Discovery Potential of the SM Higgs Through H→WW Decay Mode at LHC with the ATLAS Detector

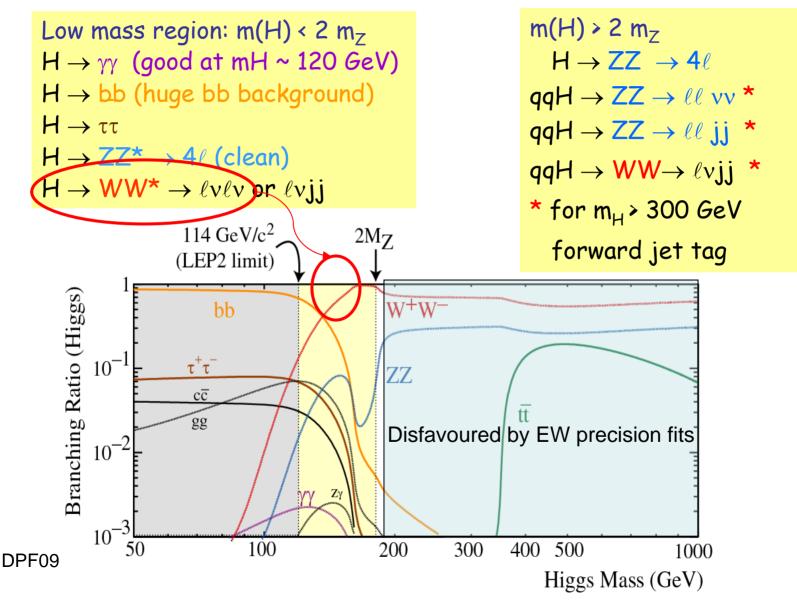
Hai-Jun Yang University of Michigan, Ann Arbor (on behalf of the ATLAS Collaboration)

DPF09, Wayne State University July 30, 2009

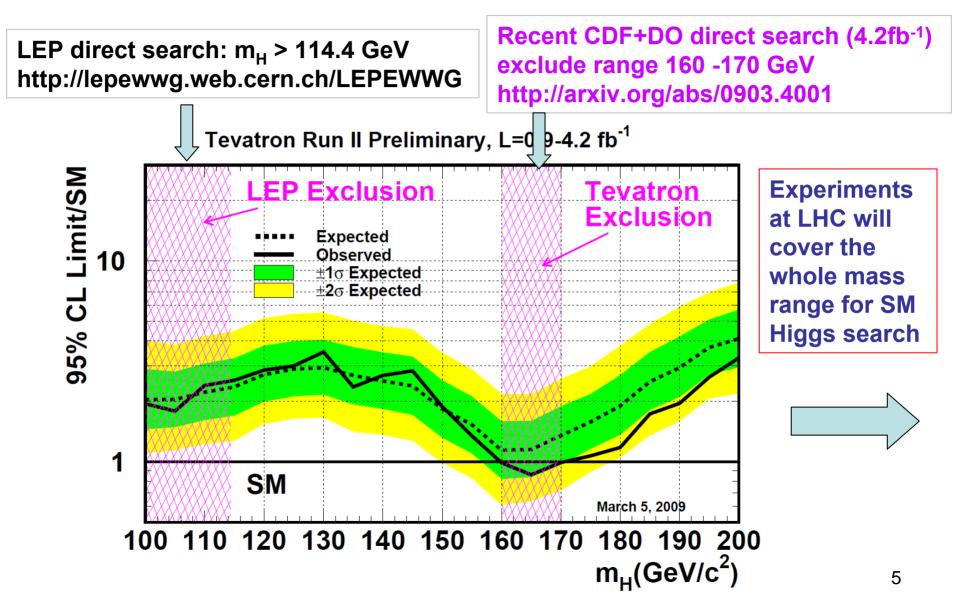
Outline

- Introduction
- Current limits on the SM Higgs searches
- The ATLAS Detector
- H→WW signatures
- Results from cut-based analysis
- Signal detection improvement by using multivariate method (Boosted Decision Trees)
- Conclusions

