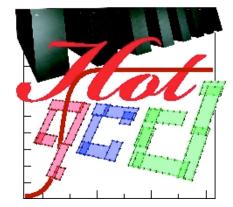
Equation of State and the finite temperature transition in hot QCD

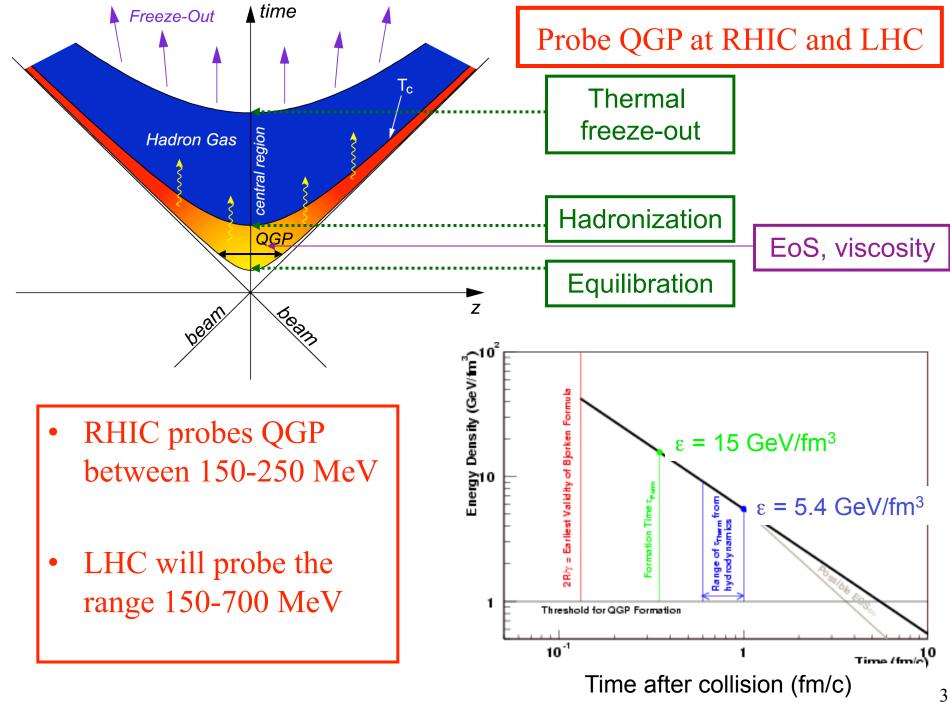

Rajan Gupta

Theoretical Division, Los Alamos National Lab

Presented at DPF 2009 Wayne State University, July 27-31, 2009

The HotQCD collaboration

hep-lat/arXiv:0903.4379 to appear in PRD



HotQCD Collaboration

A US wide collaboration studying QCD at finite temperature by simulating Lattice QCD on the BlueGene L at LLNL, NYBlue, ...

- A. Bazavov (Arizona)
- T. Bhattacharya (LANL)
- M. Cheng (Columbia)
- N. Christ (Columbia)
- C. DeTar (Utah)
- S. Ejiri (BNL)
- S. Gottlieb (Indiana)
- R. Gupta (LANL)
- U. Heller (APS)
- K. Huebner (BNL)
- C. Jung (BNL)
- F. Karsch (BNL/Bielefeld)
- E. Laermann (Bielefeld)

- L. Levkova (Utah)
- C. Miao (LLNL)
- R. Mawhinney (Columbia)
- P. Petreczky (BNL)
- D. Renfrew (Columbia)
- C. Schmidt (BNL)
- R. Soltz (LLNL)
- W. Soeldner (BNL)
- R. Sugar (UCSB)
- D. Toussaint (Arizona)
- P. Vranas (LLNL)

