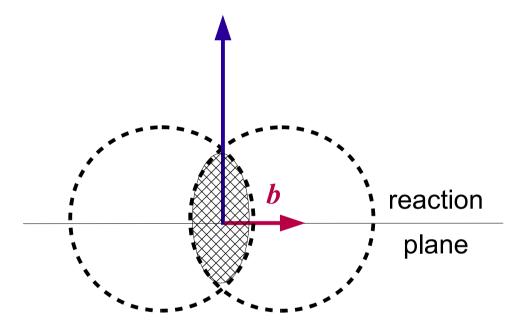

# Azimuthal charged particle correlations as a probe for local strong parity violation in heavy ion collisions

# Ilya Selyuzhenkov for the STAR Collaboration Indiana University








# Important features of the system created in non-central heavy ion collisions (HIC)

B - magnetic field

L - orbital momentum



*b* – impact parameter

Colliding nuclei are moving out-of-plane

- Overlapped area: non-uniform particle density and pressure gradient
- Large orbital angular momentum:

$$L \sim 10^5$$

Liang, Wang, PRL94:102301 (2005) Liang, JPG34:323 (2007)

Strong magnetic field:

$$B \sim 10^{15} \,\mathrm{T} \quad (eB \sim 10^4 \,\mathrm{MeV}^2)$$

 $(\mu_{\rm N} {\bf B} \sim 100 \,{\rm MeV})$ 

Kharzeev, PLB633:260 (2006) Kharzeev, McLerran, Warringa

NPA803:227 (2008)



# Particle production in HIC: Asymmetries wrt. the reaction plane

## **Anisotropic transverse flow**

Initial space anisotropy of the overlapped area evolves into momentum space

## Strong elliptic and directed flow.

Well established collective effects, extensively studied at RHIC/SPS.

Review: arXiv:0809.2949 [nucl-ex]

## Global polarization and spin alignment

Preferential orientation of the spin of produced particles wrt. the system orbital momentum

## **Experimentally consistent with zero.**

Measured by STAR for strange hyperons (  $\Lambda$  ,  $\bar{\Lambda}$  ) and vector mesons (  $K^{*0}$ ,  $\phi$  ).

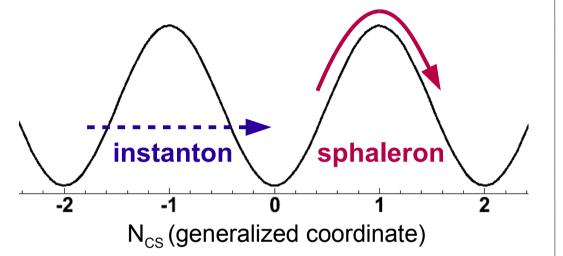
PRC76:024915 (2007), PRC77:061902 (2008)

## Local strong parity violation

Charge separation along the magnetic field/orbital momentum

Under experimental study at RHIC. Focus of this talk.




# Theoretical concept of P-violation in strong interactions





## Chiral symmetry breaking and P-violation

QCD vacuum (gluonic field energy) is periodic vs. Chern-Simons number, N<sub>cs</sub>:



Localized in space & time solutions. Transitions between different vacua via tunneling/go-over-barrier

Quark interaction changes chirality, which is a P and T odd transition

P/CP invariance are (globally) preserved in strong interactions.

Evidence from neutron EDM (electric dipole moment) experiments:

Pospelov, Ritz, PRL83:2526 (1999) Baker *et al.*, PRL97:131801 (2006)

$$\theta < 10^{-11}$$

If  $\theta \neq 0$ , then QCD vacuum breaks P and CP symmetry.

#### but:

In HIC formation of (local) metastable P-odd domains is not forbidden.