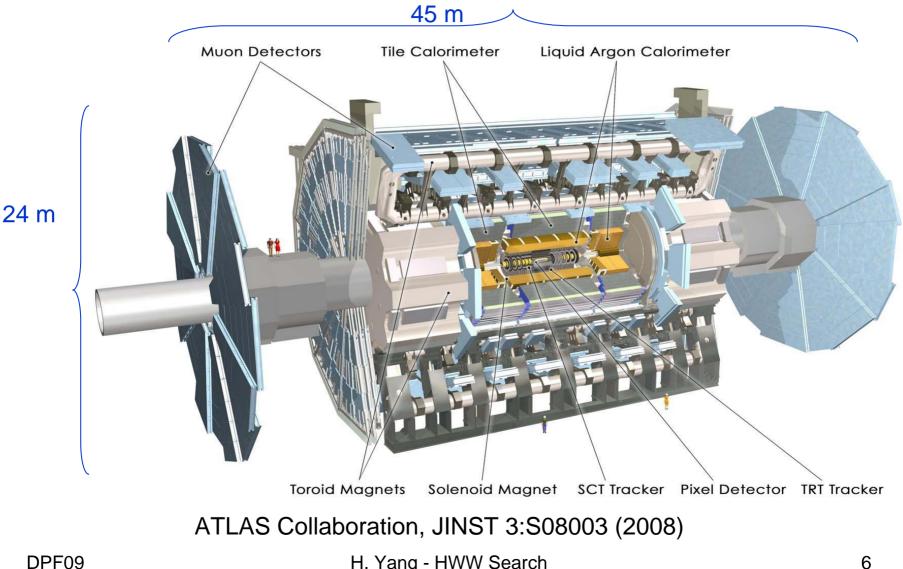
SM Higgs Production at LHC



→ Gluon-gluon fusion and WW/ZZ fusion are two dominant Higgs production mechanism.