HotQCD Collaboration: Goals

- Nature of the transition
 - Deconfinement and χS restoration?
- Crossover temperature Tc
- Equation of State (EOS) at (μ =0, μ ≠0)
- Spectral Functions
- Spatial and temporal correlators versus T
- Transport coefficients of the quark gluon plasma

HotQCD Collaboration: Precision LQCD

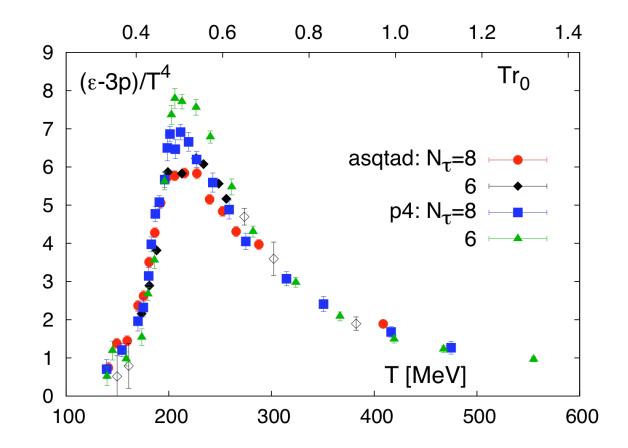
(Controlling all systematic errors)

- Two improved staggered formulations (asqtad, p4) (different O(a²) errors)
- Continuum limit ($N_{\tau} = 4, 6, 8, ...$)
- Chiral extrapolation $(m_l/m_s = 0.2, 0.1, 0.05)$
- Dense sampling of the transition region
- High statistics
- $N_{space} \ge 4 N_{\tau}$
- Testing domain wall fermions

hep-lat/arXiv:0903.4379 to appear in PRD

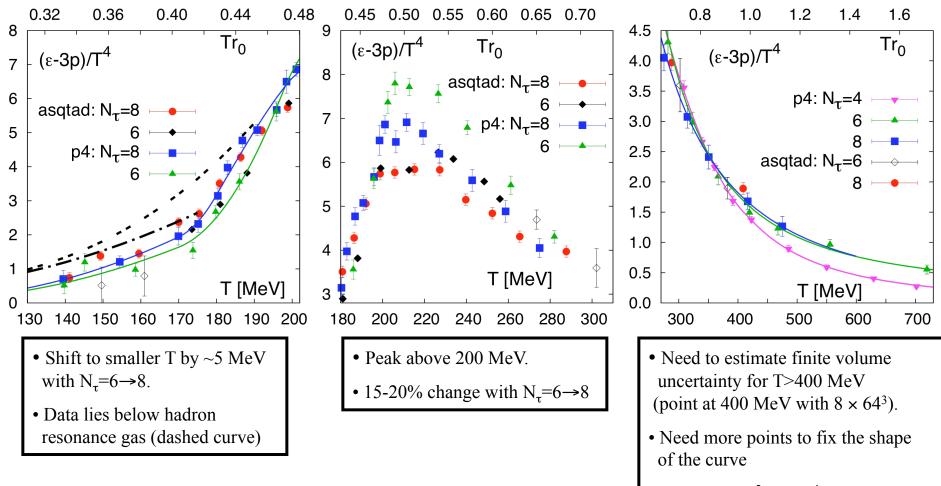
Taking the continuum limit along a line of constant physics (LCP)

