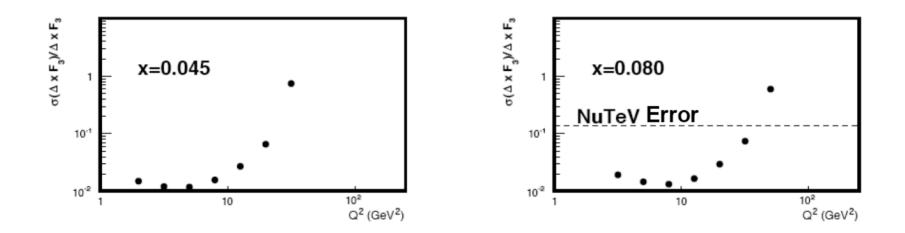
July 30, 2009 _

NuSOnG Physics

Understanding Valence Quarks and Isospin Breaking: step towards understanding the NuTeV Anomaly

Another interesting question (important for the electroweak studies...

This is extracted from


$$\Delta x F_3 = x F_3^{\nu} - x F_3^{\overline{\nu}}$$

[J. Conrad, Nufact2009]

July 30, 2009 _

The existing data on $\Delta x F_3$ is sparse and imprecise

NuSOnG can measure this in a model-independent way! ΔxF_3 is extracted from a simultaneous fit to v and \overline{v} data

The NuSOnG measurements will be very high precision! [J. Conrad, Nufact2009]

Summary and Conclusions

- A large, well-understood sample of ν_μ + e ES events should prove to be a powerful tool for exploring TeV scale new physics. NuSOnG aims at (at least) an order of magnitude more events than all previous neutrino experiments combined.
- Any new physics result at NuSOnG should prove to be complementary to anything we may discover at the LHC including only a standard model Higgs boson! NuSOnG will likely help elucidate the nature of the new physics discovered at the LHC.
- By measuring $\nu_{\mu} + e$ and $\nu_{\mu} + q$, NuSOnG can test most new physics interpretations of the NuTeV anomaly.
- Record number of $\nu_{\mu} + q$ DIS events allow not only precision electroweak measurements and sensitivity to new physics but also several key QCD measurements (structure functions as a function of x and Q^2 , including xF_3 , etc).

- An experiment like NuSOnG can (only) be performed "right now" at Fermilab. No one else has the Tevatron accelerator! Different future possibility is the SPS+ at CERN (TeV proton machine to feed the LHC). REMEMBER: key ingredient to understand the flux is IMD → high energy neutrinos!
- NuSOnG would serve as a great flagship experiment for a next-generation of Tevatron-based fixed target experiments.

	# Detected to Date,	# Expected at NuSOnG,
	All Energies, All Detectors	All Energies
$ u_{\mu}, ar{ u}_{\mu} $	$< 20 \times 10^6$	$> 600 \times 10^6$
$ u_e, \bar{ u}_e $	$< 0.5 imes 10^6$	$> 6 \times 10^6$
$ u_{ au}, ar{ u}_{ au}$	10	OPPORTUNITY?