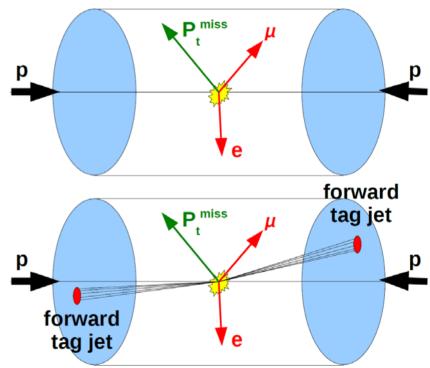

H. Yang - HWW Search

WW, ZZ fusion


Higgs Decay Branching Ratios and Discovery Channels

Present Limits on Higgs Searches

The ATLAS Detector at LHC



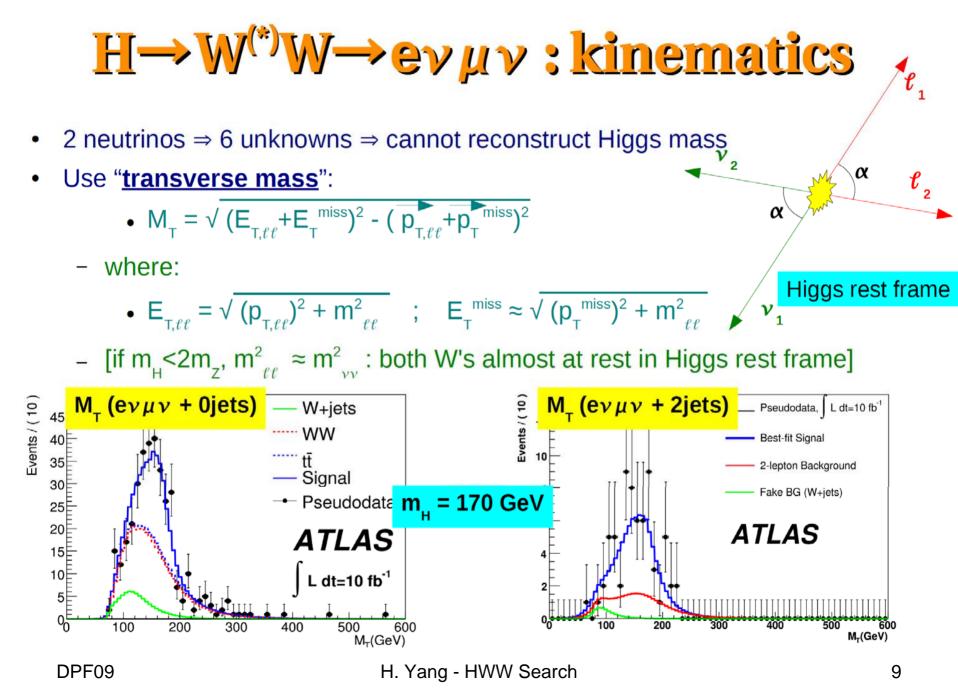
DPF09

H. Yang - HWW Search

Search for H→WW using leptonic decay final states at LHC

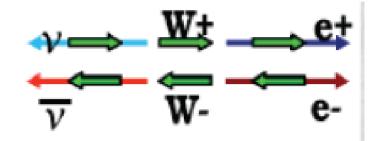
- Main search channel for mass in range: 130 GeV < m_H < 190 GeV due to large WW decay branching ratio
- Analyses:
 - H + 0 jets → lvlv
 (dominated by Gluon Gluon Fusion)
 - H + 2 jets → lvlv + 2 jets
 (dominated by Vector Boson Fusion)
- Main backgrounds: WW, Wt, tt and W+jets

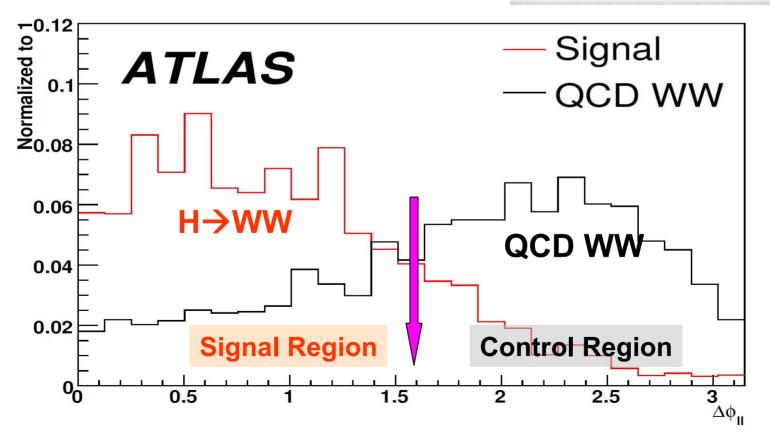
Signal and Background cross sections at $\sqrt{s} = 14$ TeV

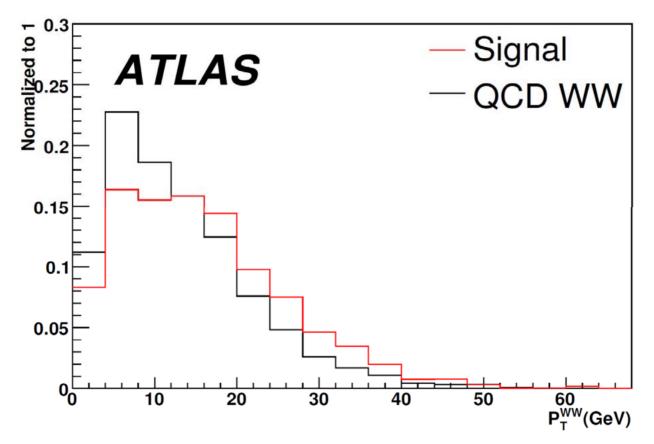

Process	Generator	Cross-section(pb)
$gg \rightarrow H \rightarrow WW \ (M_H = 170 \text{ GeV})$	MC@NLO	19.418
$\operatorname{VBF} H \to WW \ (M_H = 170 \text{ GeV})$	PYTHIA/Sherpa	2.853
$\operatorname{VBF} H \to WW \ (M_H = 300 \text{ GeV})$	HERWIG	0.936
$qq/qg \rightarrow WW$	MC@NLO/Alpgen	111.6
gg ightarrow WW	GG2WW	5.26
$pp \rightarrow t\overline{t}$	MC@NLO	833
$Z \rightarrow \tau \tau + jets$	PYTHIA/ALPGEN	2015
W+jets	ALPGEN	20510

BR(W \rightarrow ev) = 10.8%, cross section of H \rightarrow WW \rightarrow IvIv (I=e, μ) at m_H = 170 GeV and 14 TeV center-of-mass energy is 0.906 pb.

