Understanding Lepton Flavor Mixing

Lisa L. Everett
 U.Wisconsin, Madison

Introduction/Motivation

Observation of Neutrino Oscillations:

$$
\mathcal{P}_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L)=\sum_{i j} \mathcal{U}_{i \alpha} \mathcal{U}_{i \beta}^{*} \mathcal{U}_{j \alpha}^{*} \mathcal{U}_{j \beta} e^{-\frac{i \Delta m_{i j}^{2} L}{2 E}}
$$

- Neutrinos are massive
- Lepton mixing is observable

Standard Model " ν Standard Model "

The ν Flavor Puzzle

- SM flavor puzzle: origin of charged fermion masses, quark mixings Dirac mass terms, parametrized by Yukawas:

$$
Y_{i j} H \cdot \bar{\psi}_{L i} \psi_{R j}
$$

- $\quad \nu$ SM flavor puzzle: origin of neutrino masses (Dirac or Majorana), lepton mixings,...

Ultimate Goal: satisfactory, credible, complete flavor theory
very difficult!
but first, let's look at the data...

The Data: Neutrino Masses

Homestake, Kam, SuperK,KamLAND,SNO, SuperK, MINOS,miniBOONE,...

$$
\Delta m_{i j}^{2} \equiv m_{i}^{2}-m_{j}^{2} \quad \text { assume: } 3 \text { neutrino mixing }
$$

Solar: $\quad \Delta m_{\odot}^{2}=\left|\Delta m_{12}^{2}\right|=7.65_{-0.20}^{+0.23} \times 10^{-5} \mathrm{eV}^{2}$
(best fit $\pm 1 \sigma$)
Atmospheric: $\quad \Delta m_{31}^{2}= \pm 2.4_{-0.11}^{+0.12} \times 10^{-3} \mathrm{eV}^{2}$

Cosmology (WMAP):

$$
\sum_{i} m_{i}<0.7 \mathrm{eV}
$$

The Data: Lepton Mixing

Homestake, Kam, SuperK,KamLAND,SNO, SuperK, Palo Verde, CHOOZ, MINOS..

$$
\mathcal{U}_{\mathrm{MNSP}}=\mathcal{R}_{1}\left(\theta_{\oplus}\right) \mathcal{R}_{2}\left(\theta_{13}, \delta_{\mathrm{MNSP}}\right) \mathcal{R}_{3}\left(\theta_{\odot}\right) \mathcal{P}
$$

Maki, Nakagawa, Sakata Pontecorvo

$$
\left|\mathcal{U}_{\mathrm{MNSP}}\right| \simeq\left(\begin{array}{ccc}
\cos \theta_{\odot} & \sin \theta_{\odot} & \epsilon \\
-\cos \theta_{\oplus} \sin \theta_{\odot} & \cos \theta_{\oplus} \cos \theta_{\odot} & \sin \theta_{\oplus} \\
\sin \theta_{\oplus} \sin \theta_{\odot} & -\sin \theta_{\oplus} \cos \theta_{\odot} & \cos \theta_{\oplus}
\end{array}\right)
$$

Solar: $\quad \theta_{\odot}=\theta_{12}=33.4^{\circ} \pm 1.4^{\circ}$
Atmospheric: $\theta_{\oplus}=\theta_{23}=45.0^{\circ}{ }_{-3.4}^{4.0} \quad$ (best fit $\pm 1 \sigma$)
Reactor: $\epsilon=\sin \theta_{13}, \quad \theta_{13}=5.7^{\circ}{ }_{-5.7}^{+3.5}$
2 large angles, I small angle! (no constraints on CP violation)

Compare: Quark Mixing

Cabibbo; Kobayashi, Maskawa

$$
\mathcal{U}_{\mathrm{CKM}}=\mathcal{R}_{1}\left(\theta_{23}^{\mathrm{CKM}}\right) \mathcal{R}_{2}\left(\theta_{13}^{\mathrm{CKM}}, \delta_{\mathrm{CKM}}\right) \mathcal{R}_{3}\left(\theta_{12}^{\mathrm{CKM}}\right)
$$

