

[^0]
Measurements of the CKM angle α at BaBar

Simone Stracka

 on behalf of the BaBar collaboration${ }^{1}$ Universita` degli Studi di Milano ${ }^{2}$ INFN Milano

DPF 2009 - 26-31 July 2009 Wayne State University, Detroit (MI)

Outline

- $\mathrm{B} \rightarrow \pi \pi$
- HOT: $\mathrm{B} \rightarrow \mathrm{h}^{+} \mathrm{h}^{-}, \mathrm{B} \rightarrow \pi^{0} \pi^{0} 2008$ updates arXiv:0807.4226 (2008)
- CPV observed @ 6.7б
- $B \rightarrow \rho \rho$
- HOTTER: $\mathrm{B} \rightarrow \rho^{+} \rho^{0} 2009$ update PRL102, 141802 (2009)
- Best precision for α
- $\mathrm{B} \rightarrow \rho \pi$
- Still to update
- $B \rightarrow a_{1} \pi$
- FRESH FROM THE OVEN: $B \rightarrow K_{1} \pi+\Delta \alpha$ to be submitted to PRD
- Fourth channel (after $\pi \pi, \rho \rho, \rho \pi$)

$\mathrm{B} \rightarrow \pi \pi$ as a prototype

- α extracted from TD CPV asymmetries in $b \rightarrow u u \bar{d}$ channels

$$
\alpha=\arg \left[-V_{t d} V_{t b}^{*} / V_{u d} V_{u b}^{*}\right]
$$

$\pi \pi, \rho \rho, \rho \pi, a_{1} \pi$

- Assuming only one CKM amplitude contributes to the decay
$=e^{-2 i \beta} \quad \arg \left[e^{-2 i \beta} A\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right) A^{*}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)\right]=2 \alpha$

$B^{0}=e^{-i \gamma} \quad \lambda=\frac{q}{p} \frac{\bar{A}}{A}=e^{2 i \alpha} \Rightarrow$| $S=\frac{2 \operatorname{Im} \lambda}{1+\|\lambda\|^{2}}=\sin (2 \alpha)$ |
| :--- |
| $C=\frac{1-\|\lambda\|^{2}}{1+\|\lambda\|^{2}}=0$ |

Enter penguin

- Penguin has different strong and weak phases

- Use $\operatorname{SU}(2)$ or $\operatorname{SU}(3)$ symmetries to constrain $\Delta \alpha$

Gronau, London, PRL65, 3381 (1990)

$$
\begin{aligned}
& \cdot \Delta \mathrm{SU}=0 \text { decays } \\
& \quad-|\mathrm{P}| \sim\left|\mathrm{V}_{\mathrm{ub}}{ }^{\mathrm{*}}{ }_{\mathrm{vd}}\right|,|\mathrm{P}| \sim\left|\mathrm{V}_{\mathrm{cc}} \mathrm{~V}^{\star}{ }_{\mathrm{cd}}\right|
\end{aligned}
$$

- $\Delta S=1$ decays

$$
\text { - | }\left|\mathrm{T}^{\prime}\right| \sim\left|\mathrm{V}_{\mathrm{ub}} \mathrm{~V}_{\mathrm{us}}^{*}\right|,\left|\mathrm{P}^{\prime}\right| \sim\left|\mathrm{V}_{\mathrm{cb}} \mathrm{~V}_{\mathrm{cs}}{ }_{\mathrm{cs}}\right|
$$

- P^{\prime} / T^{\prime} CKM enhanced over P/T

Gronau, Zupan, PRD70, 074031 (2004)
Gronau, Zupan, PRD73, 057502 (2006)

Charmless (quasi) two-body analysis

- Kinematic variables: energy subsituted mass, energy difference

$$
\Delta E=E_{B}-\sqrt{s} / 2
$$

- Event shape: distinguish "jet-like" qq events and more isotropic B decays

- Extract the signal yield and CP asymmetries via an unbinned Maximum Likelihood fit to several observables