Major experimental challenges:


- Irreducible SM WW background

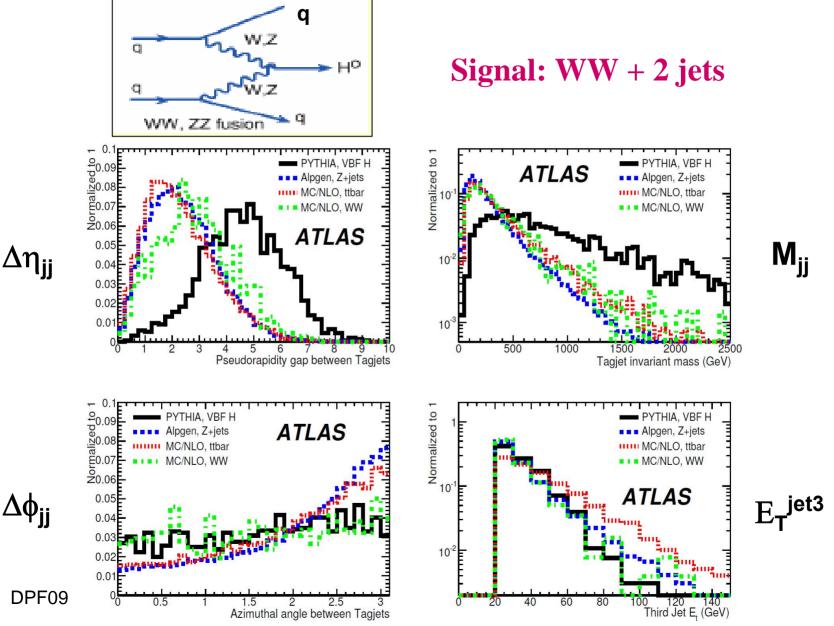

- Unable to reconstruct M_H in leptonic decay modes


H → WW Signature

Transverse opening angle $\Delta \phi_{II}$ of two leptons from WW decay

Transverse Momentum of WW

ggF H \rightarrow WW signal has larger P_T^{WW} than SM WW background because gluon-initiated process tends to have more ISR than quark-initiated process.


Gluon-gluon Fusion $H \rightarrow WW \rightarrow ev\mu v$ Event Selection (m_H=170 GeV, 1 fb⁻¹)

→ Selected event has exactly two isolated, opposite-charge leptons with p_T >15 GeV

Selection	Selection cuts	$gg \rightarrow H$	$t\overline{t}$	WW	Z ightarrow au au	W + jets
	Lepton Selection+ <i>M</i> ₁₁	166.4	6501	718.12	4171	209.1
pre-	$p_T^{miss} > 30 \text{ GeV}$	147.7	5617	505.25	526.3	181.6
selection	$Z \rightarrow \tau \tau$ Rej.	145.8	5215	485.12	164.2	150.4
	Jet Veto	61.80	14.84	238.35	31.91	76.12
	b-veto	61.56	6.85	237.87	30.76	76.12
	$\Delta\phi_{ll} < 1.575,$					
signal region	$M_T < 600 \text{ GeV}$	50.6 ± 2.5	2.3±1.6	$85.4{\pm}2.7$	<1.7	38±38
	$\Delta \phi_{ll} > 1.575,$					
control region	$M_T < 600 \text{ GeV}$	$10.9{\pm}1.1$	4.6±2.3	151.9 ± 3.6	$30.8{\pm}4.2$	38±38
b-tagged						
signal region	$\Delta \phi_{ll} < 1.575$	-	$1.14{\pm}1.14$	-	-	-
b-tagged						
control region	$\Delta \phi_{ll} > 1.575$	-	$5.71 {\pm} 2.55$	-	-	-

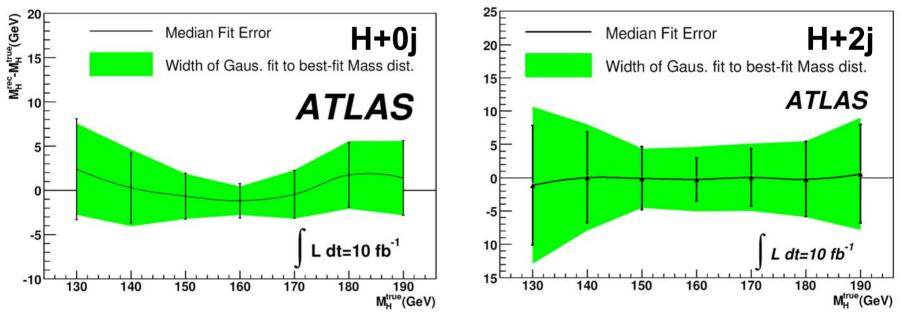
→ In 'signal region': 51 Higgs events, 126 background events
→ The signal efficiency is 11.2%, signal-to-background ratio is 0.4