Mixing Angles: $\theta_{12}^{\mathrm{CKM}}=13.0^{\circ} \pm 0.1^{\circ} \longleftrightarrow$ Cabibbo angle θ_{c}

$$
\begin{aligned}
& \theta_{23}^{\mathrm{CKM}}=2.4^{\circ} \pm 0.1^{\circ} \\
& \theta_{13}^{\mathrm{CKM}}=0.2^{\circ} \pm 0.1^{\circ}
\end{aligned}
$$

CP violation: $\quad J \equiv \operatorname{Im}\left(\mathcal{U}_{\alpha i} \mathcal{U}_{\beta j} \mathcal{U}_{\beta i}^{*} \mathcal{U}_{\alpha j}^{*}\right)$
Jarlskog

$$
\begin{aligned}
& J_{\mathrm{CP}}^{(\mathrm{CKM})} \simeq \sin 2 \theta_{12}^{\mathrm{CKM}} \sin 2 \theta_{23}^{\mathrm{CKM}} \sin 2 \theta_{13}^{\mathrm{CKM}} \sin \delta_{\mathrm{CKM}} \\
& J \sim 10^{-5} \quad \delta_{\mathrm{CKM}}=60^{\circ} \pm 14^{\circ}
\end{aligned}
$$

3 small angles, I large phase!

A paradigm shift

Strikingly different flavor patterns for quarks and leptons!

- Mass scales, hierarchies of neutral and charged fermions:

- Mixing Angles: quarks small, leptons 2 large, Ismall
step I for theory: suppressing neutrino mass scale

Beyond physics of Yukawa couplings!

$$
-\mathcal{L}_{\nu}=Y_{\nu i j} \bar{L}_{L i} H \nu_{R j}+\frac{\lambda_{i j}}{\Lambda}\left(L_{L i} H\right)\left(L_{L j} H\right)+\frac{1}{2}\left(M_{i j} \bar{\nu}_{R i}\left(\nu_{R j}\right)^{c}+h . c .\right)
$$

Prototype:Type I neutrino seesaw

$$
\mathcal{M}_{\nu}=\left(\begin{array}{cc}
0 & m \\
m & M
\end{array}\right) \quad \begin{aligned}
& m \sim \mathcal{O}(100 \mathrm{GeV}) \\
& M \gg m
\end{aligned}
$$

$$
\begin{gathered}
m_{1} \sim \frac{m^{2}}{M} \quad m_{2} \sim M \gg m_{1} \\
\nu_{1,2} \sim \nu_{L, R}+\frac{m}{M} \nu_{R, L}
\end{gathered}
$$

but also many other possibilities...
Majorana (Type II, III seesaws, double seesaw...), suppressed Dirac masses (most mechanisms exploit SM singlet nature of ν_{R})

This talk: implications of large lepton mixings (step 2)

Flavor Model Building in the $\nu \mathrm{SM}$ (I)

Standard paradigm: spontaneously broken flavor symmetry

$$
Y_{i j} H \cdot \bar{\psi}_{L i} \psi_{R j} \longrightarrow\left(\frac{\varphi}{M}\right)^{n_{i j}} H \cdot \bar{\psi}_{L i} \psi_{R j} \quad \text { Froggatt, Nielsen }
$$

Recall for quarks:

- hierarchical masses, small mixings: continuous family symmetries
- CKM matrix: small angles and/or alignment

$$
\mathcal{U}_{\mathrm{CKM}}=\mathcal{U}_{u} \mathcal{U}_{d}^{\dagger} \sim 1+\mathcal{O}(\lambda) \quad \lambda \sim \frac{\varphi}{M}
$$

Wolfenstein parametrization: $\quad \lambda \equiv \sin \theta_{c}=0.22$
suggests Cabibbo angle may be a useful flavor expansion parameter

Flavor Model Building in the ν SM (II)

- Main issue: what is $\mathcal{U}_{\text {MNSP }}$ in limit of exact symmetry? for the leptons, large angles suggest

$$
\begin{aligned}
& \mathcal{U}_{\mathrm{MNSP}}= \mathcal{U}_{e} \mathcal{U}_{\nu}^{\dagger} \sim \uparrow_{\uparrow}^{\mathcal{W}}+\underset{\uparrow}{\mathcal{V}} \underset{\text { "bare" mixing angles }}{\mathcal{O}} \underset{\text { flavor expansion }}{\left.\lambda^{\prime}\right)} \\
&\left(\theta_{12}^{0}, \theta_{13}^{0}, \theta_{23}^{0}\right) \\
& \text { parameter }
\end{aligned}
$$

- useful, and motivated in unified/string scenarios, to take

$$
\lambda^{\prime}=\lambda \equiv \sin \theta_{c}
$$

ideas of "Cabibbo haze" and quark-lepton complementarity (Datta,L.E., Ramond)
(more shortly...)

