

Search for θ_{13} at Daya Bay

On behalf of the Daya Bay Collaboration Deb Mohapatra Virginia Tech

2009 Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009) 26-31 JULY 2009

Wayne State University, Detroit, MI

Outline

- The neutrino mixing matrix and the mixing angle θ_{13}
- Reactor neutrino experiments
- Daya Bay experimental setup
- Expected signal and background rates
- Systematics and sensitivity
- Current status
- Summary

The neutrino mixing (MNS) matrix

 The MNS matrix relates the mass eigenstates (v₁, v₂ and v₃) to the flavor eigenstates (v_e, v_μ and v_τ)

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

Last unknown matrix element

It can be described by three 2D rotations

• If θ_{13} is zero there is no CP violation in neutrino mixing

Existing limit on θ_{13}

Nuclear reactors as antineutrino source

- Fission process in nuclear reactor produces huge number of low-energy antineutrino
- A typical commercial reactor, with 3 GW thermal power, produces $6 \times 10^{20} \overline{v_e}/s$
- Daya Bay reactors produce 11.6 GW_{th} now, 17.4 GW_{th} in 2011
- The observable antineutrino spectrum is the product of the flux and the cross section

Measuring θ_{13} with reactor antineutrinos

Reactor anti-neutrinos survival probability:

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2\left(\frac{\Delta m_{31}{}^2 L}{4E_\nu}\right) + \text{Solar Osc.}$$

Daya Bay: Experimental setup

Daya Bay: Experimental setup

Far site Overburden: 355 m 8 identical anti-neutrino detectors (two at each near site and four at the far site) to cross-check detector efficiency
Two near sites sample flux from reactor groups

9 different baselines under the assumption of point size reactor cores and detectors

Daya Bay Near Overburden: 98 m

Antineutrino Detector (AD)

- Three-zone cylindrical design
 - ✓ Target: 20 ton 0.1% Gd-doped Liquid Scintillator (LS)
 - ✓ Gamma catcher: 20 ton LS
 - ✓ Buffer : 40 ton (mineral oil)
- 192 low-background 8" PMTs
- Reflectors at top and bottom
- AD sits in a pool of

Muon veto system

- Two tagging systems to detect cosmic ray and fast neutron background: 2.5 meter thick two-section water shield and RPCs
- Efficiency 99.5% with uncertainty < 0.25%

Antineutrino event signature in AD

- Two part coincidence is crucial for background reduction
- Neutron capture on Gd provides a secondary burst of light approximately 30 µs later

$$\overline{v_e} + p \rightarrow e^+ + n \text{ (prompt)}$$

 $\sim 0.3b \mapsto + p \rightarrow D + \gamma(2.2 \text{ MeV}) \text{ (delayed)}$
 $\sim 50,000b \mapsto + \text{Gd} \rightarrow \text{Gd}^* \rightarrow \text{Gd} + \gamma' \text{s}(8 \text{ MeV}) \text{ (delayed)}$

Measuring θ_{13} with reactor antineutrinos at Daya Bay

Target mass measurement

Measuring θ_{13} with reactor antineutrinos at Daya Bay

AD calibration system

- Automated calibration system → routine weekly deployment of sources LED light sources
- \rightarrow monitoring optical properties
- e⁺ and n radioactive sources
- \rightarrow energy calibration

- ⁶⁸Ge source
- Am-¹³C + ⁶⁰Co source
- LED diffuser ball

Energy calibration

Prompt Energy Signal

Reconstructed Positron Energy Spectrum scalp Energy 88465 Entries Mean 3.576 8 MeV RMS 1.462 Underflow 0 Overflow 200 150 100 50 2 10 Recon. Energy(MeV)

e⁺ threshold: stopped positron signal using ⁶⁸Ge source (2x0.511 MeV)

e⁺ energy scale: 2.2 MeV neutron capture signal (n source, spallation)

1 MeV cut for prompt positrons: >99%, uncertainty negligible

Delayed Energy Signal

6 MeV threshold: n capture signals at 8 and 2.2 MeV (n source, spallation)

6 MeV cut for delayed neutrons: 91.5%, uncertainty 0.22% assuming 1% energy uncertainty

Backgrounds

- Fast neutron fast neutron enters detector, creates prompt signal, thermalizes, and is captured
- β +n decays of ⁹Li and ⁸He created in AD via μ ¹²C spallation

 Random coincidence — two unrelated events happen close together in space and time

Signal, background and systematic

Signal rates:

far site < 90 events/det/day

Daya Bay site < 840 events/det/day

Ling Ao site < 740 events/det/day

Total expected background rates:

far site < 0.4 events/det/day

Daya Bay site < 6 events/det/day

Ling Ao site < 4 events/det/day

Systematic and statistical budgets summary

Source	Uncertainty		
Reactor power	0.13%		
Detector (per module)	dule) 0.38% (baseline)		
	0.18% (goal)		
Signal statistics	0.2%		

Daya Bay sensitivity to $sin^2 2\theta_{13}$

Site preparation

Fabrication and delivery of detector components

Gd-Liquid scintillator test production

Daya Bay experiment uses 200 ton 0.1% gadolinium-loaded liquid scintillator (Gd-LS).