Vector Boson Fusion (VBF) Higgs Production

13

VBF H \rightarrow WW \rightarrow evµv + 2 jets Event Selection (m_H=170 GeV, 1 fb⁻¹)

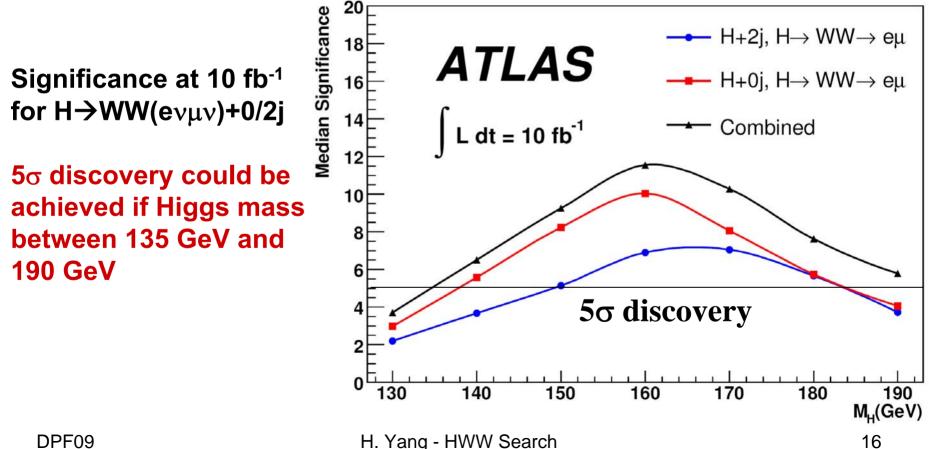
Cut	Signal (170 GeV)	$t\overline{t}$	WW+jets	$Z \rightarrow \tau \tau$	W+jets
Lepton Selection	30.20	8317	838.96	(2096)	1323
Forward Jet Tagging	17.27	946.6	32.77	79.30	31.83
Leptons Between Jets	16.47	617.8	22.92	55.13	27.91
$Z \rightarrow \tau \tau$ Rejection	15.68	561.8	21.20	39.03	27.91
$p_T^{miss}, M_T, m_T^{llv}$	12.78	425.9	15.28	0	13.96
b-veto	12.67	206.72	-	-	-
signal box, b-jet Veto	9.28±0.27	28.5 ± 5.7	4.75 ± 0.30	-	4.3±4.3
signal box, no b-jet Veto	9.65	114.2	4.99	-	6.07
Control, b-jet Veto	3.02±0.15	89±10	$9.78 {\pm} 0.43$	-	$7.9{\pm}5.0$
Control, no b-jet Veto	3.13	311.7	10.28	-	7.89


Signal box: $\Delta \phi_{\parallel} < 1.5$ and $\Delta \eta_{\parallel} < 1.4$; otherwise Control box

→ In signal box with b-veto: 9.3 Higgs events, 38 background events
 → signal efficiency is 7%, signal-to-background ratio is ~0.24

Higgs Mass Determination (Maximum-likelihood fit)

H→WW→ $ev\mu v$ + 0 jet 2-D fit: M_T and p_T^{WW} (2bins: $\Delta \phi_{II}$ <1.575, $\Delta \phi_{II}$ >1.575)


H→WW→ $ev\mu v$ + 2 jets 2-D fit: M_T and NN output ($\Delta \eta_{ii}$, M_{ii}, E_T^{jet3}, η_3 -(η_1 + η_2)/2)

➔ Higgs mass determination variabilities for 130, 160 and 190 GeV Higgs boson masses are about 5.2, 1.6 and 4.2 GeV, respectively.

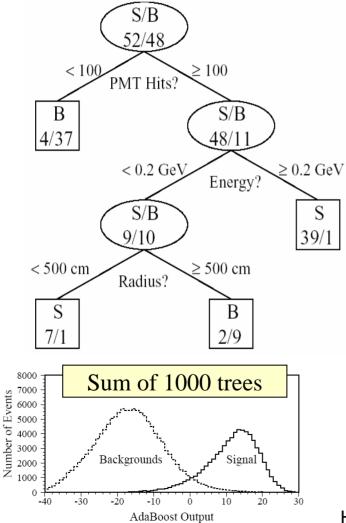
Higgs Detection Significance

 \rightarrow Log-likelihood ratio test-statistics by using M_T, p_T^{WW}, NN distributions in signal and control regions from H + 0/2 jets.