Use simulations at T=0 to fix $m_{\{u,d\}}$ and m_s

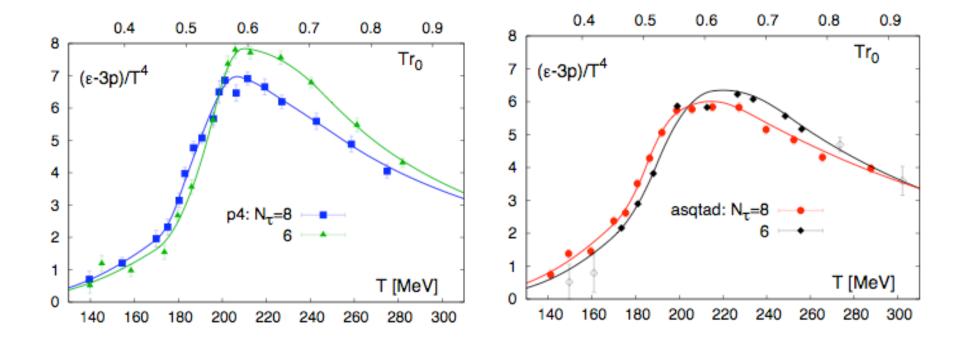

- Lattice scale *a* set using static $q\bar{q}$ potential (r_0 and r_1) with $r_0 = 0.469(7)$ from Y(2S-1S)
- $M_{ss} r_0 = 1.58 \ (M_{\pi} r_0 \approx 0.52 \rightarrow M_{\pi} \approx 220 \ MeV)$
- Quark mass $m_l/m_s = 0.1$ (real world ~0.04)
- Take $a \rightarrow 0$ along this LCP varying just the gauge coupling β

Equation of State

Experiments at the LHC will probe the QGP over 700-200 MeV.


Lattice QCD provides EoS from first principles calculation as input into hydrodynamical models used to describe the evolution of the QGP.