T.D. Lee, PRD8:1226 (1973) Morley, Schmidt, Z.Phys.C26:627 (1985) Kharzeev, Pisarski, Tytgat, PRL81:512 (1998) Kharzeev, Pisarski, PRD61:111901 (2000) Voloshin, PRC62:044901 (2000) Kharzeev, Krasnitz, Venugopalan, PLB545:298 (2002) Finch, Chikanian, Longacre, Sandweiss, Thomas, PRC65:014908(2002)

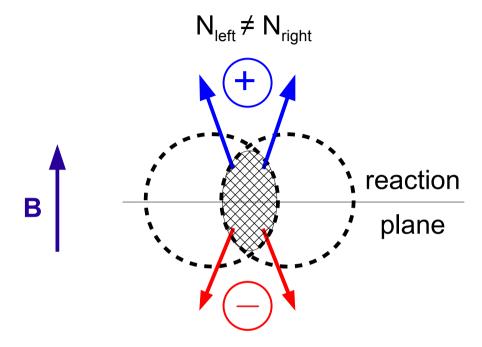
## Charge separation in HIC

Magnetic field aligns quark spins along or opposite to its direction





positive charge






negative charge

Right-handed quark momentum is opposite to the left-handed one

Vacuum transitions produce local excess of left/right handed quarks:



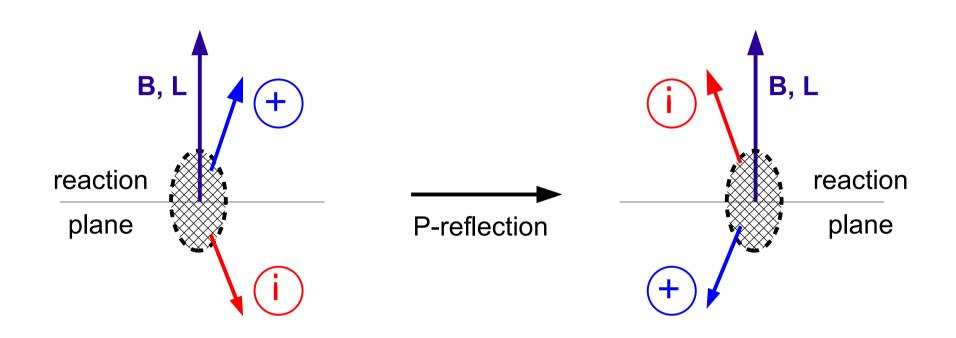
Induced electric field (parallel to B):

$$E \sim \theta \cdot B$$

Positive and negative charges moving opposite to each other

→ charge separation in a finite volume

Kharzeev, et. al PRL81:512 (1998), PRD61:111901 (2000)


Kharzeev, PLB633:260 (2006)

Kharzeev, Zhitnitsky, NPA797:67 (2007)

Kharzeev, McLerran, Warringa, NPA803:227 (2008) Fukushima, Kharzeev, Waringa, PRD 78:074033 (2008)



## Why charge asymmetry wrt. the reaction plane is P-violation?



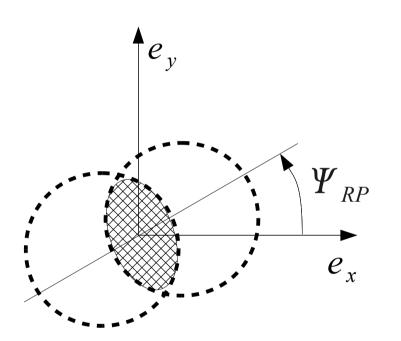
Coordinate/momentum (vectors):

$$\vec{r} \rightarrow -\vec{r}$$

$$\vec{r} \rightarrow -\vec{r} \qquad \vec{p} \rightarrow -\vec{p}$$

Orbital momentum/magnetic field (pseudo-vectors):

$$\vec{L} \rightarrow \vec{L}$$


$$\vec{L} \rightarrow \vec{L}$$
  $\vec{B} \rightarrow \vec{B}$ 

## **Experimental observable**



## Azimuthal distribution in case of P-violation

$$\frac{dN_{\pm}}{d\phi} \sim 1 + 2\sum_{i=1}^{\infty} v_n \cos(n\Delta\phi) + 2a_{1,\pm}\sin\Delta\phi + \dots$$



