Understanding Lepton Flavor Mixing

Lisa L. Everett U. Wisconsin, Madison

Introduction/Motivation

Observation of Neutrino Oscillations:

$$\mathcal{P}_{\nu_{\alpha} \to \nu_{\beta}}(L) = \sum_{ij} \mathcal{U}_{i\alpha} \mathcal{U}_{i\beta}^* \mathcal{U}_{j\alpha}^* \mathcal{U}_{j\beta} e^{-\frac{i\Delta m_{ij}^2 L}{2E}}$$

- Neutrinos are massive
- Lepton mixing is observable

Standard Model \longrightarrow " ν Standard Model " (νSM)

The ν Flavor Puzzle

 SM flavor puzzle: origin of charged fermion masses, quark mixings
 Dirac mass terms, parametrized by Yukawas:

$$Y_{ij}H\cdot \bar{\psi}_{Li}\psi_{Rj}$$

• ν SM flavor puzzle: origin of neutrino masses (Dirac or Majorana), lepton mixings,...

Ultimate Goal: satisfactory, credible, complete flavor theory very difficult!

but first, let's look at the data...

The Data: Neutrino Masses

Homestake, Kam, SuperK, KamLAND, SNO, SuperK, MINOS, miniBOONE,...

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$

assume: 3 neutrino mixing

Solar:
$$\Delta m_{\odot}^2 = |\Delta m_{12}^2| = 7.65^{+0.23}_{-0.20} \times 10^{-5} \,\mathrm{eV}^2$$

(best fit $\pm 1\sigma$)

Atmospheric:
$$\Delta m_{31}^2 = \pm 2.4^{+0.12}_{-0.11} \times 10^{-3} \,\mathrm{eV}^2$$

Inverted Hierarchy

Cosmology (WMAP):

$$\sum_{i} m_i < 0.7 \,\mathrm{eV}$$

The Data: Lepton Mixing

Homestake, Kam, SuperK, KamLAND, SNO, SuperK, Palo Verde, CHOOZ, MINOS...

$$\mathcal{U}_{\mathrm{MNSP}} = \mathcal{R}_1(\theta_{\oplus})\mathcal{R}_2(\theta_{13}, \delta_{\mathrm{MNSP}})\mathcal{R}_3(\theta_{\odot})\mathcal{P}$$

Maki, Nakagawa, Sakata Pontecorvo

$$|\mathcal{U}_{\text{MNSP}}| \simeq \begin{pmatrix} \cos \theta_{\odot} & \sin \theta_{\odot} & \epsilon \\ -\cos \theta_{\oplus} \sin \theta_{\odot} & \cos \theta_{\oplus} \cos \theta_{\odot} & \sin \theta_{\oplus} \\ \sin \theta_{\oplus} \sin \theta_{\odot} & -\sin \theta_{\oplus} \cos \theta_{\odot} & \cos \theta_{\oplus} \end{pmatrix}$$

Solar: $\theta_{\odot} = \theta_{12} = 33.4^{\circ} \pm 1.4^{\circ}$

Atmospheric: $\theta_{\oplus} = \theta_{23} = 45.0^{\circ} ^{+4.0}_{-3.4}$ (best fit $\pm 1\sigma$)

Reactor: $\epsilon = \sin \theta_{13}, \ \theta_{13} = 5.7^{\circ} {}^{+3.5}_{-5.7}$

2 large angles, I small angle! (no constraints on CP violation)

Compare: Quark Mixing

Cabibbo; Kobayashi, Maskawa

$$\mathcal{U}_{\text{CKM}} = \mathcal{R}_1(\theta_{23}^{\text{CKM}}) \mathcal{R}_2(\theta_{13}^{\text{CKM}}, \delta_{\text{CKM}}) \mathcal{R}_3(\theta_{12}^{\text{CKM}})$$

CP violation:
$$J \equiv \operatorname{Im}(\mathcal{U}_{\alpha i}\mathcal{U}_{\beta j}\mathcal{U}_{\beta i}^*\mathcal{U}_{\alpha j}^*)$$

larlskog Dunietz, Greenberg, Wu

$$J_{\text{CP}}^{(\text{CKM})} \simeq \sin 2\theta_{12}^{\text{CKM}} \sin 2\theta_{23}^{\text{CKM}} \sin 2\theta_{13}^{\text{CKM}} \sin \delta_{\text{CKM}}$$
$$J \sim 10^{-5} \qquad \delta_{\text{CKM}} = 60^{\circ} \pm 14^{\circ}$$

3 small angles, I large phase!