To improve the Higgs detection sensitivity

- Using multivariate method (Boosted Decision Trees, ref: H. Yang et.al., NIM A555 (2005) 370) to combine a set of discriminating variables into one final powerful discriminator variable to select Higgs events.
- Discriminating variables used in our BDT analysis:
 - Event topology: Jet multiplicity, Impact parameter of leptons, opening angle between leptons (jets) etc.
 - Energy and momentum of leptons, jets, MET
 - Masses: invariant mass of two leptons, transverse mass of two leptons with MET
 - Lepton isolations: number of tracks, sum of track P_T , sum of jet E_T in $\Delta R < 0.4$ cone around lepton
- ➔ Higgs signal efficiency could be improved by ~30% and signal-to-background ratio is improved by a factor of ~ 2.

Conclusions

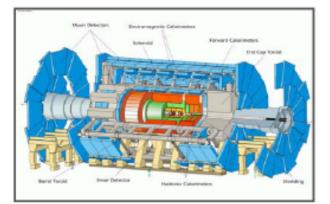

- H→WW→IvIv is one of the most interesting and sensitive channels to discover the Higgs boson for Higgs mass between 130 GeV – 190 GeV.
- The Higgs detection sensitivity can be improved significantly by using multivariate method such as Boosted Decision Trees.
- The discovery of the SM Higgs boson through W-pair leptonic decay modes could be achieved by using a few fb⁻¹ integrated luminosity if the Higgs mass is around 140 GeV – 190 GeV.

We are looking forward the LHC collision data !

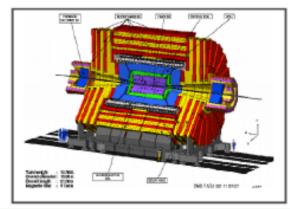
Backup Slides

Boosted Decision Trees (BDT)

→ Relative new in HEP – MiniBooNE, BaBar, D0(single top discovery), ATLAS
 → Advantages: robust, understand 'powerful' variables, 'not a black box', …


- Split data recursively based on input variables until a stopping criterion is reached (e.g. purity, too few events)
- Every event ends up in a "signal" or a "background" leaf
- Misclassified events will be given larger weight in the next tree (boosting)
- For a given event, if it lands on the signal leaf in one tree, it is given a score of 1, otherwise, -1. The sum of scores from all trees is the final score of the event.

B.P. Roe, H.J. Yang, et.al., physics/0408124, NIM A543 (2005) 577 H.J. Yang, B.P. Roe, et.al., physics/0508045, NIM A555 (2005) 370


H. Yang - HWW Search

Systematic Uncertainties

- 5% Parton Density Function (PDF) uncertainty
- 5% QCD factorization scaling uncertainties used in NLO calculations
- 5% luminosity uncertainty
- 3% lepton identification acceptance uncertainty
- 6% energy scale and resolution uncertainty (3% on lepton energy, 10% on hadronic energy)
- 8% BDT training uncertainty (due to major background cross-section changes)
- 15% background estimation uncertainty (assuming 100% W/Z+Jets cross-section uncertainty).

	A Toroidal LHC ApparatuS	Compact Muon Solenoid
MAGNET	3 air-core toroids + solenoid in inner cavity Calorimeters in field-free region	Only one Solenoid Calorimeters inside field
TRACKER	Si pixels + strips + TRT for particle identification Solenoid <u>B = 2T</u> σ/p _T ~5×10 ⁻⁴ p _T ⊕0.01	Si pixels + strips Solenoid <u>B = 4T</u> σ /p_T~1.5x10⁻⁴p_T⊕0.005
EM CALO	Pb-liquid Argon Longitudinal segmentation σ/E~10%/√E⊕0.007	<u>PbWO4 crystals</u> σ /E~2-5%/√E⊕0.005
HADRONIC CALO	Fe-scint. + Cu-liquid Argon (10λ) σ /E~50%/√E⊕0.03	Cu-scint. (>5.8λ+catcher) σ/E~100%/√E⊕0.05
MUON	Optimal performance also <u>standalone</u> σ /p_T~2%@50GeV ÷ 10%@1TeV (ID+MS)	Combining with tracker σ ∕p⊤~1%©50GeV÷5%©1TeV
TRIGGER	LVL1 + LVL2 (Region of Interest) + EF	LVL1 + HLT (LVL2 + LVL3)