 $\Psi_{\mathit{RP}}$  reaction plane (RP) angle

 $\Delta \phi = \phi - \Psi_{RP}$  particle azimuth relative to RP

- $v_n$  *n*-harmonic anisotropic transverse flow. n=1 directed flow, n=2 elliptic flow
- $a_{\pm}$  asymmetry in charged particle production (consider only first harmonic)

 $e_z$  beam direction (out of sheet)  $e_x e_y e_z$  laboratory frame axes

Predicted asymmetry is about 1% for mid-central collisions

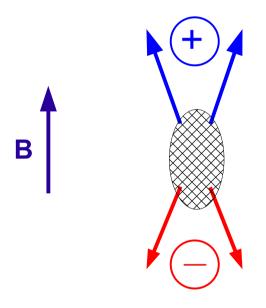
→ within an experimental reach

Kharzeev, PLB633:260 (2006)

## Observable

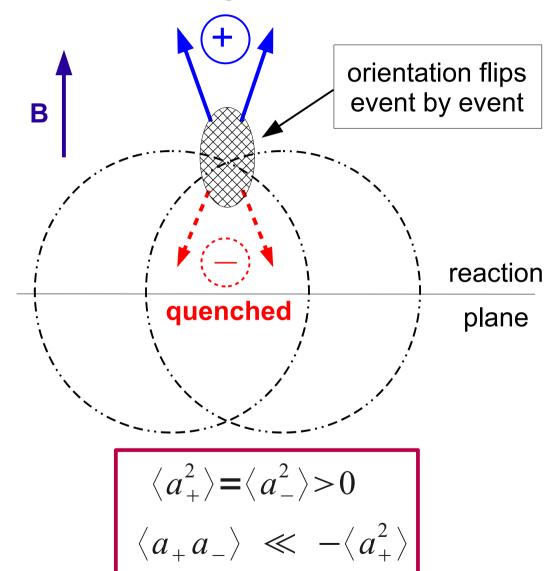
- Charge asymmetry is too small to be observed in a single event
- Asymmetry fluctuates event by event. P-odd observable yields zero:  $\langle a_{\pm} \rangle = \langle \sin(\phi_{\pm} \Psi_{RP}) \rangle = 0$
- Study P-even correlations:  $\langle a_{\alpha} a_{\beta} \rangle$  (  $\alpha, \beta = \pm$  ) Measure the difference between **in-plane** and **out-of-plane** correlations:

$$\begin{array}{c|c} \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2 \varPsi_{RP}) \rangle &= \langle \cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta} \rangle &- \langle \sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta} \rangle = \\ \\ \text{Voloshin PRC70:057901 (2004)} &= \left[ \langle v_{1,\alpha} v_{1,\beta} \rangle + B g^{(in)} \right] &- \left[ \langle a_{\alpha} a_{\beta} \rangle + B g^{(out)} \right] \\ &+ \Delta \phi_{\alpha,\beta} = \phi_{\alpha,\beta} - \Psi_{RP} \end{array}$$


- Large RP-independent background correlations cancel out in  $Bg^{(in)}$   $Bg^{(out)}$   $Bg^{(in)}(Bg^{(out)})$  denotes in- (out-of) plane background correlations
- RP-dependent (P-even) backgrounds contribute:
  - $\rightarrow Bg^{(in)} Bg^{(out)}$  term
  - $\rightarrow \langle v_{l,\alpha} v_{l,\beta} \rangle$ : directed flow (zero in symmetric rapidity range) + flow fluctuations



## Medium effects on charge correlations


## P-odd domain formation (no medium)

$$a_{+} = -a_{-}$$



$$\langle a_{+}^{2} \rangle = \langle a_{-}^{2} \rangle > 0$$
$$\langle a_{+} a_{-} \rangle = -\langle a_{+}^{2} \rangle$$

### **Quenching in medium**



D. Kharzeev, PLB633:260 (2006)

Kharzeev, McLerran, Warringa, NPA803:227 (2008)