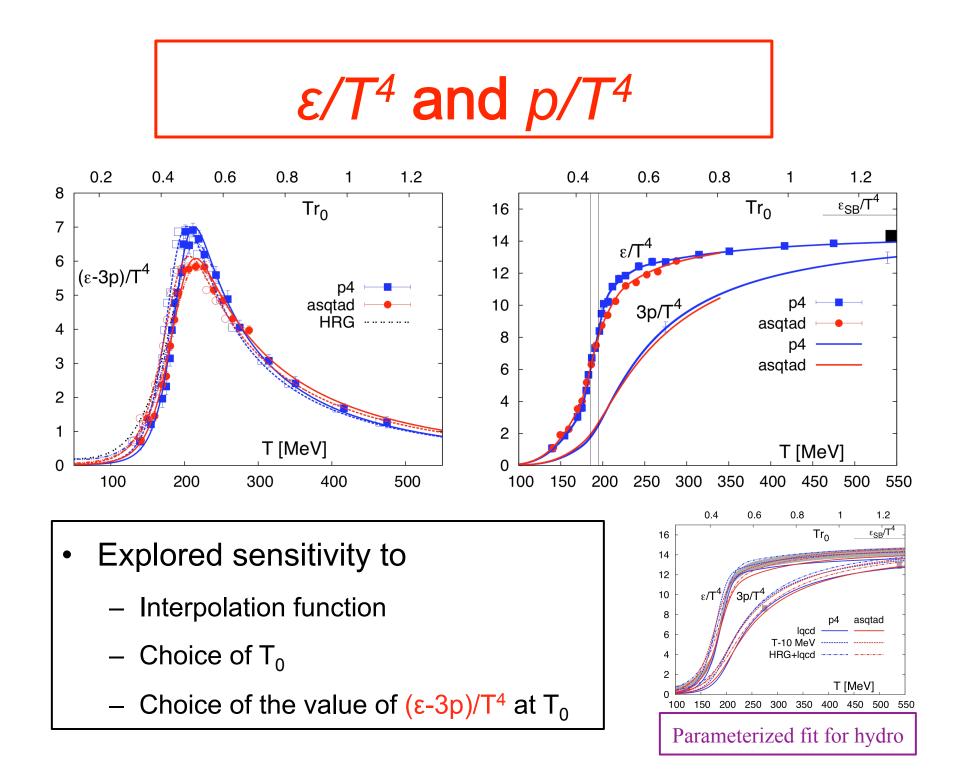
Trace Anomaly (ε-3p)/T⁴


This is the single basic quantity we calculate

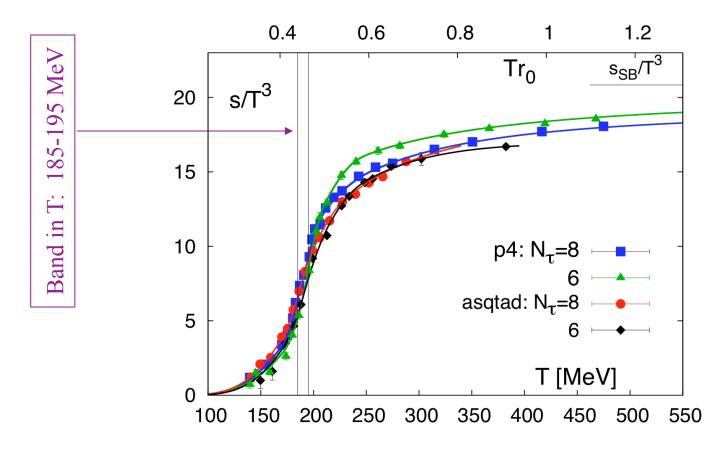
Trace Anomaly -- details

• Fit: $c_0 + c_2/T^2 + c_4/T^4$ Asymptotic g⁴ behavior not evident in c_0

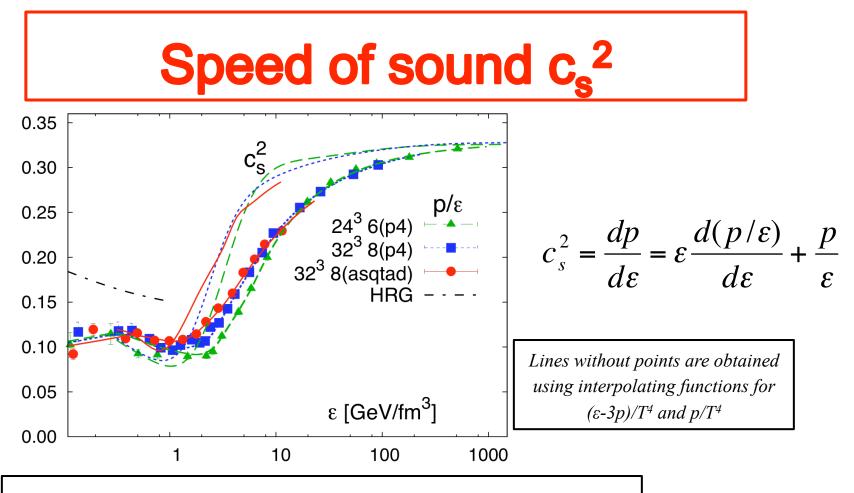
Lattice artifacts ($N_{\tau}=6\rightarrow 8$)


A shift by ~5 MeV of N_{τ} =6 data (estimate of discretization errors in lattice scale a between N_{τ} =6 and 8) takes care of most of the difference.

Extracting ε and p from the trace anomaly


$$\frac{\Theta^{\mu\mu}(T)}{T^4} \equiv \frac{\varepsilon - 3p}{T^4} = T\frac{\partial}{\partial T}(p/T^4)$$

$$\implies \frac{p(T)}{T^4} - \frac{p(T_0)}{T_0^4} = \int_{T_0}^T dt \, \frac{\Theta^{\mu\mu}(t)}{t^5}$$


- (ε-3p)/T⁴ calculated at a discrete set of points
- To integrate with respect to T we need to
 - Fit the data with a smooth interpolating function
 - Choose T₀
 - Choose the value of $(\epsilon-3p)/T^4$ at T₀

Entropy density s/T³=(ε+p)/T⁴

The degrees of freedom in the initial state at LHC (~700 MeV) have a much cleaner interpretation as quarks and gluons. Crossover T in (ε and s) is what is relevant to HI experiments!

