

[™] and © Nelvana, All Rights Reserved

Measurements of the CKM angle α at BaBar

Simone Stracka on behalf of the BaBar collaboration

¹ Universita` degli Studi di Milano ² INFN Milano

DPF 2009 – 26-31 July 2009 Wayne State University, Detroit (MI)

Outline

- $B \rightarrow \pi \pi$
 - HOT: B→h⁺h⁻, B→ $\pi^{0}\pi^{0}$ 2008 updates arXiv:0807.4226 (2008)
 - CPV observed @ 6.7σ

 π^{0} ρ^{+} η^{-} η^{+} η^{+} π^{+}

- Β→ρρ
 - HOTTER: B→ρ⁺ρ⁰ 2009 update
 PRL102, 141802 (2009)
 - Best precision for $\boldsymbol{\alpha}$
 - $B \rightarrow \rho \pi$
 - Still to update
 - B→a₁π

- − FRESH FROM THE OVEN: $B \rightarrow K_1 \pi + \Delta \alpha$ to be submitted to PRD
- Fourth channel (after $\pi\pi$, $\rho\rho$, $\rho\pi$)

$B \rightarrow \pi\pi$ as a prototype

• α extracted from TD CPV asymmetries in b—uūd channels

Assuming only one CKM amplitude contributes to the decay

Enter penguin

Penguin has different strong and weak phases

 $S = \sqrt{1 - C^2} \sin\left(2\alpha - 2\Delta\alpha^{+-}\right)$

 $C \neq 0$ allowed

 $arg[e^{-2i\beta}A(\bar{B}^{0}\to\pi^{+}\pi^{-})A^{*}(B^{0}\to\pi^{+}\pi^{-})]=2\alpha_{eff}=2\alpha-2\Delta\alpha^{+-}$

- Use SU(2) or SU(3) symmetries to constrain $\Delta \alpha$

SU(3)
∆S=0 decays

$$|\mathsf{P}| \sim |\mathsf{V}_{_{ub}}\mathsf{V}^{*}_{_{ud}}|, |\mathsf{P}| \sim |\mathsf{V}_{_{cb}}\mathsf{V}^{*}_{_{cd}}|$$

- Δ S=1 decays
 - $|T'| \sim |V_{ub}V_{us}^*|, |P'| \sim |V_{cb}V_{cs}^*|$
- P'/T' CKM enhanced over P/T

Gronau, Zupan, PRD70, 074031 (2004) Gronau, Zupan, PRD73, 057502 (2006)

Charmless (quasi) two-body analysis

• Kinematic variables: energy subsituted mass, energy difference

• Event shape: distinguish "jet-like" qq events and more isotropic B decays

 Extract the signal yield and CP asymmetries via an unbinned Maximum Likelihood fit to several observables

Simone Stracka

Time dependent analysis

$$\frac{e^{-|\Delta t|/\tau}}{4\tau} \left\{ 1 \pm \Delta w \pm (1-2w) \left[S \sin(\Delta m_d \Delta t) - C \cos(\Delta m_d \Delta t) \right] \right\} \quad \begin{array}{l} \text{Include} \\ \text{tagging performance} \end{array}$$

Experimental ∆t resolution: convolution with triple gaussian, with parameters obtained from a large sample of fully reconstructed B decays, and free to differ between tagging category

 $\otimes R(\Delta t_{meas} - \Delta t, \sigma_{\Delta t})$

 $E^{\pm}(\Lambda I)$

$B \rightarrow \pi \pi$

h⁺h⁻

- Simultaneous ML fit to $\pi^+\pi^-$, π^+K^- , π^-K^+ , K^+K^-
- Increased K-π separation
 - PID in the fit: dE/dx in DCH and Cherenkov angle in DIRC
 - DCH \Rightarrow PID also for tracks outside DIRC acceptance
 - Additional $\pi^+\pi^-$, π^+K^- , π^-K^+ , K^+K^- separation from ΔE

DPF 2009 - Detroit - 30 July 2009

- $\pi^0\pi^0$
- Reconstruct $\pi^0 \rightarrow \gamma \gamma$, and include photon conversions $\gamma \rightarrow e^+e^-$
- Use NN to improve signal vs. background separation
 - Background model accounts for NN-m_{ES} correlations
- ML fit to ΔE , m_{ES}, NN and flavor tag
- Yield = 247 ± 29
- BF = $(1.83 \pm 0.21 \pm 0.13) \times 10^{-6}$
- $C^{00} = -0.43 \pm 0.26 \pm 0.05$ (flavor tag- and time-integrated); no S⁰⁰ (no vtx)