## Expectations for charge correlations

• Magnitude: 
$$a_{\pm} = \pm \frac{4}{\pi} \frac{Q}{N_{\pm}}$$

$$Q=N_R$$
 -  $N_L$  - topological charge ( $Q=\pm$  1,  $\pm$  2, ...)

$$N_{\scriptscriptstyle \pm}$$
 - charged particle multiplicity  $\langle Q 
angle \, \sim \, \sqrt{N_{\scriptscriptstyle \pm}}$ 

For midcentral Au+Au collisions (1 P-odd domain/collision):  $N_{\scriptscriptstyle \perp} \sim 100$  per unit of rapidity  $\to a_{\scriptscriptstyle \perp} \sim 1\%$ 

$$< a_{\alpha} a_{\beta} > \sim 10^{-4}$$

- Correlation width in rapidity: about one unit
- Localized at  $p_{t} < 1$  GeV/c (non-perturbative effect)
- Proportional to the magnetic field:  $a_{\scriptscriptstyle +} \sim B$
- Stronger opposite-sign signal for a smaller colliding system (atomic number)

Kharzeev, Zhitnitsky, NPA797:67 (2007)

Kharzeev, PLB633:260 (2006)

Kharzeev, McLerran, Warringa, NPA803:227 (2008)

Fukushima, Kharzeev, Waringa, PRD78:074033 (2008)



## Measurement technique

Goal: 2-particle correlations wrt. the reaction plane (RP):

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle$$

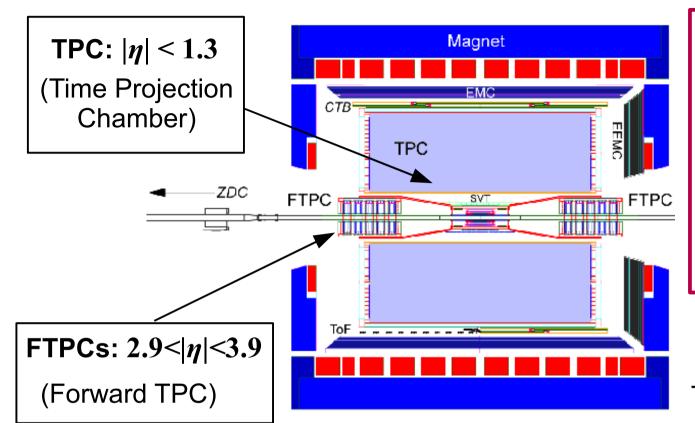
- In experiment RP is unknown
  - → estimated from azimuthal distribution of produced particles:

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle / v_{2,c}$$

 $v_{2,c}$  - elliptic flow of c-particle

Implies: c and  $(\alpha, \beta)$  particles are correlated only via RP  $\rightarrow$  validity needs to be tested experimentally

Measuring (mixed harmonics) 3-particle azimuthal correlations:


$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle = -\langle a_{\alpha}a_{\beta} \rangle v_{2,c} + \text{[non-parity correlations]}$$



## **STAR** probes of P-violation



## The STAR experiment



## **Charged particle cuts:**

Pseudo-rapidity  $|\eta| < 1$ 

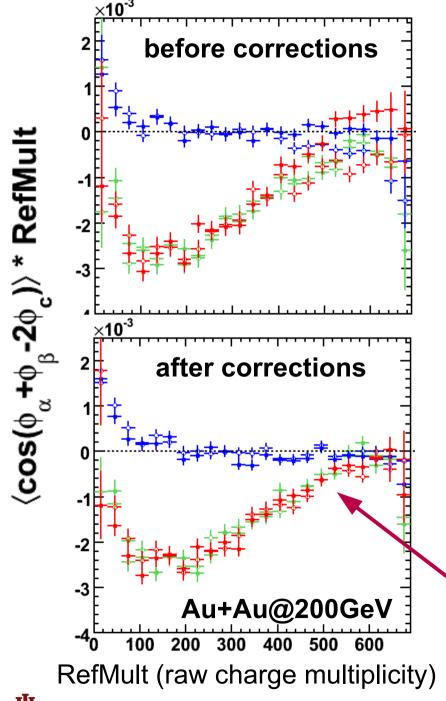
Transverse momentum

 $0.15 < p_t < 2 \text{ GeV/c}$ 

RP reconstruction with TPC, FTPCs and ZDC SMDs

#### **ZDC SMDs:**

recoil neutrons at beam rapidity


(Zero Degree Calorimeter - Shower Maximum Detector)

