ATLAS Sensitivity to Leptoquarks, W_R and Heavy Majorana Neutrinos in Final States with High-Pt Dileptons and Jets with Early LHC Data

CERN-OPEN-2008-020

July 31, 2009

Vikas Bansal University of Pittsburgh

Neutrino Mass, Gauge Symmetries in Nature and Grand Unification

- Neutrino masses are still unexplained. Seesaw mechanism explains the observed tiny masses of neutrinos.
- Left-right symmetrical model is a higher symmetry gauge group that elegantly implements seesaw mechanism. Breaking of left-right symmetry introduces massive right-handed W bosons.
- Leptoquarks are hypothetical particles that are introduced in GUT-inspired models.
- Leptoquarks have implication for SUSY where squarks may or may not be leptoquarks depending on R-parity ((-1)^{3(B-L)+2S}) conservation.

A Large Toroidal LHC ApparatuS (ATLAS)

Tracking $\sigma(\frac{1}{p_T}) = 0.6 \oplus \frac{18.0}{p_T} (TeV^{-1})$

Calorimetry

 $\frac{\sigma(E)}{E}(\%) = \frac{10\%}{\sqrt{E}} \oplus 0.7\% (GeV)$

Muon Spectrometer

Muon Pt resolution better

than 10% at 1 TeV

Diameter (X-Y plane) 25 m Barrel toroid magnet length 26 m End-cap end-wall chamber span 46 m Overall weight 7000 Tons

Backgrounds to Dilepton-Jets Channel

- $pp \rightarrow lq \ lq \rightarrow ljlj$
- $pp \rightarrow W_R \rightarrow lN_l \rightarrow lljj$
- There are many other known Standard Model processes giving rise to the same final state.
- Drell-Yan, top anti-top pair, vector boson pairs are the main background processes.

Leptoquarks: Background Suppression

DPF Meeting '09, Detroit

LRSM: Background Suppression

• High P_T final states $\rightarrow S_T > 700 \text{ GeV}$

ATLAS sensitivity to leptoquarks and heavy Majorana neutrinos with early LHC data

• Drell-Yan \rightarrow M_{ee} > 300 GeV

Scalar Leptoquarks Pair Production: Analysis

Partial cross-sections in (picobarns) that survive analysis selection criteria

Ist generation

Physics	Before	Baseline	S_T	M_{ee}	M_{lj}^1 - M_{lj}^2 mass window
sample	selection	selection	$\geq 490 { m ~GeV}$	$\geq 120 {\rm ~GeV}$	[320-480] - [320-480] [GeV]
LQ (400 GeV)	2.24	1.12	1.07	1.00	0.534
$Z/DY \ge 60 \text{ GeV}$	1808.	49.77	0.722	0.0664	0.0036
$t\overline{t}$	450.	3.23	0.298	0.215	0.0144
VB pairs	60.94	0.583	0.0154	0.0036	0.00048
Multijet	10^{8}	20.51	0.229	0.184	0.0

2nd generation

Physics	Before	Baseline	$p_T^{\mu} \ge 60 \text{ GeV}$	S_{T}	$M(\mu\mu)$	M_{lj} mass window
sample	selection	selection	$p_T^{jet} \ge 25 \text{ GeV}$	$\geq 600~{\rm GeV}$	$\geq 110~{\rm GeV}$	[300 - 500] [GeV]
LQ (400 GeV)	2.24	1.70	1.53	1.27	1.23	0.974
$Z/\mathrm{DY}{\geq}60~\mathrm{GeV}$	1808.	79.99	2.975	0.338	0.0611	0.021
$t \overline{t}$	450.	4.17	0.698	0.0791	0.0758	0.0271
VB pairs	60.94	0.824	0.0628	0.00846	0.00308	0.00205
Multijet	10^{8}	0.0	0.0	0.0	0.0	0.0

DPF Meeting '09, Detroit

Vikas Bansal (Pitt)

W_R and Majorana Neutrinos: Analysis

Partial cross-sections in (picobarns) that survive analysis selection criteria

Dielectron channel

Physics	Before	Baseline	M(ejj)	M(eejj)	M(ee)	S_T
sample	selection	selection	$\geq 100 {\rm ~GeV}$	$\geq 1000 { m ~GeV}$	$\geq 300~{\rm GeV}$	$\geq 700 {\rm ~GeV}$
LRSM_18_3	0.248	0.0882	0.0882	0.0861	0.0828	0.0786
$LRSM_{15}_{5}$	0.470	0.220	0.220	0.215	0.196	0.184
$Z/DY \ge 60 \text{ GeV}$	1808.	49.77	43.36	0.801	0.0132	0.0064
$t\bar{t}$	450.	3.23	3.13	0.215	0.0422	0.0165
VB pairs	60.94	0.610	0.548	0.0163	0.0017	0.0002
Multijet	10^{8}	20.51	19.67	0.0490	0.0444	0.0444

Dimuon channel

Physics	Before	Baseline	$M(\mu j j)$	$M(\mu\mu jj)$	$M(\mu\mu)$	S_T
sample	selection	selection	$\geq 100 { m ~GeV}$	$\geq 1000 { m ~GeV}$	$\geq 300 { m ~GeV}$	$\geq 700 { m ~GeV}$
LRSM_18_3	0.248	0.145	0.145	0.141	0.136	0.128
$LRSM_{15}$	0.470	0.328	0.328	0.319	0.295	0.274
$Z/DY \ge 60 \text{ GeV}$	1808.	80.02	69.13	1.46	0.0231	0.0127
$t\overline{t}$	450.	4.44	4.27	0.275	0.0527	0.0161
VB pairs	60.94	0.883	0.824	0.0257	0.0047	0.0015
Multijet	10^{8}	0.0	0.0	0.0	0.0	0.0

DPF Meeting '09, Detroit

Vikas Bansal (Pitt)

Leptoquarks: Reconstructed Invariant Mass Distribution

W_R Boson and Majorana Neutrino: Invariant Masses

ATLAS sensitivity to leptoquarks and heavy Majorana neutrinos with early LHC data

ATLAS Sensitivity to Leptoquarks

Trigger: High P_T lepton based, ~97% efficient

 β is branching ratio of leptoquarks decaying into charged leptons

Vikas Bansal (Pitt)

ATLAS Sensitivity to W_R and Majorana Neutrinos

Trigger: High P_T lepton based, ~96% efficient

DPF Meeting '09, Detroit

Dielectron Channel

Vikas Bansal (Pitt)

ATLAS sensitivity to leptoquarks and heavy Majorana neutrinos with early LHC data

Dimuon Channel

Summary and Outlook

- Final states with dileptons and jets that can be used to search for important predictions of BSM models.
- ATLAS has an excellent sensitivity to leptoquarks, heavy Majorana neutrinos and right-handed W boson in the studied range of invariant masses with early LHC data.
- Look forward to early pp collisions at the LHC.

CERN-OPEN-2008-020