A paradigm shift

Strikingly different flavor patterns for quarks and leptons!

• Mass scales, hierarchies of neutral and charged fermions:

Mixing Angles: quarks small, leptons 2 large, Ismall

step I for theory: suppressing neutrino mass scale

Beyond physics of Yukawa couplings!

$$-\mathcal{L}_{\nu} = Y_{\nu ij} \bar{L}_{Li} H \nu_{Rj} + \frac{\lambda_{ij}}{\Lambda} (L_{Li} H) (L_{Lj} H) + \frac{1}{2} (M_{ij} \bar{\nu}_{Ri} (\nu_{Rj})^c + h.c.)$$

Prototype: Type I neutrino seesaw

totype: Type I neutrino seesaw
$$m \sim \mathcal{O}(100\,\mathrm{GeV})$$
 Minkowski; Yanagida; Gell-Mann, Ramond, Slansky $m \sim \mathcal{O}(100\,\mathrm{GeV})$ $m_1 \sim \frac{m^2}{M}$ $m_2 \sim M \gg m_1$ $m_1 \sim \frac{m^2}{M}$ $m_2 \sim M \gg m_1$ $m_1 \sim \frac{m}{M} \sim \frac{m}{$

Minkowski; Yanagida;

$$m_1 \sim \frac{m^2}{M} \qquad m_2 \sim M \gg m_1$$
$$\nu_{1,2} \sim \nu_{L,R} + \frac{m}{M} \nu_{R,L}$$

but also many other possibilities...

Majorana (Type II, III seesaws, double seesaw...), suppressed Dirac masses (most mechanisms exploit SM singlet nature of ν_R)

This talk: implications of large lepton mixings (step 2)

Flavor Model Building in the ν SM (I)

Standard paradigm: spontaneously broken flavor symmetry

$$Y_{ij}H\cdot \bar{\psi}_{Li}\psi_{Rj}$$
 \longrightarrow $\left(\frac{\varphi}{M}\right)^{n_{ij}}H\cdot \bar{\psi}_{Li}\psi_{Rj}$ Froggatt, Nielsen

Recall for quarks:

- hierarchical masses, small mixings: continuous family symmetries
- CKM matrix: small angles and/or alignment

$$\mathcal{U}_{\mathrm{CKM}} = \mathcal{U}_u \mathcal{U}_d^{\dagger} \sim 1 + \mathcal{O}(\lambda)$$

$${}_{\lambda \sim \frac{\varphi}{M}}$$

Wolfenstein parametrization: $\lambda \equiv \sin \theta_c = 0.22$

suggests Cabibbo angle may be a useful flavor expansion parameter

Flavor Model Building in the ν SM (II)

ullet Main issue: what is $\mathcal{U}_{\mathrm{MNSP}}$ in limit of exact symmetry? for the leptons, large angles suggest

$$\mathcal{U}_{\mathrm{MNSP}} = \mathcal{U}_e \mathcal{U}_{\nu}^{\dagger} \sim \mathcal{W} + \mathcal{O}(\lambda')$$

"bare" mixing angles flavor expansion parameter $(\theta_{12}^0, \theta_{13}^0, \theta_{23}^0)$

useful, and motivated in unified/string scenarios, to take

$$\lambda' = \lambda \equiv \sin \theta_c$$

ideas of "Cabibbo haze" and quark-lepton complementarity (Datta, L.E., Ramond) (more shortly...)

Aside: Lepton Mixing Angles are "non-generic"

Classify scenarios by the form of $\;\mathcal{U}_{\mathrm{MNSP}}$ in symmetry limit

note: lepton mixing angle pattern has the most challenges (w/3 families)

- ullet 3 small angles \longrightarrow \sim diagonal $\mathcal{M}_{
 u}$
- 1 large, 2 small \longrightarrow $\sim \text{Rank}\mathcal{M}_{\nu} < 3$
- 3 large angles ———— "anarchical" \mathcal{M}_{ν}
- 2 large, 1 small \longrightarrow fine-tuning, non-Abelian

Issues: size of θ_{13} , origin of non-maximal θ_{12}

large angles also suggest discrete non-Abelian family symmetries!