Time dependent analysis

B mesons are produced coherently

$$
\begin{aligned}
& F^{ \pm}\left(\Delta t_{\text {meas }}\right)= \\
& \frac{e^{-|\Delta t| / \tau}}{4 \tau}\left\{1 \mp \Delta w \pm(1-2 w)\left[S \sin \left(\Delta m_{d} \Delta t\right)-C \cos \left(\Delta m_{d} \Delta t\right)\right]\right\} \begin{array}{l}
\text { Include } \\
\text { tagging performance }
\end{array} \\
& \otimes R\left(\Delta t_{\text {meas }}-\Delta t, \sigma_{\Delta t}\right) \quad \text { Experimental } \Delta \mathrm{t} \text { resolution: convolution with } \\
& \text { triple gaussian, with parameters obtained } \\
& \text { from a large sample of fully reconstructed B } \\
& \text { decays, and free to differ between tagging } \\
& \text { category }
\end{aligned}
$$

$h^{+} h^{-}$

- Simultaneous ML fit to $\pi^{+} \pi^{-}, \pi^{+} K^{-}, \pi^{-} \mathrm{K}^{+}, \mathrm{K}^{+} \mathrm{K}^{-}$
- Increased K- π separation
- PID in the fit: $\mathrm{dE} / \mathrm{dx}$ in DCH and Cherenkov angle in DIRC
- DCH \Rightarrow PID also for tracks outside DIRC acceptance
- Additional $\pi^{+} \pi^{-}, \pi^{+} \mathrm{K}^{-}, \pi^{-} \mathrm{K}^{+}, \mathrm{K}^{+} \mathrm{K}^{-}$separation from $\Delta \mathrm{E}$
- Yield $=1394 \pm 54$

- Reconstruct $\pi^{0} \rightarrow \gamma \gamma$, and include photon conversions $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
- Use NN to improve signal vs. background separation
- Background model accounts for NN-m m_{ES} correlations
- ML fit to $\Delta E, m_{E S}$, NN and flavor tag
- Yield $=247 \pm 29$
- $B F=(1.83 \pm 0.21 \pm 0.13) \times 10^{-6}$
- $\mathrm{C}^{00}=-0.43 \pm 0.26 \pm 0.05$ (flavor tag- and time-integrated); no S^{00} (no vtx)

Isospin analysis for $\pi \pi$

- Decompose $B \rightarrow \pi \pi$ in isospin amplitudes $\left(A_{0}, A_{2}\right)$

- I=1 forbidden by Bose statistics
- 8-fold ambiguity: x 4 ($\Delta \alpha$ triangles can flip), x 2 ($\alpha \rightarrow \pi / 2-\alpha$)

	$\mathcal{B}\left(\times 10^{-6}\right)$	C
$\pi^{+} \pi^{-}$	$5.5 \pm 0.4 \pm 0.3$	$-0.25 \pm 0.08 \pm 0.02$
$\pi^{+} \pi^{0}$	$5.02 \pm 0.46 \pm 0.29$	$(-0.03 \pm 0.08 \pm 0.01)$
$\pi^{0} \pi^{0}$	$1.83 \pm 0.21 \pm 0.13$	$-0.43 \pm 0.26 \pm 0.05$

No gluon penguin $\Rightarrow\left|A^{+0}\right|=\left|\tilde{A}^{-0}\right|$

$B \rightarrow \rho \rho$

Isospin analysis for $\rho \rho$

- $\mathrm{BF}\left(\mathrm{B} \rightarrow \rho^{+} \rho^{-}\right) \approx 5 \times \mathrm{BF}\left(\mathrm{B} \rightarrow \pi^{+} \pi^{-}\right)$but:
- I=1 allowed in $B \rightarrow \rho \rho$ if $m_{1} \neq m_{2}$ (wave function can be anti-symmetric)
- but measurements stable when decreasing allowed $\Delta \mathrm{m}$ range
- EW penguin can have $\mathrm{I}=2$ and contribute to $\mathrm{B} \rightarrow \rho^{+} \rho^{0}$
- no sign of direct CP asymmetry in $\mathrm{B} \rightarrow \rho^{+} \rho^{0}$
- $B \rightarrow V V$ allows $L=0,1,2 \quad C P=(-1)^{L}$
- 3 polarizations: longitudinal $H^{0}(L=0,2)$, transverse $H_{ \pm 1}(L=0,1,2)$
- Isospin relations hold separately for each polarization state π^{0}
- $f \approx 1$ (CP even) from angular analysis
$\frac{1}{\Gamma} \frac{d^{2} \Gamma}{\left(d \cos \theta_{1} d \cos \theta_{2}\right)} \propto \underline{4 f_{L} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}}+\frac{\left(1-f_{L}\right) \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}}{\pi^{0}}$