#### Data from RHIC running in year 2004/2005

| System | Energy, $\sqrt{s_{NN}}$ | Events     |
|--------|-------------------------|------------|
| Au+Au  | 200 / 62 GeV            | 10.6 / 7 M |
| Cu+Cu  | 200 / 62 GeV            | 30 / 19 M  |

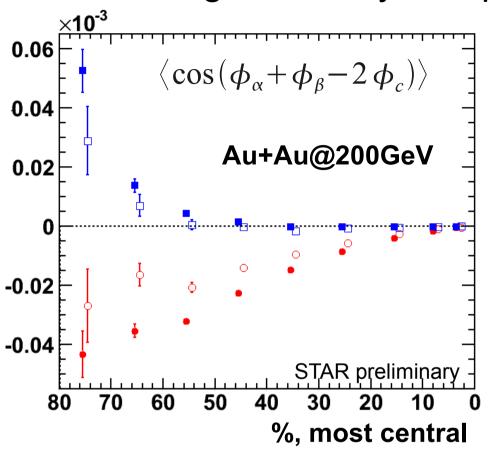


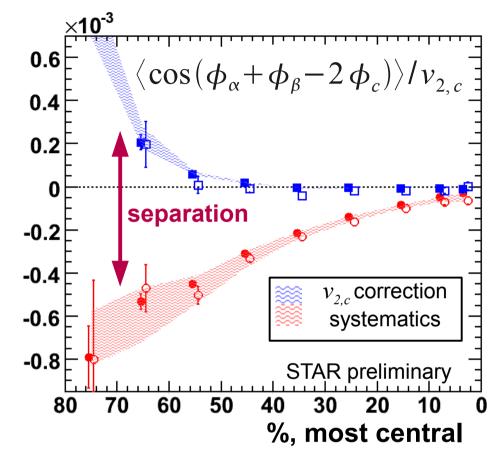
## **Detector effects**



Acceptance corrections (re-centering):

$$\sin n\phi \rightarrow \sin n\phi - \langle \sin n\phi \rangle$$

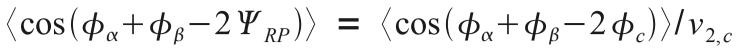

$$\cos n\phi \rightarrow \cos n\phi - \langle \cos n\phi \rangle$$

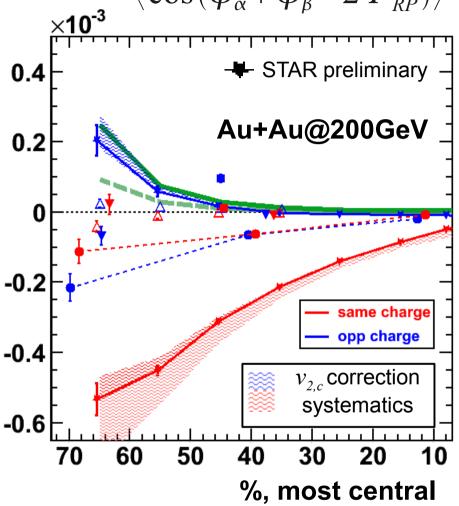

Poskanzer, Voloshin, PRC58:1671 (1998) Borghini, Dinh, Ollitrault, PRC66:014905 (2002) Selyuzhenkov, Voloshin, PRC77:034904 (2008)

| symbol   | (α, β) charges                             | <i>c</i> -particle |
|----------|--------------------------------------------|--------------------|
| +++      | opposite sign,+ - same sign, ++ same sign, | positive           |
| <b>*</b> | opposite sign,+ - same sign, ++ same sign, | negative           |

- After corrections: consistent results for all charge combinations
- Conclude from a number of tests:
  - → detector effects are not responsible for observed correlations.

