

2009 Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009) 26-31 IULY 2009

Wayne State University, Detroit, MI

Charmless hadronic B decays into V, A and T final states at BaBar

Talk on behalf of the BaBar Collaboration

Outline

PAOLO GANDINI

"Polarization Puzzle"

New modes to investigate to shed light on the problem...

PAOLO GANDINI

$f_{\rm L}\,\&$ Helicity Amplitudes

How to extract Longitudinal Polarization? -> Introduce angular information

• Decay: $0 \rightarrow 1 \ 1$ (Spin-0 \rightarrow Spin-1 Spin-1)

It can be described in terms of 3 different Helicity Amplitudes

- Limited number of signal events to perform a complete angular analysis
- Decay amplitude can be expressed in terms of a single non-trivial parameter f

Integration on ϕ , the angle between the two planes of decaying particles

 $oldsymbol{J}^{\,p}$ of particles ightarrow different angular distributions

2-Body Decays

angle between **daughter flight direction** and flight direction of mother in its cms

and flight direction of mother in its cms

PAOLO GANDINI

Analysis Technique: ML fits

5

PAOLO GANDINI

NEW ! $B^0 \rightarrow a_1(1260)^+ a_1(1260)^-$ arXiv:0907.1776

> B⁰ a₁⁻(1260) ^π a₁⁺(1260) ^π

π

 B° meson reconstructed in final state $a_{1}(1260)^{+}a_{1}(1260)^{-}$

- $B^0 \to a_1(1260)^+ a_1(1260)^-$
- $a_1(1260)^{\pm} \to \rho^0(770) \ \pi^{\pm}$
- $\rho^0(770) \rightarrow \pi^+\pi^-$

Specific component for non resonant background

 $a_1 \rightarrow 3\pi$ We do not separate the dominant P-wave $(\pi\pi)_{\rho}$ from suppressed S-wave $(\pi\pi)_{\sigma}$ Included in systematic uncertainties

Sub. PRL

$B^0 \rightarrow a_1(1260)^+ a_1(1260)^-$ arXiv:0907.1776 NEW !

Sub. PRL

Observation with a significance of 5σ

Assuming:

$$BF(a_1^+ \to \pi^+ \pi^- \pi^+) = BF(a_1^+ \to \pi^0 \pi^0 \pi^+)$$
$$BF(a_1^\pm \to (3\pi)^\pm) = 100\%$$
$$BF(10^{-6}) = 47.3 \pm 10.5 \pm 6.3$$

General agreement with QCD factorization

Projections Events (8 MeV) 80 / 80 (b) -0.05 0.05 0 ΔE (GeV) Events/(1.3 MeV/c²) 100 2.2 (a) 5.27 5.275 5.28 5.285

PAOLO GANDINI

DPF 2009, 26-31 July 2009

 m_{ES} (GeV/c²)

Predicted high BF for these modes in QCD factorization (up to 33 x 10^{-6})

 $B \rightarrow b_1 \rho, \ b_1 K^*(892)$ arXiv:0907.3485

Mode

 $b_1^-
ho^+ \ b_1^0
ho^+$

 $b_1^+
ho^0 \ b_1^0
ho^0$

 $b_1^0 K^{*+}$

 $b_1^+ K^{*0}$

 $b_1^0 K^{*0}$

 $b_1^0 K_{K^+\pi^0}^{*+} \ b_1^0 K_{K_S^0\pi^+}^{*+}$

Both neutral and charged B decays considered

No previous searches reported

NEW !

 $b_1 \rightarrow \omega \pi$ Angular distribution: $f_L \left[\cos^2 \theta_A + \left| \frac{C_1}{C_0} \right|^2 \sin^2 \theta_A \right] \cos^2 \theta_V +$ LN **TR** $(1-f_L)\frac{1}{4}\left|\sin^2\theta_A + \left|\frac{C_1}{C_0}\right|^2(1+\cos^2\theta_A)\right|\sin^2\theta_V$ with: $\frac{C_1}{C_0} = \frac{1 + (D/S)/\sqrt{2}}{1 - \sqrt{2}(D/S)}$ from $D/S = 0.277 \pm 0.027$ PDG

(465 ± 5 M BB pairs) Y Y_0 SB \mathcal{B} U.L. ε (10^{-6}) (10^{-6}) (evts) (%) (evts) (σ) -33 ± 10 $4 + 2 \quad 3.0$ $- -1.8 \pm 0.5 \pm 1.0$ 1.4 - $-3.0 \pm 0.9 \pm 1.8$ $-18 \pm 5 \quad -4 \pm 2 \quad 1.1$ 3.3 37 ± 25 8 ± 4 3.6 0.4 $1.5 \pm 1.5 \pm 2.2$ 5.2 $-1.1 \pm 1.7^{+1.4}_{-0.9}$ -8 ± 19 $5 \pm 3 \ 2.4$ 3.4 $b_{1}^{-}K^{*+}$ $2.4^{+1.5}_{-1.3} \pm 1.0$ 1.75.0 $3 \pm 8 -5 \pm 3 0.8 0.9$ $b_1^- K_{K_1^+ \pi^0}^{*+}$ $1.8\pm1.9\pm1.4$ $3.2 \pm 2.1^{+1.0}_{-1.5}$ $b_1^- K^{*+}_{K^0_S \pi^+}$ 4 ± 2 0.9 1.5 17 ± 9