Aside: Lepton Mixing Angles are "non-generic"

Classify scenarios by the form of $\mathcal{U}_{\text {MNSP }}$ in symmetry limit note: lepton mixing angle pattern has the most challenges ($\mathrm{w} / 3$ families)

- 3 small angles $\longrightarrow \sim$ diagonal \mathcal{M}_{ν}
- 1 large, 2 small $\longrightarrow \sim \operatorname{Rank} \mathcal{M}_{\nu}<3$
- 3 large angles \longrightarrow "anarchical" \mathcal{M}_{ν}
- 2 large, 1 small \longrightarrow fine-tuning, non-Abelian Issues: size of θ_{13}, origin of non-maximal θ_{12}
large angles also suggest discrete non-Abelian family symmetries!

Flavor Model Building in the ν SM (III)

$$
\mathcal{U}_{\mathrm{MNSP}}=\mathcal{U}_{e} \mathcal{U}_{\nu}^{\dagger} \sim \mathcal{W}+\mathcal{O}\left(\lambda^{\prime}\right)
$$

Classify models by form of $\mathcal{W}\left(\theta_{12}^{0}, \theta_{13}^{0}, \theta_{23}^{0}\right)$:

- In general: $\theta_{23}^{0}=45^{\circ} \quad \theta_{13}^{0}=0^{\circ} \quad$ (reasonable)
- More variety in choice of bare solar angle θ_{12}^{0} :
- "bimaximal" mixing
- "tri-bimaximal" mixing
- "golden ratio" mixing
(quark-lepton complementarity)

Harrison, Perkins, Scott (HPS)

$$
\phi=(1+\sqrt{5}) / 2
$$

Scenario I. Bimaximal Mixing

"bare" solar angle $\quad \theta_{12}^{0}=45^{\circ} \quad \tan \theta_{12}^{0}=1$

$$
\mathcal{U}_{\mathrm{MNSP}}^{(\mathrm{BM})}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Requires large perturbations:

$$
\theta_{12}=\theta_{12}^{0}+\mathcal{O}(\lambda) \sim \frac{\pi}{4}-\theta_{c}
$$

"quark-lepton complementarity"

Raidal; Minakata, Smirnov; Frampton, Mohapatra; Xing; Ferrandis, Pakvasa; King;
L.E., Ramond; Plentinger, Lindner; Dighe, Rodejohann, many others (>IO0 papers)...

Bimaximal mixing scenarios:

useful framework for exploring Cabibbo effects in quark+lepton sectors

$$
\begin{aligned}
\frac{m_{u}}{m_{t}} & \sim \lambda^{8} & \frac{m_{d}}{m_{b}} & \sim \lambda^{4} \\
\frac{m_{c}}{m_{t}} & \sim \lambda^{4} & \frac{m_{e}}{m_{\tau}} & \sim \lambda^{5} \\
\frac{m_{b}}{m_{b}} & \sim \lambda^{2} & \frac{m_{\mu}}{m_{\tau}} \sim \lambda^{2} & \sqrt{\frac{\Delta m_{\odot}^{2}}{\Delta m_{\oplus}^{2}}} \sim \lambda \\
& \sim 1 & \frac{m_{b}}{m_{t}} & \sim \lambda^{3} \\
\theta_{12}^{\mathrm{CKM}} & \sim \lambda & \theta_{23}^{\mathrm{CKM}} \sim \lambda^{2} & \theta_{13}^{\mathrm{CKM}} \sim \lambda^{3}
\end{aligned}
$$

but implementation in full grand unified theories: very challenging
recent resurgence in context of discrete non-Abelian family symms
Altarelli, Feruglio, and Merlo, '09,...