Falk et al., PRD69, 011502 (2004)
Kagan, PLB601, 151 (2004)

$\rho^{+} \rho^{0}$ update

- Higher signal efficiency and background rejection
- x2 increase in data sample w.r.t. previous measurement
- Improved charged particle reconstruction
- Improved background model
- 3D model for BB and continuum components

$$
\mathcal{P}_{3 D}=\left[\mathcal{P}\left(m_{\pi^{+} \pi^{-}} \mid \cos \theta_{\rho^{0}}\right) \times \mathcal{P}\left(\cos \theta_{\rho^{0}} \mid N N\right)\right] \times\left[\mathcal{P}\left(m_{\pi^{+} \pi^{0}} \mid \cos \theta_{\rho^{+}}\right) \times \mathcal{P}\left(\cos \theta_{\rho^{+}} \mid N N\right)\right] \times \mathcal{P}(N N)
$$

1) $A_{c p}\left(\rho^{+} \rho^{0}\right) \approx 0 \Rightarrow E W$ penguin is negligible

$$
A_{C P} \equiv \frac{\Gamma_{B^{-}}-\Gamma_{B^{+}}}{\Gamma_{B^{-}}+\Gamma_{B^{+}}}=-0.054 \pm 0.055 \pm 0.010
$$

2) both $B F$ and f_{L} increase

$$
\begin{aligned}
& B F\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right)=(23.7 \pm 1.4 \pm 1.4) \times 10^{-6} \nearrow 2 \sigma \\
& f_{L} \equiv \Gamma_{L} / \Gamma=0.950 \pm 0.015 \pm 0.006
\end{aligned}
$$

$\rho^{+} \rho^{0}$ results

	$\mathcal{B}\left(\times 10^{-6}\right)$	f_{L}	$C=-A_{C P}$	S
$\rho^{+} \rho^{-}$	$25.5 \pm 2.1_{-3.9}^{+3.6}$	$0.992 \pm 0.024_{-0.013}^{+0.026}$	$0.01 \pm 0.15 \pm 0.06$	$-0.17 \pm 0.20_{-0.06}^{+0.05}$
$\rho^{+} \rho^{0}$	$23.7 \pm 1.4 \pm 1.4$	$0.950 \pm 0.042 \pm 0.006$	$(0.054 \pm 0.055 \pm 0.010)$	-
$\rho^{0} \rho^{0}$	$0.92 \pm 0.32 \pm 0.14$	$0.75_{-0.14}^{+0.11} \pm 0.04$	$0.2 \pm 0.8 \pm 0.3$	$0.3 \pm 0.7 \pm 0.2$

- $\mathrm{A}_{\mathrm{CP}}\left(\rho^{+} \rho^{0}\right) \approx 0 \Rightarrow$ EW penguin is negligible \Rightarrow isospin analysis holds within $1-2^{\circ}$
- S^{00} provides relative suppression of $\Delta \alpha$ ambiguities

Include $\mathrm{C}^{00}, \mathrm{~S}^{00}$
Include $\rho^{+} \rho^{0}, \mathrm{C}^{00}, \mathrm{~S}^{00}$

$\rho^{+} \rho^{0}$ results

- $\mathrm{BF}\left(\rho^{+} \rho^{0}\right)$ and $f\left(\rho^{+} \rho^{0}\right)$ increase \Rightarrow isospin triangle flattens out