Flavor Model Building in the ν SM (III)

$$\mathcal{U}_{ ext{MNSP}} = \mathcal{U}_e \mathcal{U}_
u^\dagger \sim \mathcal{W} + \mathcal{O}(\lambda')$$

Classify models by form of $W(\theta_{12}^0, \theta_{13}^0, \theta_{23}^0)$:

- In general: $\theta_{23}^0 = 45^\circ$ $\theta_{13}^0 = 0^\circ$ (reasonable)
- More variety in choice of bare solar angle $heta_{12}^0$:
 - "bimaximal" mixing (quark-lepton complementarity)
 - "tri-bimaximal" mixing Harrison, Perkins, Scott (HPS)
 - "golden ratio" mixing $\phi = (1 + \sqrt{5})/2$

Scenario I. Bimaximal Mixing

peak popularity: ~2004-2006

"bare" solar angle

$$\theta_{12}^0 = 45^{\circ}$$

$$\theta_{12}^0 = 45^\circ \qquad \tan \theta_{12}^0 = 1$$

$$\mathcal{U}_{\text{MNSP}}^{(\text{BM})} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}}\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Requires large perturbations:

$$\theta_{12} = \theta_{12}^0 + \mathcal{O}(\lambda) \sim \frac{\pi}{4} - \theta_c$$

"quark-lepton complementarity"

Raidal; Minakata, Smirnov; Frampton, Mohapatra; Xing; Ferrandis, Pakvasa; King; L.E., Ramond; Plentinger, Lindner; Dighe, Rodejohann, many others (>100 papers)...

Bimaximal mixing scenarios:

useful framework for exploring Cabibbo effects in quark+lepton sectors

$$\frac{m_u}{m_t} \sim \lambda^8 \qquad \frac{m_d}{m_b} \sim \lambda^4 \qquad \frac{m_e}{m_\tau} \sim \lambda^5 \qquad \qquad \sqrt{\frac{\Delta m_{\odot}^2}{\Delta m_{\oplus}^2}} \sim \lambda$$

$$\frac{m_c}{m_t} \sim \lambda^4 \qquad \frac{m_s}{m_b} \sim \lambda^2 \qquad \frac{m_\mu}{m_\tau} \sim \lambda^2$$

$$\frac{m_b}{m_\tau} \sim 1 \qquad \frac{m_b}{m_t} \sim \lambda^3 \qquad \text{(GUT scale)} \qquad \Delta\theta_{23} < \mathcal{O}(\lambda)$$

$$\theta_{12}^{\text{CKM}} \sim \lambda \qquad \theta_{23}^{\text{CKM}} \sim \lambda^2 \qquad \theta_{13}^{\text{CKM}} \sim \lambda^3$$

but implementation in full grand unified theories: very challenging

recent resurgence in context of discrete non-Abelian family symms

Altarelli, Feruglio, and Merlo, '09,...

Scenario II. Tri-bimaximal (HPS) Mixing

peak popularity: ~2006-now

"bare" solar angle
$$\tan \theta_{12}^0 = \frac{1}{\sqrt{2}}$$
 $\theta_{12}^0 = 35.26^\circ$

$$\theta_{12}^0 = 35.26^\circ$$

Harrison, Perkins, Scott '02

$$\mathcal{U}_{\text{MNSP}}^{\text{(HPS)}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Does not require large perturbations! $\theta_{12} = \theta_{12}^0 + \mathcal{O}(\lambda^2)$

$$\theta_{12} = \theta_{12}^0 + \mathcal{O}(\lambda^2)$$

amusing note: MNSP looks like Clebsch-Gordan coeffs

Meshkov: Zee....