0.1

_

 $0.4^{+2.0+3.0}_{-1.5-2.6}$

 $-2.2 \pm 3.0^{+5.0}_{-2.3}$

 $1.6 \pm 2.5 \pm 3.3$

 $2.9 \pm 1.5 \pm 1.5$

 $4.8 \pm 1.9^{+1.5}_{-2.2}$

Results

We don't observe any statistically significant signal

 0 ± 0 0.4 0.4

 -8 ± 7 -3 ± 2 0.5

 55 ± 21 15 ± 8 2.8 1.5

 $30 \pm 15 - 6 \pm 3 \ 1.7 \ 2.0$

 3 ± 4

PAOLO GANDINI

DPF 2009, 26-31 July 2009

6.7

5.9

8.0

Sub. PRD-RC

$$B \rightarrow b_1 \rho, \ b_1 K^*(892) \text{ arXiv:0907.3485}$$

Sub. PRD-RC

- **BF(B** \rightarrow **b**₁**P)** with P=K, π in good agreement with QCDF
- BF(B → b₁V) < than related b₁P modes

PAOLO GANDINI

$B \rightarrow \omega K^*, \omega f_0, \omega \rho^0$ prd 79, 052005 (2009)

Several m	odes	inve	stigated	
$B \rightarrow$	VS,	VV,	VA	
9 measurements!				

• Tree dominated	VV: $B \rightarrow \omega \rho$
 Tree/penguin 	VV: $B \rightarrow \omega K$
• $B \rightarrow \omega(\pi K)$	VT: K*
• $B \rightarrow \omega(\pi\pi)$	VS: <i>f</i>

Polarization is extracted for all the VV and VT modes

but $\omega K^{**}(K^{**} \rightarrow K^0_{\ s}\pi^*)$ and $\omega \rho^0$ (signal yield is too small)

Different K* sub-decays combined together

PAOLO GANDINI

$B \rightarrow \omega K^*, \omega f_0, \omega \rho^0$ prd 79, 052005 (2009)

Several modes investigated $B \rightarrow VS, VV, VA$

Tree dominated	VV: $B \rightarrow \omega \rho$
 Tree/penguin 	VV: $B \rightarrow \omega K^*$
• $B \rightarrow \omega(\pi K)$	VT: K*
• $B \rightarrow \omega(\pi\pi)$	VS: <i>f</i>

Polarization is extracted for all the VV and VT modes

but $\omega K^{**}(K^{**} \rightarrow K^{0}{}_{S}\pi^{*})$ and $\omega \rho^{0}$ (signal yield is too small)

Different K* sub-decays combined together

PAOLO GANDINI

 $B^+ \rightarrow \overline{K}^{*0}K^{*+}$ PRD-RC 79, 051102 (2009)

• Related decays seen:

 $\begin{array}{c} B^0 \to K^{*0} \overline{K}^{*0} \left(1.28^{+0.35}_{-0.30} \pm 0.11 \right) \times 10^{-6} \\ B^0 \to K^{*-} K^{*+} < 2.0 \times 10^{-6} @ 90\% \text{ CL} \end{array}$

- Analysis is performed with $K^{*+} \rightarrow K^{+}\pi^{0}$ and $K^{*+} \rightarrow K_{s}\pi^{+}$
- Non resonant background considered

Predicted BF (QCD Factorization) $(0.5^{+0.2+0.4}_{-0.1-0.3}) \times 10^{-6}$ Nucl. Phys. B 744, 64 (2007) $(0.6 \pm 0.1 \pm 0.3) \times 10^{-6}$ PRD 78, 094001 (2008)

 $(467 \pm 5 \text{ M BB} \text{ pairs})$

Final State	$K^- \pi^+ K^0_S \pi^+$	$K^{-} \pi^{+} K^{+} \pi^{0}$	
Yields (events):			
Total	1381	3201	
Signal	$6.9^{+4.5}_{-3.5}$	$13.9^{+7.6}_{-6.4}$	
$q\overline{q}$ bkg.	1365 ± 37	3169 ± 57	
$B\overline{B}$ bkg. (fixed)	10	19	
ML Fit Biases	-0.12	0.08	
Efficiencies and \mathcal{B} :			
$\epsilon(\%)$	11.44 ± 0.08	7.40 ± 0.08	
$\prod \mathcal{B}_i(\%)$	15.37	22.22	
f_L	$0.72^{+0.23}_{-0.36}\pm0.03$	$0.79^{+0.22}_{-0.36}\pm0.03$	
$\mathcal{B}~(imes 10^{-6})$	$0.85^{+0.61}_{-0.44}\pm0.11$	$1.80^{+1.01}_{-0.85} \pm 0.16$	
\mathcal{B} Significance $S(\sigma)$	2.28	2.18	
Combined Results:			
f_L	$0.75^{+0.16}_{-0.26}\pm0.03$		
$\mathcal{B}(imes 10^{-6})$	$1.2\pm0.5\pm0.1$		
\mathcal{B} Significance $S(\sigma)$	3.7		
$\mathcal{B}_{\mathrm{UL}}(imes 10^{-6})$	2.0		

PAOLO GANDINI

Conclusions

Charmless hadronic B decays: good place to check SM & look for NP

"Polarization Puzzle"

Tree-dominated decays seems to obey $f_L \approx 1$ Some Penguin-dominated VV modes have $f_L \approx 0.5$ (ΦK^* , ρK^* , ωK^*) VT modes: $f_L(\Phi K^*_2(1430)) \approx 1$, but $f_L(\omega K^*_2(1430)) \approx 0.5$

$B^{0} \rightarrow a_{1}(1260)^{+}a_{1}(1260)^{-}$

First observation of a $B \rightarrow AA$ mode Big uncertainty on polarization fraction

$B \rightarrow b_1 \rho, b_1 K^*(892)$

No significant signal found BF(AV) modes < BF(AP) modes

(AP well explained!)

2009 Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009)

26-31 JULY 2009

Wayne State University, Detroit, MI

Thank you for your attention !

Backup Slides

BaBar Detector

PAOLO GANDINI

Datasets

PAOLO GANDINI