## Testing sensitivity to 2-particle correlations wrt. RP



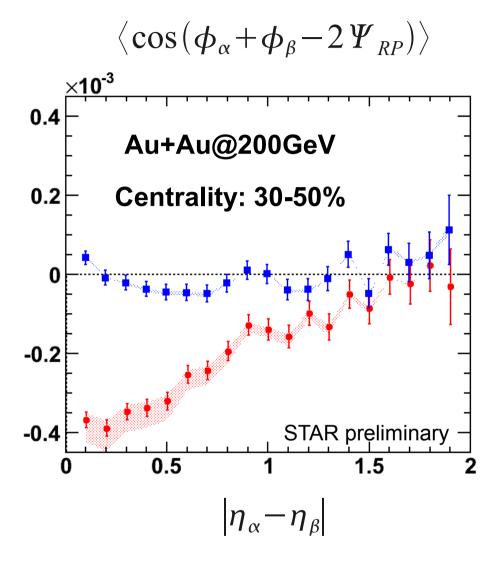

| symbol       | (α, β) charges          | c-particle              |
|--------------|-------------------------|-------------------------|
| •            | same sign opposite sign | η <1.0<br>(TPC)         |
| <del>+</del> | same sign opposite sign | 2.9< η < 3.9<br>(FTPCs) |

- v<sub>2,c</sub> correction gives consistent result with TPC/FTPC c-particle (similarly ZDC-SMD)
  - → Probing 2-particle correlations wrt. RP
- Same- and opposite-sign correlations consistent with P-violation