- Rapid saturation to free field value of 1/3
- Comparing N_{τ} =6 with N_{τ} =8
 - The dip is shallower
 - The rise after the dip is less steep

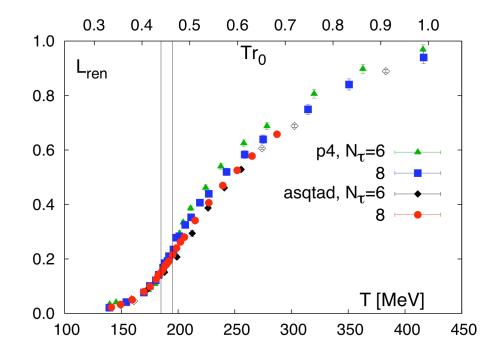
Transition Temperature

- Genuine phase transition only at $m_l < m_{phy}$ (maybe only at $m_l=0$)
- To estimate crossover T at m_{phy} we study
 - Polyakov line and its susceptibility
 - Chiral condensate $\langle \overline{\psi}\psi
 angle$ and its susceptibility
 - Quark number $\langle \overline{\psi} \gamma_0 \psi \rangle$ and its susceptibility

Polyakov loop

Quark number susceptibility

Deconfinement


Chiral condensate

Chiral susceptibility

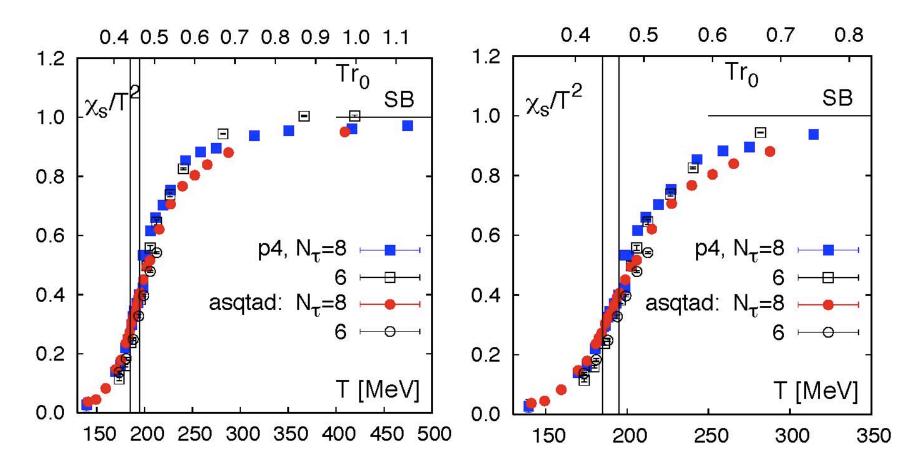
χS Restoration

Renormalized Polyakov Loop

 $\langle L_{ren} \rangle = Z(\beta)^{N_{\tau}} \langle L_{Bare} \rangle$

The band indicates the range T=185-195 MeV

- Difference between asqtad and p4 for $N\tau = 6, 8 \le 10\%$
- No clear inflection point (peak in the susceptibility)
- <L> does not probe the singular part of Z

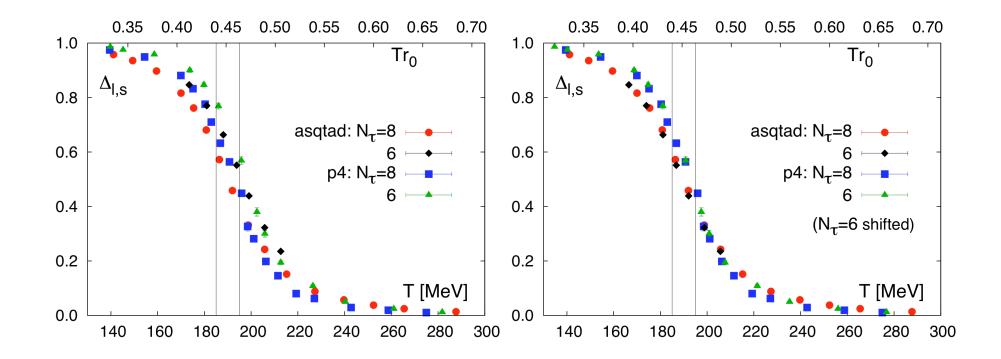

Quark Number Susceptibility

$$\frac{\chi_{l,s}}{T^2} = \frac{1}{TV} \frac{\partial^2 \log Z}{\partial \mu_{l,s}^2}$$