Isospin analysis for $\pi\pi$ $\chi_{\mu\nu}$

- Decompose $B \rightarrow \pi\pi$ in isospin amplitudes (A, A)
 - I=1 forbidden by Bose statistics
- 8-fold ambiguity: x4 ($\Delta \alpha$ triangles can flip), x2 ($\alpha \rightarrow \pi/2 \alpha$) ullet

	$\mathcal{B}(imes 10^{-6})$	C
$\pi^+\pi^-$	$5.5\pm0.4\pm0.3$	$-0.25\pm 0.08\pm 0.02$
$\pi^{+}\pi^{0}$	$5.02 \pm 0.46 \pm 0.29$	$(-0.03\pm0.08\pm0.01)$
$\pi^0\pi^0$	$1.83 \pm 0.21 \pm 0.13$	$-0.43 \pm 0.26 \pm 0.05$

 $A^{^{\!\!\!\!+\!0}},$ No gluon penguin $\Rightarrow |A^{+0}| = |\tilde{A}^{-0}|$

 $\frac{1}{\sqrt{2}}A^+$

I=0,2

А

 $\widetilde{A}^{\scriptscriptstyle -0}$

I=0

 \tilde{A}^{00}

Β→ρρ

Isospin analysis for pp

- BF($B \rightarrow \rho^+ \rho^-$) $\approx 5 \times BF(B \rightarrow \pi^+ \pi^-)$ but:
 - I=1 allowed in B $\rightarrow \rho\rho$ if m₁ \neq m₂ (wave function can be anti-symmetric)
 - but measurements stable when decreasing allowed Δm range
 - EW penguin can have I=2 and contribute to $B \rightarrow \rho^+ \rho^0$
 - no sign of direct CP asymmetry in $B \rightarrow \rho^+ \rho^0$
 - $B \rightarrow VV$ allows L=0,1,2 CP=(-1)^L
 - 3 polarizations: longitudinal H⁰ (L=0,2), transverse H₁ (L=0,1,2)
 - Isospin relations hold separately for each polarization state π^0
 - f ≈1 (CP even) from angular analysis

 $\frac{1}{\Gamma} \frac{d^2 \Gamma}{(d\cos\theta_1 d\cos\theta_2)} \propto \frac{4f_L \cos^2\theta_1 \cos^2\theta_2}{\pi^0} + \frac{(1-f_L) \sin^2\theta_1 \sin^2\theta_2}{\pi^0}$

Falk et al., PRD69, 011502 (2004) Kagan, PLB601, 151 (2004)

Simone Stracka

 θ_{2}

 π^+

 π^{-}

Ø

 ρ^+

 θ_1

$\rho^+ \rho^0$ update

- Higher signal efficiency and background rejection
- x2 increase in data sample w.r.t. previous measurement
- Improved charged particle reconstruction
- Improved background model
 - 3D model for BB and continuum components

 $\mathcal{P}_{3D} = \left[\mathcal{P}(m_{\pi^+\pi^-} | \cos \theta_{\rho^0}) \times \mathcal{P}(\cos \theta_{\rho^0} | NN)\right] \times \left[\mathcal{P}(m_{\pi^+\pi^0} | \cos \theta_{\rho^+}) \times \mathcal{P}(\cos \theta_{\rho^+} | NN)\right] \times \mathcal{P}(NN)$

1)
$$A_{CP}(\rho^+\rho^0) \approx 0 \Rightarrow EW$$
 penguin is negligible
 $A_{CP} \equiv \frac{\Gamma_{B^-} - \Gamma_{B^+}}{\Gamma_{B^-} + \Gamma_{B^+}} = -0.054 \pm 0.055 \pm 0.010$

2) both BF and f_{\perp} increase $BF(B^+ \to \rho^+ \rho^0) = (23.7 \pm 1.4 \pm 1.4) \times 10^{-6} \nearrow 2\sigma$ $f_{\perp} \equiv \Gamma_{\perp} / \Gamma = 0.950 \pm 0.015 \pm 0.006$

13/25

$\rho^+ \rho^0$ results

	$\mathcal{B}(\times 10^{-6})$	f_L	$C = -A_{CP}$	S
$\rho^+\rho^-$	$25.5 \pm 2.1^{+3.6}_{-3.9}$	$0.992 \pm 0.024^{+0.026}_{-0.013}$	$0.01 \pm 0.15 \pm 0.06$	$-0.17\pm0.20^{+0.05}_{-0.06}$
$\rho^+ \rho^0$	$23.7\pm1.4\pm1.4$	$0.950 \pm 0.042 \pm 0.006$	$(0.054 \pm 0.055 \pm 0.010)$	—
$ ho^0 ho^0$	$0.92 \pm 0.32 \pm 0.14$	$0.75^{+0.11}_{-0.14}\pm0.04$	$0.2\pm0.8\pm0.3$	$0.3\pm0.7\pm0.2$