Warning: size of $\rho^{0} \rho^{0}$ is exaggerated

Include $\mathrm{C}^{00}, \mathrm{~S}^{00}$
Include $\rho^{+} \rho^{0}, \mathrm{C}^{00}, \mathrm{~S}^{00}$

$$
\begin{gathered}
\alpha=\left(82.6_{-6.3}^{+32.6}\right)^{\circ} \\
|\Delta \alpha|<15.7^{\circ} @ 68 C L
\end{gathered}
$$

$$
\begin{aligned}
& \alpha=\left(92.4_{-6.5}^{+6.0}\right)^{\circ} \\
& -1.8^{\circ}<\Delta \alpha<6.7^{\circ} @ 68 C L
\end{aligned}
$$

$B \rightarrow a_{1} \pi$

$\mathrm{B} \rightarrow \mathrm{a}_{1} \pi$

- Not a CP eigenstate

$$
\begin{array}{cl}
A_{+}=A\left(B^{0} \rightarrow a_{1}^{+} \pi^{-}\right) & \bar{A}_{+}=A\left(\bar{B}^{0} \rightarrow a_{1}^{-} \pi^{+}\right) \\
A_{-}=A\left(B^{0} \rightarrow a_{1}^{-} \pi^{+}\right) & \bar{A}_{-}=A\left(\bar{B}^{0} \rightarrow a_{1}^{+} \pi^{-}\right) \\
S \pm \Delta S \equiv \frac{2 \operatorname{Im}\left(e^{-2 i \beta} \bar{A}_{\mp} A_{ \pm}^{*}\right)}{\left|A_{ \pm}\right|^{2}+\left|\bar{A}_{\mp}\right|^{2}} & \text { PRL98, 181803(2007) } \\
\left.\begin{array}{c}
A_{C P} \\
S
\end{array}\right) 0.07 \pm 0.07 \pm 0.02 \\
C \equiv \frac{\left|A_{ \pm}\right|^{2}-\left|\bar{A}_{\mp}\right|^{2}}{\left|A_{ \pm}\right|^{2}+\left|\bar{A}_{\mp}\right|^{2}} & \Delta S \\
C & -0.14 \pm 0.21 \pm 0.07 \\
\Delta C & 0.26 \pm 0.10 \pm 0.15 \pm 0.09 \\
F_{Q_{\mathrm{tag}}}^{a_{1}^{ \pm \mp}}(\Delta t)=\left(1 \pm A_{C P}\right) \frac{e^{-|\Delta t| / \tau}}{4 \tau}\left\{1-Q_{\mathrm{tag}} \Delta w+Q_{\mathrm{tag}}(1-2 w)\left[(S \pm \Delta S) \sin \left(\Delta m_{d} \Delta t\right)-(C \pm \Delta C) \cos \left(\Delta m_{d} \Delta t\right)\right]\right\}
\end{array}
$$

- Extraction of $\alpha_{\text {aff }}$
$\begin{array}{ll}2 \alpha_{e f f}^{ \pm} \equiv \arg \left[e^{-2 i \beta} \bar{A}_{ \pm} A_{ \pm}^{*}\right] & 2 \alpha_{e f f}^{ \pm} \pm \hat{\delta}=\arg \left[e^{-2 i \beta} \bar{A}_{ \pm} A_{\mp}^{*}\right]=\arcsin \frac{S \mp \Delta S}{\sqrt{1-(C \mp \Delta C)^{2}}} \\ \hat{\delta} \equiv \arg \left[A_{+} A_{-}^{*}\right] & \alpha_{e f f}=\frac{1}{2}\left(\alpha_{e f f}^{+}+\alpha_{e f f}^{-}\right)\end{array}$
$\alpha_{e f f}=\frac{1}{2}\left(\alpha_{e f f}^{+}+\alpha_{e f f}^{-}\right)$
- For small penguins, $\delta \approx$ strong phase between tree amplitudes

$\Delta \alpha$ from $\operatorname{SU}(3)$

- Penguin (P) is CKM $\left(1 / \lambda=\left|V_{c s}\right| /\left|V_{c d}\right|\right)$ enhanced in $\Delta S=1$ decays
- Use $\operatorname{SU}(3)$ symmetry and ratios of CP-averaged rates for $\Delta S=1\left(B \rightarrow a_{1} K, B \rightarrow K_{1 A} \pi\right)$ and $\Delta S=0\left(B \rightarrow a_{1} \pi\right)$