χ_{I} Probes confinement

- Basic operator is $\langle \overline{\psi} \gamma_0 \psi \rangle$ (\rightarrow baryon number/strangeness)
- States carrying quantum numbers given by $\langle \overline{\psi} \gamma_0 \psi \rangle$ are heavy (mesons & baryons) at low T and light (quarks) at high T.
- χ_1 Does not require renormalization
- Peak is in fourth derivative \rightarrow computationally hard!

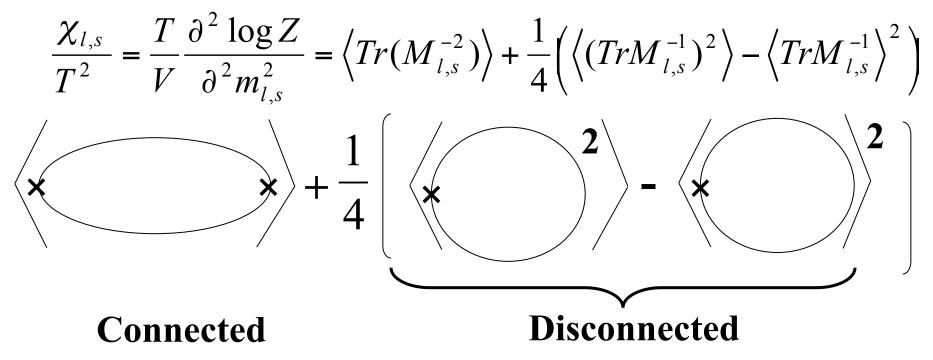
Quark Number Susceptibility


Difference between asqtad and p4 most pronounced between 200-300 MeV

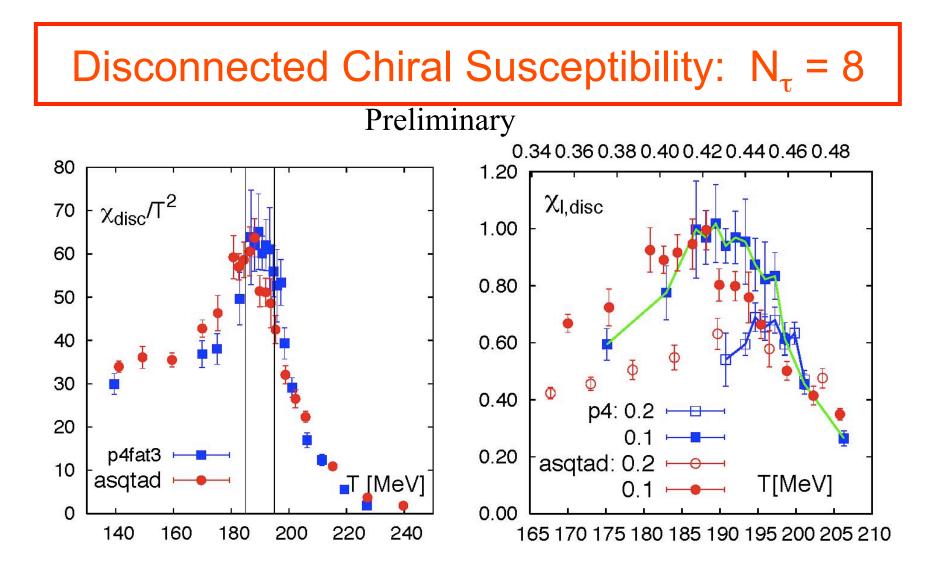
Chiral Condensate: χS restoration

$$\Delta_{l,s} = \frac{\left\langle \bar{l}l \right\rangle_T - \frac{m_l}{m_s} \left\langle \bar{s}s \right\rangle_T}{\left\langle \bar{l}l \right\rangle_{T=0} - \frac{m_l}{m_s} \left\langle \bar{s}s \right\rangle_{T=0}}$$