- $A_{_{CP}}(\rho^{_+}\rho^{_0}) \approx 0 \Rightarrow EW$ penguin is negligible \Rightarrow isospin analysis holds within 1-2°
- S^{00} provides relative suppression of $\Delta \alpha$ ambiguities

Simone Stracka

$\rho^+ \rho^0$ results

• BF($\rho^+\rho^0$) and f ($\rho^+\rho^0$) increase \Rightarrow isospin triangle flattens out

Warning: size of $\rho^0 \rho^0$ is exaggerated

Simone Stracka

$B \rightarrow a_1 \pi$

$$B \rightarrow a_1 \pi$$

• Not a CP eigenstate

$$A_{+} = A(B^{0} \to a_{1}^{+} \pi^{-}) \qquad \bar{A}_{+} = A(\bar{B}^{0} \to a_{1}^{-} \pi^{+})$$
$$A_{-} = A(B^{0} \to a_{1}^{-} \pi^{+}) \qquad \bar{A}_{-} = A(\bar{B}^{0} \to a_{1}^{+} \pi^{-})$$

$$S \pm \Delta S \equiv \frac{2 Im (e^{-2i\beta} \bar{A}_{\mp} A_{\pm}^{*})}{|A_{\pm}|^{2} + |\bar{A}_{\mp}|^{2}} \qquad PRL98, 181803 (2007)$$

$$A_{CP} = \frac{-0.07 \pm 0.07 \pm 0.02}{0.37 \pm 0.21 \pm 0.07}$$

$$\Delta S = \frac{|A_{\pm}|^{2} - |\bar{A}_{\mp}|^{2}}{|A_{\pm}|^{2} + |\bar{A}_{\mp}|^{2}} \qquad \Delta S = -0.14 \pm 0.21 \pm 0.06$$

$$C = \frac{|A_{\pm}|^{2} + |\bar{A}_{\mp}|^{2}}{|A_{\pm}|^{2} + |\bar{A}_{\mp}|^{2}} \qquad \Delta C = 0.10 \pm 0.15 \pm 0.09$$

$$\Delta C = 0.26 \pm 0.15 \pm 0.07$$

$$F_{Q_{\text{tag}}}^{a_{1}^{\pm}\pi^{\mp}}(\Delta t) = (1 \pm A_{CP}) \frac{e^{-|\Delta t|/\tau}}{4\tau} \bigg\{ 1 - Q_{\text{tag}} \Delta w + Q_{\text{tag}}(1 - 2w) \bigg[(S \pm \Delta S) \sin(\Delta m_{d} \Delta t) - (C \pm \Delta C) \cos(\Delta m_{d} \Delta t) \bigg] \bigg\}$$

• Extraction of $\alpha_{\text{\tiny eff}}$

$$2\alpha_{eff}^{\pm} \equiv arg\left[e^{-2i\beta}\bar{A}_{\pm}A_{\pm}^{*}\right] \qquad 2\alpha_{eff}^{\pm} \pm \hat{\delta} = arg\left[e^{-2i\beta}\bar{A}_{\pm}A_{\mp}^{*}\right] = \arcsin\frac{S \mp \Delta S}{\sqrt{1 - (C \mp \Delta C)^{2}}}$$
$$\hat{\delta} \equiv arg\left[A_{\pm}A_{\pm}^{*}\right] \qquad \alpha_{eff} = \frac{1}{2}(\alpha_{eff}^{+} + \alpha_{eff}^{-})$$

- For small penguins, $\delta \approx$ strong phase between tree amplitudes

Simone Stracka

$\Delta \alpha$ from SU(3)

- Penguin (P) is CKM (1/ λ = |V_{cs}|/|V_{cd}|) enhanced in Δ S=1 decays
- Use SU(3) symmetry and ratios of CP-averaged rates for $\Delta S=1$ (B $\rightarrow a_1K$, B $\rightarrow K_{1A}\pi$) and $\Delta S=0$ (B $\rightarrow a_1\pi$)

$$R_{+}^{0,+} \equiv \frac{\lambda^{2} f_{a_{1}}^{2} BF(K_{1A}^{+,0} \pi^{-,+})}{f_{K_{1A}}^{2} BF(a_{1}^{+} \pi^{-})} \qquad K_{1A} = SU(3) \text{ partner of } a_{1}$$