Naturally obtained from discrete non-Abelian symmetries (subgroups of SO(3), SU(3))

A Few Examples:
$$\mathcal{A}_4$$
 (tetrahedron)

Ma and collaborators (earliest in '01), Altarelli, Feruglio, Babu and He, Valle, Hirsch et al., King et al., many, many others...

 \mathcal{S}_4 (cube)

Ma; Hagedorn, Lindner, Mohapatra; Cai, Yu; Zhang,...

 Δ (3 n^2)

Luhn, Nasri, Ramond; Ma; King, Ross,...

 \mathcal{A}_5 (icosahedron)

Ma and collaborators (earliest in '01), Altarelli, Feruglio, Babu and He, Valle, Hirsch et al., King et al., many, many others...

Lindner, Mohapatra; Cai, Yu; Zhang,...

Luhn, Nasri, Ramond; Ma; King, Ross,...

Lindner, Mohapatra; Cai, Yu; Zhang,...

Luhn, Nasri, Ramond; Ma; King, Ross,...

Lindner, Mohapatra; Cai, Yu; Zhang,...

Most popular scenario! many models, elegant results

issue of incorporating quarks: much recent progress

Scenario III. Golden Ratio Mixing

peak popularity: hopefully soon!!

Idea: solar angle related to "golden ratio"

$$\phi = (1 + \sqrt{5})/2$$

Two proposed scenarios:

•
$$\tan \theta_{12} = \frac{1}{\phi}$$
 $\theta_{12} = 31.72^{\circ}$

$$\theta_{12} = 31.72^{\circ}$$

L.E., Stuart '08, in progress

Implementation: icosahedral flavor symmetry $\mathcal{I}\left(\mathcal{A}_{5}\right)$

$$\bullet \quad \cos \theta_{12} = \frac{\phi}{2} \qquad \theta_{12} = 36^{\circ}$$

$$\theta_{12} = 36^{\circ}$$

Adulpravitchai, Blum, Rodejohann '09

Implementation: dihedral flavor symmetry

Scenario III: GRI

Idea: Ramond et al., hep-ph/0306002 (footnote)

Kajiyama, Raidal, Strumia 0705.4559 [hep-ph]

$$\mathcal{Z}_2 imes \mathcal{Z}_2$$

Everett and Stuart, 0812.1057 [hep-ph],...

$$\mathcal{A}_5$$

$$\mathcal{U}_{\text{MNSP}}^{(\text{GR1})} = \begin{pmatrix} \sqrt{\frac{\phi}{\sqrt{5}}} & -\sqrt{\frac{1}{\sqrt{5}\phi}} & 0\\ \frac{1}{\sqrt{2}}\sqrt{\frac{1}{\sqrt{5}\phi}} & \frac{1}{\sqrt{2}}\sqrt{\frac{\phi}{\sqrt{5}}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\sqrt{\frac{1}{\sqrt{5}\phi}} & \frac{1}{\sqrt{2}}\sqrt{\frac{\phi}{\sqrt{5}}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

 \mathcal{A}_5 rich and virtually unexplored model building territory!

A. Stuart's talk

Scenario III: GR2

Idea: Rodejohann, 0810.5239 [hep-ph] (phenomenology)

Adulpravitchai, Blum, and Rodejohann, 0903.053 I [hep-ph] \mathcal{D}

 \mathcal{D}_{10}

$$\mathcal{U}_{\text{MNSP}}^{(\text{GR2})} = \begin{pmatrix} \frac{\phi}{2} & -\frac{1}{2}\sqrt{\frac{\sqrt{5}}{\phi}} & 0\\ \frac{1}{2}\sqrt{\frac{5}{2\phi}} & \frac{\phi}{2\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{2}\sqrt{\frac{5}{2\phi}} & \frac{\phi}{2\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

complete flavor theory based on dihedral symmetry! (solar angle prediction based on exterior angle of decagon)

Conclusions

- Lepton data has given us a ν SM flavor puzzle!
- Theoretically favored mixing angle patterns:
 - Bimaximal mixing and Cabibbo-sized effects
 - Tri-bimaximal mixing: tetrahedral (+others)
 - "golden ratio" mixings: icosahedral/dihedral
- themes: discrete non-Abelian family symmetries, embedding quarks together with leptons...
- lots of interesting work to do! Data will be crucial!