PRL97, 051802 (2006)

$$
R_{+}^{0,+} \equiv \frac{\lambda^{2} f_{a_{1}}^{2} B F\left(K_{1 \mathrm{~A}}^{+, 0} \pi^{-,+}\right)}{f_{K_{1 \mathrm{~A}}}^{2} B F\left(a_{1}^{+} \pi^{-}\right)} \quad \mathrm{K}_{1 \mathrm{~A}}=\mathrm{SU}(3) \text { partner of } \mathrm{a}_{1}
$$

PRL100, 051803 (2008)
and similarly for $\mathrm{R}_{-}{ }^{0,+}$ from $\mathrm{a}_{1} \mathrm{~K}$ decays

- Get $\left|\alpha_{\text {eff }}{ }^{+}-\alpha\right|$ by solving the system:

$$
\begin{aligned}
& \cos 2\left(\alpha_{\text {eff }}^{ \pm}-\alpha\right) \geq \frac{1-R_{ \pm}^{0}}{\sqrt{1-\mathcal{A}_{C P}^{ \pm 2}}} \\
& \cos 2\left(\alpha_{\text {eff }}^{ \pm}-\alpha\right) \geq \frac{1-R_{ \pm}^{+}}{\sqrt{1-\mathcal{A}_{C P}^{ \pm 2}}}
\end{aligned} \quad \mathrm{~A}_{\mathrm{CP}}{ }^{ \pm}=\mathrm{CP} \text { asymmetries }
$$

- $|\Delta \alpha|=\left(\left|\alpha_{\text {eff }}{ }^{+}-\alpha\right|+\left|\alpha_{\text {eff }}-\alpha\right|\right) / 2$

B decays to $K_{1}(1270) \pi$ and $K_{1}(1400) \pi$

- $\mathrm{BF}\left(\mathrm{B} \rightarrow \mathrm{K}_{1 \mathrm{~A}} \pi\right)$ is the only missing piece for extracting α from $B \rightarrow \mathrm{a}_{1} \pi$
- $\mathrm{SU}(3)$ octet states $\mathrm{K}_{1 \mathrm{~A}}\left(\mathrm{C}=+1\right.$ octet) and $\mathrm{K}_{1 \mathrm{~B}}(\mathrm{C}=-1$ octet) mix
$-\left|\mathrm{K}_{1}(1400)\right\rangle=\left|\mathrm{K}_{1 \mathrm{~A}}\right\rangle \cos \theta+\left|\mathrm{K}_{1 \mathrm{~B}}\right\rangle \sin \theta$ $\left|\mathrm{K}_{1}(1270)>=-\left|\mathrm{K}_{1 \mathrm{~A}}>\sin \theta+\right| \mathrm{K}_{1 \mathrm{~B}}>\cos \theta\right.$
- Need to measure these to get $\mathrm{BF}\left(\mathrm{B} \rightarrow \mathrm{K}_{1 \mathrm{~A}} \pi\right)$
- Upper limits by ARGUS:
- $\operatorname{BF}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}_{1}(1400)^{+} \pi^{-}\right)<1.1 \times 10^{-3} @ 90 \%$ C.L.

- $\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}_{1}(1400)^{0} \pi^{+}\right)<2.6 \times 10^{-3} @ 90 \%$ C.L.

Argus coll., PLB 254, 288 (1991)

- Theoretical predictions
- ~ O(10-6)

Laporta et al., PRD 74, 054035 (2006)
Calderon et al., PRD 76, 094019 (2007)
Cheng et al., PRD 76, 114020 (2007)

K, π analysis

- Other consequences of mixing:
- broad resonances with nearly equal masses
- same quantum numbers and final state (K $K \pi$)