- Subtract < ss > to eliminate additive renormalization
- Divide by T=0 value to cancel multiplicative renormalization
- Sharp decrease in Δ reflects χ Symmetry restoration

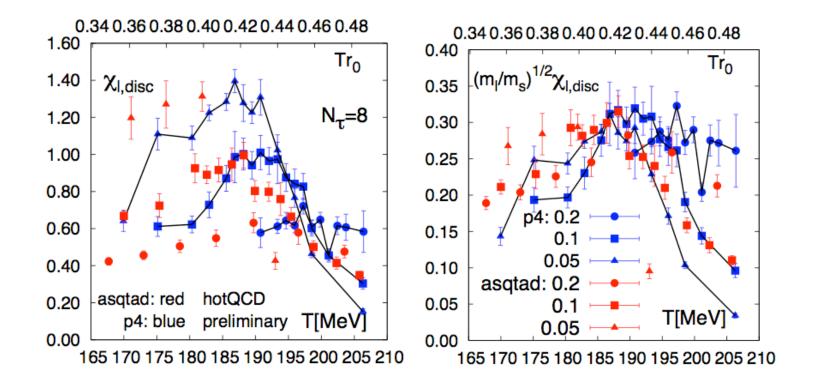

N_{τ} =6, 8 data for p4 and asqtad

Inflection point estimated to be in the range 185-195 MeV


Chiral Susceptibility: $N_{\tau} = 4, 6, 8$

One flavor susceptibility for light (l = u,d) and strange (s) quarks:

Note: Isosinglet $\chi = \chi_{disconnected} + 2\chi_{connected}$


One flavor $\chi = \chi_{\text{disconnected}} + 4\chi_{\text{connected}}$

The peak becomes broader as $mq \rightarrow 0!$ What T value should be designated Tc?

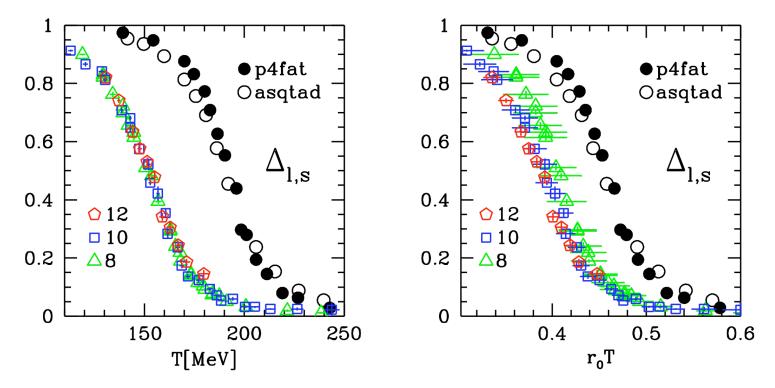
Disconnected Chiral Susceptibility: $N_{\tau} = 8$

Preliminary

For $m_q=0$ the pions are massless in the χS broken phase and χ_1 should diverge for all T < Tc. At finite *m* we expect a broad peak for T < Tc. Choose right edge as the point at which χS is recovered = T_c