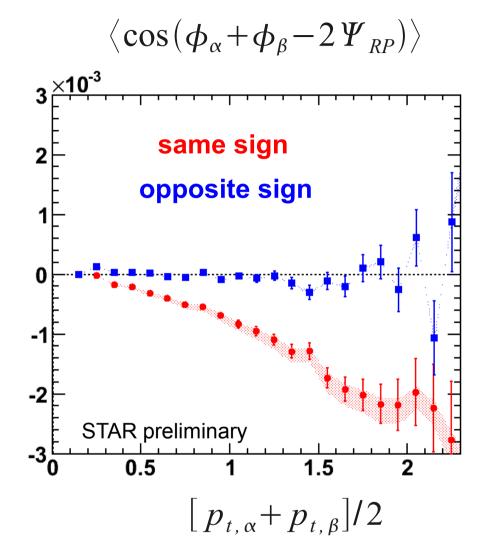
## Modeling physics backgrounds





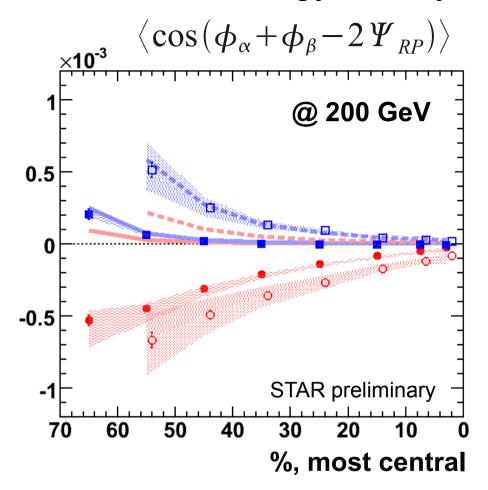

Note: cluster production is not well modeled by event generators

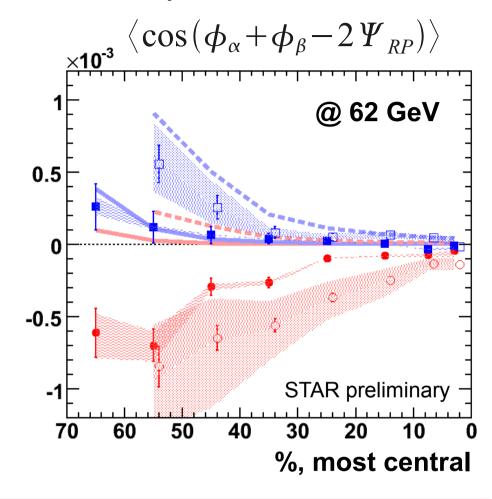
| symbol           | model                                                | <i>c</i> -particle        |
|------------------|------------------------------------------------------|---------------------------|
| <b>▼</b> △ •     | HIJING<br>HIJING + v <sub>2</sub><br>UrQMD<br>MEVSIM | true<br>reaction<br>plane |
| opposite<br>same | HIJING<br>3-particle<br>correlations                 | $ \eta  < 1.0$            |


**HIJING** + v<sub>2</sub>: added flow "afterburner" **MEVSIM**: resonances with realistic flow

- Non-zero background correlations, but different from observed signal
- HIJING produce data-like opposite-sign 3-particle correlations:
  - → opposite-sign signal can be diluted by effects not related to RP orientation

## Pseudo-rapidity and transverse momentum dependence





Typical "hadronic" width. Consistent with P-violation



The signal extends to higher transverse momenta?

## Energy and system size dependence





| Au+Au | Cu+Cu  | $\alpha$ and $\beta$ charges |
|-------|--------|------------------------------|
| •     | ф<br>ф | same sign opposite sign      |
|       |        | 3-particle HIJING            |

 $v_{2,c}$  correction systematics

## Opposite sign correlations:

Stronger for a smaller (Cu+Cu) system. In agreement with P-violation, but large uncertainties due to possible RP-independent correlations

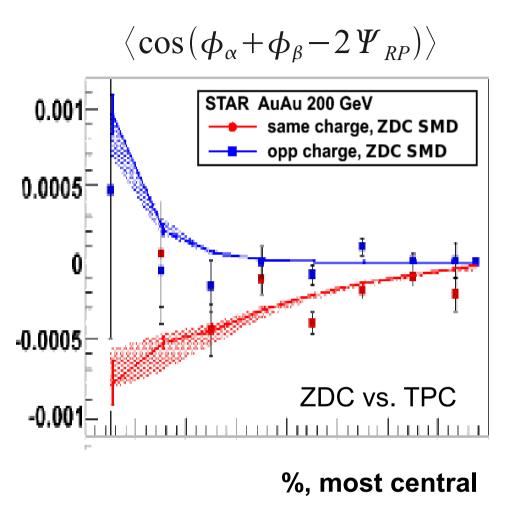


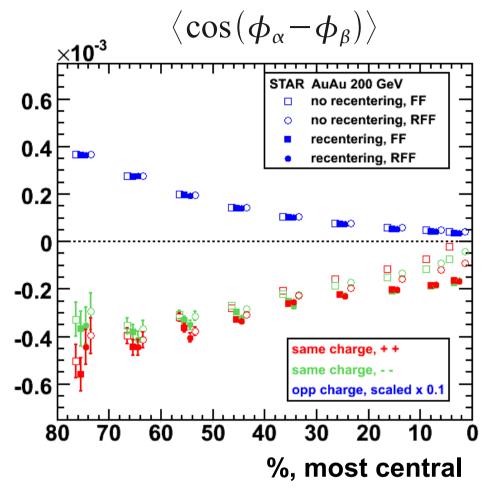
## Summary

- local P-odd domains predicted in nuclear collisions:
  - → charge separation along the system's orbital momentum
- 3-particle azimuthal correlations are sensitive to local P-violation:
  - → STAR measurements reveal non-zero signal
- Observable is P-even: susceptible to contributions from P-conserving backgrounds
- So far could not explain the same sign correlations.
   Signal can not be described with existing background models.
- Qualitatively data agrees with predictions for local P-violation (though the signal persists to higher  $p_t$  than expected)

Detailed calculations for the P-violating signal and backgrounds are needed

P-violation and future RHIC program:
 Critical point search (beam energy scan),
 Identified particle correlations, isobaric beams.