Interference effects

- intermediate decays almost at threshold \Rightarrow PHSP overlap
- Use $\mathrm{K} \pi \pi$ mass spectrum to distinguish between $\mathrm{K}_{1}(1270)$ and $\mathrm{K}_{1}(1400)$
- Include interference effects in the signal model
- Highest statistics data from WA3 exp. ACCMOR, NPB 187, 1 (1981)
- K $\pi \pi$ analyzed using a six-channel, two-resonance K-matrix model

$$
\begin{aligned}
& R_{j}=\frac{f_{p a} f_{a j}}{M_{a}-M_{K \pi \pi}}+\frac{f_{p b} f_{b j}}{M_{b}-M_{K \pi \pi}} \\
& K_{i j}=\frac{f_{a i} f_{a j}}{M_{a}-M_{K \pi \pi}}+\frac{f_{b i} f_{b j}}{M_{b}-M_{K \pi \pi}} \\
& \rho_{i j}\left(M_{K \pi \pi}\right)=\frac{2 \delta_{i j}}{M_{K \pi \pi}}\left[\frac{2 m_{3}^{*} m_{4}}{m_{3}^{*}+m_{4}}\left(M_{K \pi \pi}-m_{3}^{*}-m_{4}+i \frac{\Gamma_{3}}{2}\right)\right]^{1 / 2}
\end{aligned}
$$

K, π analysis

- Model signal $\mathrm{K} \pi \pi$ mass from MC implementing the K-matrix model
_ $f=\sum_{i \neq \omega K} F_{i}\langle K \pi \pi \mid i\rangle=\sum_{i \neq \omega K} F_{i} C_{i} B W_{i}^{\ell} A_{i}^{\ell}$
- decay parameters fixed to the values extracted from fit to WA3 data
$(K * \pi) \mathrm{S}$

Parameter	Fitted value
M_{a}	1.40 ± 0.02
M_{b}	1.16 ± 0.02
θ	$72^{\circ} \pm 3^{\circ}$
γ_{+}	0.75 ± 0.03
γ_{-}	0.44 ± 0.03
$f_{a 3}$	0.02 ± 0.03
$f_{b 3}$	0.32 ± 0.01
$f_{a 4}$	-0.08 ± 0.02
$f_{b 4}$	0.16 ± 0.01
$f_{a 5}$	0.06 ± 0.01
$f_{b 5}$	0.21 ± 0.04
δ_{2}	$-31^{\circ} \pm 1^{\circ}$
δ_{3}	$82^{\circ} \pm 2^{\circ}$
δ_{4}	$78^{\circ} \pm 4^{\circ}$
δ_{5}	$20^{\circ} \pm 9^{\circ}$

- production parameters left floating in the analysis of B decays
- ($\left.\mathrm{f}_{\mathrm{pa}}=\cos \vartheta, \mathrm{f}_{\mathrm{pb}}=\sin \vartheta \mathrm{e}^{i \phi}\right) \Rightarrow$ finite ranges for (ϑ, ϕ)

K, π analysis

- NLL scan over $(\vartheta, \phi)+$ extended ML fit for BF ($m_{E S}, \Delta E$, Fisher, $\left.m_{k \pi \pi},|H|\right)$
- Use nonparametric templates for signal $\mathrm{P}\left(\mathrm{m}_{\kappa \pi \pi} \mid \Theta, \phi\right)$
- Include $K^{*}(1410) \pi$ and $K^{*} \pi \pi+\rho K \pi$ as individual components
- Neutral modes
- simultaneous fit to " $K^{* "}$ and " ρ " bands
- helps in resolving ambiguities on ϕ
- Charged modes
- fit to "K" band only

- not sensitive to ϕ : fix $\phi=3.14$ rad
- Results of NLL scan:

$K_{1} \pi$ results

- $\mathrm{BF}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}_{1}(1400)^{+} \pi^{-}+\mathrm{K}_{1}(1270)^{+} \pi^{-}\right) \sim\left(3.1^{+0.8}{ }_{-0.7}\right) \times 10^{-5} \mathrm{~S}=7.5 \sigma$
- $\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}_{1}(1400)^{0} \pi^{+}+\mathrm{K}_{1}(1270)^{0} \pi^{+}\right) \sim\left(2.9^{+3.0}{ }_{-1.7}\right) \times 10^{-5} \mathrm{~S}=3.2 \sigma$