PRL100, 051803 (2008)
and similarly for R_0,+ from a_1K decays

• Get $|\alpha_{eff}^{+,-}-\alpha|$ by solving the system:

$$\cos 2(\alpha_{\text{eff}}^{\pm} - \alpha) \ge \frac{1 - R_{\pm}^{0}}{\sqrt{1 - \mathcal{A}_{CP}^{\pm 2}}}$$
$$\cos 2(\alpha_{\text{eff}}^{\pm} - \alpha) \ge \frac{1 - R_{\pm}^{\pm}}{\sqrt{1 - \mathcal{A}_{CP}^{\pm 2}}}$$
$$\mathsf{A}_{\mathsf{CP}}^{\pm} = \mathsf{CP} \text{ asymmetries}$$

• $|\Delta \alpha| = (|\alpha_{\text{eff}} - \alpha| + |\alpha_{\text{eff}} - \alpha|)/2$

B decays to $K_1(1270)\pi$ and $K_1(1400)\pi$

- BF(B \rightarrow K_{1A} π) is the only missing piece for extracting α from B \rightarrow a₁ π
- SU(3) octet states K_{1A} (C= +1 octet) and K_{1B} (C= -1 octet) mix
 - $|K_1(1400)\rangle = |K_{1A}\rangle \cos\theta + |K_{1B}\rangle \sin\theta$ $|K_1(1270)\rangle = -|K_{1A}\rangle \sin\theta + |K_{1B}\rangle \cos\theta$
- Need to measure these to get $BF(B \rightarrow K_{1A}\pi)$
 - Upper limits by ARGUS:
 - $BF(B^0 \rightarrow K_1(1400)^+\pi^-) < 1.1 \times 10^{-3} @ 90\% C.L.$
 - $BF(B^+ \rightarrow K_1(1400)^0 \pi^+) \le 2.6 \times 10^{-3} @ 90\% C.L.$

Argus coll., PLB 254, 288 (1991)

- Theoretical predictions
 - ~ O(10⁻⁶)

Laporta et al., PRD 74, 054035 (2006) Calderon et al., PRD 76, 094019 (2007) Cheng et al., PRD 76, 114020 (2007)

$K_1\pi$ analysis

- Other consequences of mixing:
 - broad resonances with nearly equal masses
 - same quantum numbers and final state (K $\pi\pi$)
 - intermediate decays almost at threshold \Rightarrow PHSP overlap
- Use $K\pi\pi$ mass spectrum to distinguish between $K_1(1270)$ and $K_1(1400)$
 - Include interference effects in the signal model
- Highest statistics data from WA3 exp. ACCMOR, NPB 187, 1 (1981)
 - $K\pi\pi$ analyzed using a six-channel, two-resonance K-matrix model

$$R_{j} = \frac{f_{pa} f_{aj}}{M_{a} - M_{K\pi\pi}} + \frac{f_{pb} f_{bj}}{M_{b} - M_{K\pi\pi}}$$

$$R_{j} = \frac{f_{ai} f_{aj}}{M_{a} - M_{K\pi\pi}} + \frac{f_{bi} f_{bj}}{M_{b} - M_{K\pi\pi}}$$

$$K_{ij} = \frac{f_{ai} f_{aj}}{M_{a} - M_{K\pi\pi}} + \frac{f_{bi} f_{bj}}{M_{b} - M_{K\pi\pi}}$$

$$\rho_{ij}(M_{K\pi\pi}) = \frac{2\delta_{ij}}{M_{K\pi\pi}} \left[\frac{2m_{3}^{*}m_{4}}{m_{3}^{*} + m_{4}}(M_{K\pi\pi} - m_{3}^{*} - m_{4} + i\frac{\Gamma_{3}}{2})\right]^{1/2}$$

Simone Stracka

DPF 2009 - Detroit - 30 July 2009

Interference effects

$K_1\pi$ analysis

• Model signal $K\pi\pi$ mass from MC implementing the K-matrix model

$$f = \sum_{i \neq \omega K} F_i \langle K \pi \pi | i \rangle = \sum_{i \neq \omega K} F_i C_i B W_i^{\ell} A_i^{\ell}$$

• decay parameters fixed to the values extracted from fit to WA3 data

• production parameters left floating in the analysis of B decays

- $(f_{pa} = \cos \theta, f_{pb} = \sin \theta e^{i\phi}) \Rightarrow$ finite ranges for (θ, ϕ)