HotQCD Conclusions

- QCD exhibits a crossover over 160-220 MeV
- asqtad and p4 data are consistent
 - Differences at O(a²) level
 - Maximum differences seen between 200-300 MeV
- Estimate of EoS over the range 150-500 MeV ready for input into hydrodynamics models
- Need ($m_1 \rightarrow 0$) limit to define transition temperature.
- Estimates from ($N_{\tau} = 8$, $m_{l}/m_{s} = 0.1$) ~185-195 MeV
- Extend N_{τ} = 6, 8 (m_I/m_s = 0.2, 0.1) runs to
 - $m_{\rm l}/m_{\rm s} = 0.05$


$$- N_{\tau} = 12$$

Resolving Differences Between HotQCD (arXiv:0903:4379v1) and Wuppertal-Budapest (Aoki et al) (JHEP 0906:088,2009 / arXiv:0903.4155v1) Collaboration results

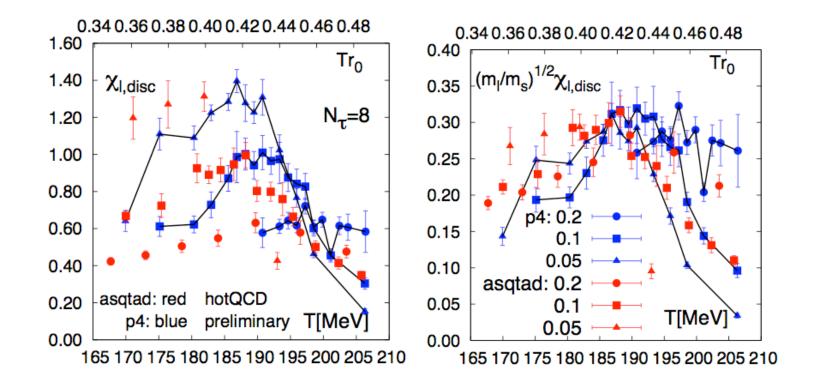
Estimates of crossover T

- Wuppertal-Budapest (Aoki et al)
 - Tc = 146(2)(3)-157(3) Chiral Symmetry restoration
 - Tc = 170(4) Deconfinement
- HotQCD $(N_{\tau} = 8; m_{l}/m_{s} = 0.1)$
 - All observables exhibit crossover between 185-195 MeV
 - Polyakov Loop and Strange Quark Number Susceptibility do not probe singular structure of the theory and, thus, are not good observables to determine Tc
 - No clear inflection point in Polyakov loop or peak in its susceptibility for N_τ>4
 - Need to resolve the ~30 MeV difference in the light quark chiral susceptibility

Data as presented by Aoki el al: Light Quark Chiral Condensate

The shape of the curves is similar:

- → the simplest possibility is difference in setting the lattice scale in the two calculations i.e. we can explain the differenced by shifting T by ~30MeV?
- \rightarrow The answer is most likely a combination of effects.


We consider this issue unresolved and are studying it further.

Differences in calculations

	Staggered Action	Quark masses	Lattice Scale <i>a</i>
Wuppertal- Budapest (WB)	Unimproved Stout (Ν _τ = 8,10,12)	m _l /m _s = 1/27	M _Ω , M _φ (1020), M _{K*} (892), f _K , r ₀
HotQCD	asqtad & p4 Both actions O(a ²) improved (Ν _τ = 6,8)	m _l /m _s = 0.2, 0.1, 0.05	r _o
Data Show (all three estimates need to be refined)	Remaining shift in Tc to lower T with $a \rightarrow 0$ is ~5 MeV based on above N_{τ}	Remaining shift in Tc to lower T with m _q →m _{physical} is ~5 MeV in HotQCD data	WB result: All 5 quantities give consistent lattice scale in a=0 limit

Understanding the peak in Chiral Susceptibility: $N_{\tau} = 8$

Preliminary

For $m_q=0$ the pions are massless in the χS broken phase and χ_l should diverge as $m_q^{1/2}$ for all T < Tc. Data are roughly consistent with this expectation. Should choose right edge for $T_c!$

Future

The two collaborations (Hot QCD and WB) have started new calculations on the IBM BG/P at Juelich to resolve this difference