Gd-LS will be produced in multiple batches but mixed in reservoir on-site, to ensure identical detectors.

Summary

Daya Bay is the most sensitive reactor θ_{13} experiment.

- Daya Bay will reach a sensitivity of ≤ 0.01 for sin²2 θ_{13}
- Civil and detector construction are progressing. Data taking will begin in summer 2010 with 2 detectors at near site.
- Full experiment will start taking data in 2011.

The Daya Bay Collaboration

Daya Bay Collaboration participating institutions

Europe (3) (9)

JINR, Dubna, Russia Kurchatov Institute, Russia Charles University, Czech Republic

North America (14)(73) BNL, Caltech, George Mason Univ., LBNL, Iowa state Univ. Illinois Inst. Tech., Princeton, RPI, UC-Berkeley, UCLA, Univ. of Houston, Univ. of Wisconsin, Virginia Tech., Univ. of Illinois-Urbana-Champaign

ollaborators

Asia (18) (125)

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. Univ., Nanjing Univ., Nankai Univ., Shandong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Hong Kong Univ., Chinese Hong Kong Univ., National Taiwan Univ., National Chiao Tung Univ., National United Univ.

Thank You

Backup

Background Summary

		Daya Bay Near Ling Ao Near		Far Hall	
	Baseline (m)	seline (m) 363 4		1985 from Daya Bay	
			526 from Ling Ao II	1615 from Ling Ao's	
	Overburden (m)	98	112	350	
	Radioactivity (Hz)	<50	<50	<50	
	Muon rate (Hz)	36	22	1.2	
a)	Antineutrino Signal (events/day)	930	760	90	
d)	Accidental Background/Signal (%)	< 0.2	< 0.2	< 0.1	
c)	Fast neutron Background/Signal (%)	0.1	0.1	0.1	
b)	⁸ He+ ⁹ Li Background/Signal (%)	0.3	0.2	0.2	

Detector-related systematic uncertainties

	Absolute measurement		Relat nt meas	ive surement	
Source of uncertainty		Chooz	Daya Bay (relative)		
		(absolute)	Baseline	Goal	Goal w/Swapping
# protons		0.8	0.3	0.1	0.006
Detector	Energy cuts	0.8	0.2	0.1	0.1
Efficiency	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	<0.01	<0.01	< 0.01
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%
					Ref: Daya Bay TDR

Experimental sensitivity calculation

$$\chi^{2} = \min_{\gamma} \sum_{A=1}^{8} \sum_{i=1}^{N_{bins}} \frac{\left[M_{i}^{A} - T_{i}^{A}\left(1 + \alpha_{c} + \sum_{r} \omega_{r}^{A} \alpha_{r}\right) + \beta_{i} + \varepsilon_{D} + \varepsilon_{d}^{A}\right) - \eta_{f}^{A} F_{i}^{A} - \eta_{n}^{A} N_{i}^{A} - \eta_{s}^{A} S_{i}^{A}\right]^{2}}{T_{i}^{A} + \sigma_{b2b}^{2}} + \frac{\alpha_{c}^{2}}{\sigma_{c}^{2}} + \sum_{r} \frac{\alpha_{r}^{2}}{\sigma_{r}^{2}} + \sum_{i=1}^{N_{bins}} \frac{\beta_{i}^{2}}{\sigma_{shp}^{2}} + \frac{\varepsilon_{D}^{2}}{\sigma_{D}^{2}} + \sum_{A=1}^{8} \left[\left(\frac{\varepsilon_{d}^{A}}{\sigma_{d}}\right)^{2} + \left(\frac{\eta_{f}^{A}}{\sigma_{f}^{A}}\right)^{2} + \left(\frac{\eta_{s}^{A}}{\sigma_{n}^{A}}\right)^{2} + \left(\frac{\eta_{s}^{A}}{\sigma_{s}^{A}}\right)^{2}\right]$$
(29)

- Scan in $\Delta m^2 Sin^2 2\theta_{13}$
- Minimize χ^2 at each point

Backgrounds

Global fit to to $sin^2 2\theta_{13}$

[P. Huber, et al., arXiv: 0907.1896]