K_{π} analysis

- NLL scan over (ϑ, ϕ) + extended ML fit for BF $(m_{ES}, \Delta E, Fisher, m_{\kappa_{\pi\pi}}, |H|)$
 - Use nonparametric templates for signal P($m_{\kappa\pi\pi}|\vartheta,\phi$)
- Include K*(1410) π and K* $\pi\pi$ + ρ K π as individual components •

2년

0

(a)

- Neutral modes
 - simultaneous fit to "K*" and "p" bands
 - helps in resolving ambiguities on ϕ
- Charged modes
 - fit to "K*" band only
 - not sensitive to ϕ : fix ϕ =3.14 rad \$ (rad)
- Results of NLL scan:

Charged modes

1

(d)

0

0.5

1.5 v (rad)

0.5

Neutral modes

☆

1

1.5 v (rad)

K_{π} results

Charged modes

 $BF(B^+ \rightarrow K_1(1400)^0 \pi^+) < 3.9 \times 10^{-5}$

 $BF(B^+ \rightarrow K_1(1270)^0 \pi^+) < 4.0 \times 10^{-5}$

 $BF(B^+ \rightarrow K_{1A}^0 \pi^+) < 3.6 \times 10^{-5}$

- $BF(B^{0} \rightarrow K_{1}(1400)^{+}\pi^{-} + K_{1}(1270)^{+}\pi^{-}) \sim (3.1^{+0.8} 0.7) \times 10^{-5}$ S=7.50
- $BF(B^{+} \rightarrow K_{1}(1400)^{0}\pi^{+} + K_{1}(1270)^{0}\pi^{+}) \sim (2.9^{+3.0}) \times 10^{-5} \text{ S} = 3.2\sigma$

Neutral modes

 $BF(B^0 \rightarrow K_1(1400)^+\pi^-) = (1.6^{+0.8}, 0.9) \times 10^{-5}$

 $BF(B^{0} \rightarrow K_{1}(1270)^{+}\pi^{-}) = (1.6^{+0.9}) \times 10^{-5}$

 $BF(B^0 \rightarrow K_{1\Delta}^+\pi^-) = (1.4^{+0.9}) \times 10^{-5}$

23/25

$a_1\pi$ results

$\mathcal{B}(a_1^{\pm}\pi^{\mp})(\times 10^{-6})$	$\mathcal{B}(a_1^-K^+)(\times 10^{-6})$	$\mathcal{B}(a_1^+K^0)(\times 10^{-6})$	$\mathcal{B}(K_1^+\pi^-)(\times 10^{-5})$	$\mathcal{B}(K_1^0\pi^+)(\times 10^{-5})$
$(33.2 \pm 3.8 \pm 3.0)$	$(16.3 \pm 2.9 \pm 2.3)$	$(33.2 \pm 5.0 \pm 4.4)$	$(1.4^{+0.9}_{-1.0})$	< 3.6
$f_{\pi}(\text{MeV})$	$f_K(MeV)$	$f_{a_1}(\text{MeV})$	$f_{K_{1A}}(\text{MeV})$	$ heta_{mix}(\circ)$
130.4 ± 0.2	155.5 ± 0.9	203 ± 18	207 ± 20	72

Assume BF($a_1^+ \rightarrow \pi^+ \pi^- \pi^+$)=50%

- Evaluate the bounds on $|\Delta \alpha|$ by a MC based method
 - Generate input according to the experimental distributions
 - For each set of generated values, evaluate the bounds
 - Get limits by counting the fraction of bounds within a given value
- 8 ambiguities on α: 11°, 41°, 49°, 79°, 101°, 131°, 139°, 169°
 - 2 ($\alpha \rightarrow \pi/2$ α) x 2 (roughly $2\alpha \leftrightarrow \delta$) x 2 (average)
 - assume $\delta \sim 0$ (from factorization) $\Rightarrow 2$ ambiguities

Δα < 11° (13°) @ 68% (90%) CL

$$\alpha = (79 \pm 7 \pm 11)^{\circ}$$

Conclusions

- Much improvement has come from constraining model uncertainties
- Time dependent CPV observed in $\pi^+\pi^-$
- In $\rho\rho$ reached 7% precision in α , comparable to 5.3% in sin2 β
- $\pi^+\pi^-\pi^0$ still to update (not in this talk)
- $a_{1}\pi$ now provides a fourth independent determination of α

$$(P/T)_{\rho\rho} {<} (P/T)_{a_1\pi} {<} (P/T)_{\pi\pi}$$

- Used the final BaBar data sample
 - Many measurements still limited by statistics

Simone Stracka

BaBar detector and dataset