## **Backup slides**





## Results with ZDC SMD and two particle correlations





Correlations with (first harmonic) ZDC-SMD event plane yield similar result to TPC/FTPC, though with larger uncertainties.

$$\langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle =$$

$$= \langle \cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta} \rangle + \langle \sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta} \rangle$$

$$\Delta \phi_{\alpha,\beta} = \phi_{\alpha,\beta} - \Psi_{RP}$$



## Physics backgrounds

#### Reaction plane (RP) dependent:

• Directed flow (vanishes in symmetric eta-range), flow fluctuations:

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle_{flow} = \langle v_{1,\alpha} v_{1,\beta} \rangle v_{2,c}$$

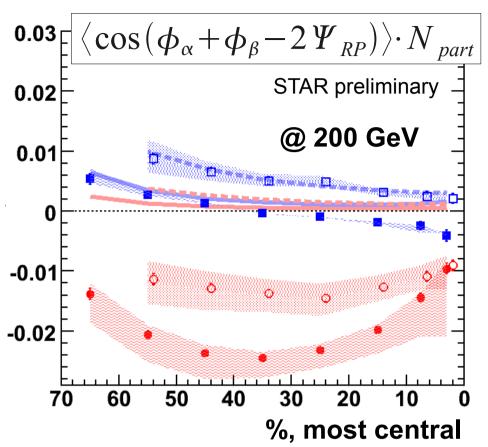
- Global polarization (zero from measurement)
- RP dependent fragmentation ("flowing clusters"):

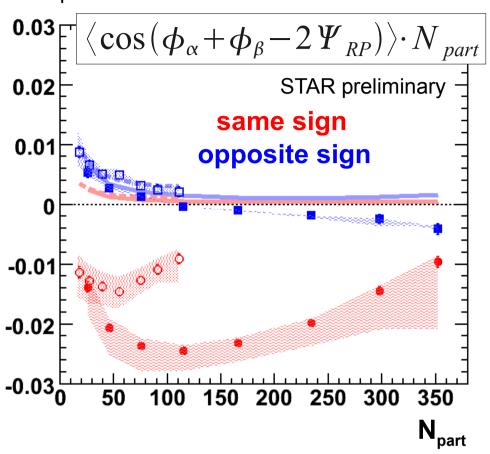
$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle_{clust} = A_{clust} \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{clust}) \rangle_{clust} v_{2,clust}$$

### **RP independent 3-particle correlations:**

Can be removed by better RP determination Different multiplicity scaling  $(1/N_{ch}^{2})$  compared to P-violation

- Jet fragmentation, resonances, multi-particle clusters
- HBT, Coulomb effects, etc.





## Detector effects study

- Track momenta distortions due to the charge buildup in the TPC at high accelerator luminosity
  - → Results for low/high luminosity runs are consistent
- Dependence on reconstructed position of the collision vertex
  - → No vertex dependence found
- Displacement of track hits when it passes the TPC central membrane
  - → Results from different half-barrels of the TPC are consistent
- Feed-down effects from non-primary tracks (i.e. resonance decay daughters)
  - → Results for dca < 1 cm and dca < 3 cm are consistent
- Electron contribution checked via dE/dx cut
  - → Effect is negligible
- Studied a correlator similar to parity observable
  - → but with the reaction plane angle rotated by pi/4
- Variation depending on the charge of the third particle used to reconstruct the reaction plane and changes of the STAR magnetic field polarity
  - → Variations does not change the observed signal



## Charge correlations and N<sub>part</sub> scaling @200GeV





Correlations multiplied by N<sub>part</sub> to remove dilution in more central collisions

| Au+Au | Cu+Cu         | $\alpha$ and $\beta$ charges |
|-------|---------------|------------------------------|
| •     | $\rightarrow$ | same sign                    |
| -     | -             | opposite sign                |
|       |               | 3-particle HIJING            |

Opp-sign correlations scale with  $N_{part}$  Same sign signal is suggestive of correlations with the reaction plane Stronger opposite charge correlations In Cu+Cu at the same  $N_{part}$