Neutral modes
$\mathrm{BF}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}_{1}(1400)^{+} \pi\right)=\left(1.6^{+0.8}-{ }_{-0.9}\right) \times 10^{-5}$ $\mathrm{BF}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}_{1}(1270){ }^{+} \pi\right)=\left(1.6^{+0.9}{ }_{-1.0}\right) \times 10^{-5}$ $\mathrm{BF}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}_{1 \mathrm{~A}}{ }^{+} \pi\right)=\left(1.4^{+0.9}{ }_{-1.0}\right) \times 10^{-5}$

Charged modes
$\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}_{1}(1400)^{0} \pi^{+}\right)<3.9 \times 10^{-5}$
$\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}_{1}(1270)^{0} \pi^{+}\right)<4.0 \times 10^{-5}$
$\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}_{1 \mathrm{~A}}{ }^{0} \pi^{+}\right)<3.6 \times 10^{-5}$

$a_{1} \pi$ results

$\mathcal{B}\left(a_{1}^{ \pm} \pi^{\mp}\right)\left(\times 10^{-6}\right)$	$\mathcal{B}\left(a_{1}^{-} K^{+}\right)\left(\times 10^{-6}\right)$	$\mathcal{B}\left(a_{1}^{+} K^{0}\right)\left(\times 10^{-6}\right)$	$\mathcal{B}\left(K_{1}^{+} \pi^{-}\right)\left(\times 10^{-5}\right)$	$\mathcal{B}\left(K_{1}^{0} \pi^{+}\right)\left(\times 10^{-5}\right)$
$(33.2 \pm 3.8 \pm 3.0)$	$(16.3 \pm 2.9 \pm 2.3)$	$(33.2 \pm 5.0 \pm 4.4)$	$\left(1.4_{-1.0}^{+0.9}\right)$	<3.6
$f_{\pi}(\mathrm{MeV})$	$f_{K}(\mathrm{MeV})$	$f_{a_{1}}(\mathrm{MeV})$	$f_{K_{1 A}}(\mathrm{MeV})$	$\theta_{\operatorname{mix}}\left({ }^{\circ}\right)$
130.4 ± 0.2	155.5 ± 0.9	203 ± 18	207 ± 20	72

Assume $\mathrm{BF}\left(\mathrm{a}_{1}{ }^{+} \rightarrow \pi^{+} \pi \pi^{+}\right)=50 \%$

- Evaluate the bounds on $|\Delta \alpha|$ by a MC based method
- Generate input according to the experimental distributions
- For each set of generated values, evaluate the bounds
- Get limits by counting the fraction of bounds within a given value
- 8 ambiguities on α : $11^{\circ}, 41^{\circ}, 49^{\circ}, 79^{\circ}, 101^{\circ}, 131^{\circ}, 139^{\circ}, 169^{\circ}$
- $2(\alpha \rightarrow \pi / 2-\alpha) \times 2$ (roughly $2 \alpha \leftrightarrow \delta) \times 2$ (average)
- assume $\delta \sim 0$ (from factorization) $\Rightarrow 2$ ambiguities

$$
|\Delta \alpha|<11^{\circ}\left(13^{\circ}\right) @ 68 \%(90 \%) \mathrm{CL}
$$

$$
\alpha=(79 \pm 7 \pm 11)^{\circ}
$$

Conclusions

- Much improvement has come from constraining model uncertainties
- Time dependent CPV observed in $\pi^{+} \pi^{-}$
- In $\rho \rho$ reached 7% precision in α, comparable to 5.3% in $\sin 2 \beta$
- $\pi^{+} \pi^{-} \pi^{0}$ still to update (not in this talk)
- $a_{1} \pi$ now provides a fourth independent determination of α

$$
(P / T)_{\rho \rho}<(P / T)_{a_{1} \pi}<(P / T)_{\pi \pi}
$$

- Used the final BaBar data sample
- Many measurements still limited by statistics

BaBar detector and dataset

[^0]: ${ }^{T M}$ and © Nelvana, All Rights Reserved