Scenario II.Tri-bimaximal (HPS) Mixing

peak popularity: ~2006-now
"bare" solar angle $\quad \tan \theta_{12}^{0}=\frac{1}{\sqrt{2}} \quad \theta_{12}^{0}=35.26^{\circ}$
Harrison, Perkins, Scott '02

$$
\mathcal{U}_{\mathrm{MNSP}}^{(\mathrm{HPS})}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Does not require large perturbations! $\quad \theta_{12}=\theta_{12}^{0}+\mathcal{O}\left(\lambda^{2}\right)$ amusing note: MNSP looks like Clebsch-Gordan coeffs Meshkov; Zee,...

Naturally obtained from discrete non-Abelian symmetries (subgroups of $S O(3), S U(3)$)

A Few Examples: \mathcal{A}_{4}
(tetrahedron)
\mathcal{S}_{4} (cube)
\mathcal{T}^{\prime}
$\Delta\left(3 n^{2}\right)$
\mathcal{A}_{5}
(icosahedron)

Ma and collaborators (earliest in 'OI), Altarelli, Feruglio, Babu and He, Valle, Hirsch et al., King et al., many, many others...

Ma; Hagedorn, Lindner, Mohapatra; Cai, Yu; Zhang,...

Aranda, Carone, Lebed; Chen, Mahanthappa,...

Luhn, Nasri, Ramond; Ma; King, Ross,...
L.E., Stuart (in progress)

Most popular scenario! many models, elegant results issue of incorporating quarks: much recent progress

Scenario III. Golden Ratio Mixing

 peak popularity: hopefully soon!!Idea: solar angle related to "golden ratio"

$$
\phi=(1+\sqrt{5}) / 2
$$

- Two proposed scenarios:
- $\quad \tan \theta_{12}=\frac{1}{\phi} \quad \theta_{12}=31.72^{\circ}$
L.E., Stuart '08,
in progress

Implementation: icosahedral flavor symmetry $\mathcal{I}\left(\mathcal{A}_{5}\right)$

- $\quad \cos \theta_{12}=\frac{\phi}{2} \quad \theta_{12}=36^{\circ}$

Adulpravitchai, Blum,
Rodejohann '09

Implementation: dihedral flavor symmetry \mathcal{D}_{10}

Scenario III: GRI

Idea: Ramond et al., hep-ph/0306002 (footnote)
Kajiyama, Raidal, Strumia 0705.4559 [hep-ph] $\quad \mathcal{Z}_{2} \times \mathcal{Z}_{2}$
Everett and Stuart, 08I2.I057 [hep-ph],... \mathcal{A}_{5}

$$
\mathcal{U}_{\mathrm{MNSP}}^{(\mathrm{GR} 1)}=\left(\begin{array}{ccc}
\sqrt{\frac{\phi}{\sqrt{5}}} & -\sqrt{\frac{1}{\sqrt{5} \phi}} & 0 \\
\frac{1}{\sqrt{2}} \sqrt{\frac{1}{\sqrt{5} \phi}} & \frac{1}{\sqrt{2}} \sqrt{\frac{\phi}{\sqrt{5}}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \sqrt{\frac{1}{\sqrt{5} \phi}} & \frac{1}{\sqrt{2}} \sqrt{\frac{\phi}{\sqrt{5}}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

\mathcal{A}_{5} rich and virtually unexplored model building territory!

Scenario III: GR2

Idea: Rodejohann, 08I0.5239 [hep-ph] (phenomenology)
Adulpravitchai, Blum, and Rodejohann, 0903.053I [hep-ph] \mathcal{D}_{10}

$$
\mathcal{U}_{\mathrm{MNSP}}^{(\mathrm{GR} 2)}=\left(\begin{array}{ccc}
\frac{\phi}{2} & -\frac{1}{2} \sqrt{\frac{\sqrt{5}}{\phi}} & 0 \\
\frac{1}{2} \sqrt{\frac{5}{2 \phi}} & \frac{\phi}{2 \sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} \sqrt{\frac{5}{2 \phi}} & \frac{\phi}{2 \sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

complete flavor theory based on dihedral symmetry! (solar angle prediction based on exterior angle of decagon)

Conclusions

- Lepton data has given us a ν SM flavor puzzle!
- Theoretically favored mixing angle patterns:
- Bimaximal mixing and Cabibbo-sized effects
- Tri-bimaximal mixing: tetrahedral (+others)
- "golden ratio" mixings: icosahedral/dihedral
- themes: discrete non-Abelian family symmetries, embedding quarks together with leptons...
- lots of interesting work to do! Data will be crucial!

