

Reconstruction of High Transverse Momentum Top Quarks at CMS

Gavril Giurgiu (Johns Hopkins University) For the CMS Collaboration

2009 DPF Meeting Wayne State University, Detroit, Michigan July 26-31, 2009

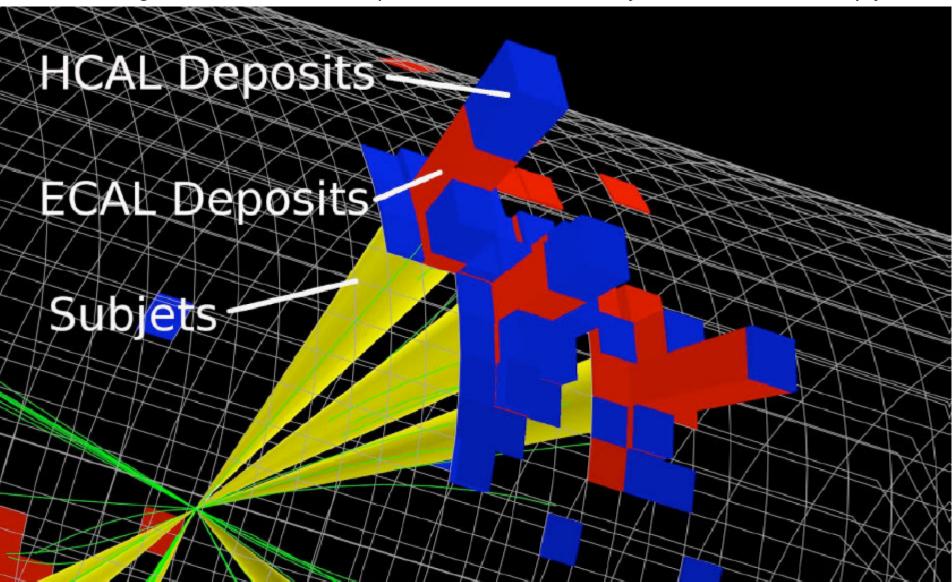
Introduction

- Various New Physics particles decay into the pairs with large branching fractions:

- Randall-Sundrum KK gluon: $g_{KK} \rightarrow tt$ L.Randall, R.Sundrum, Phys.Rev.Lett 88:3370-3374 (1999)
- excited neutral gauge boson: $Z' \rightarrow tt$
- If Z'/g_{KK} is heavy enough (~TeV), tt daughters are highly boosted
 - \rightarrow top quark daughters, b and W (\rightarrow q+q' or lepton+v) are collimated into single high momentum "top" jet
- Top identification techniques based on b-tagging difficult in highly boosted jets
 - dense tracking environment

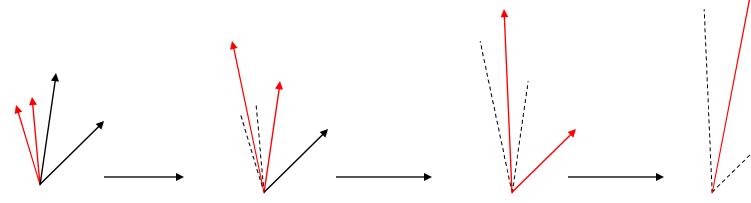
CMS note BTV-09-001

- \rightarrow affects displaced track or vertex b-tagging
- lepton ID not trivial for leptons inside boosted jets
 - \rightarrow affects "soft lepton" tagging
- Expect lower efficiency and higher mis-tag rates of most b-tagging methods
- Easier to associate jets with top-quark since jet daughters follow top direction
- New idea: Identify $t \rightarrow W(\rightarrow qq')$ b decays directly by studying the sub-structure of the collimated "top" jet G. Giurgiu, DPF 2009

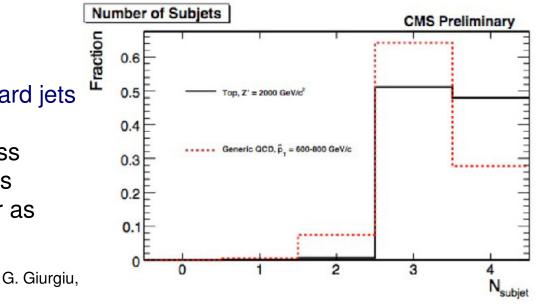

Boosted Top Tagging arXiv:0806.0848v2, Phys.Rev.Lett.101:142001,2008, D.Kaplan *et all*

- If boosted top decays to quarks only (hadronic mode): $t \to W(\to q q') \, b$

- \rightarrow take advantage of large BR in all hadronic mode (46%)
- \rightarrow decompose top jet into sub-jets corresponding to top daughters (bqq')
- → attempt to discriminate top jets from QCD jets using jet sub-structure information
- \rightarrow challenge: large QCD jet background
- \rightarrow expect 40% efficiency and 99% non-top background rejection
- Implement boosted top tagging algorithm at CMS
 - attempt to reconstruct top and W mass using sub-jets
- Is it possible to decompose boosted top jet into sub-jets ?

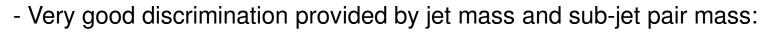

CMS Boosted Top MC Event

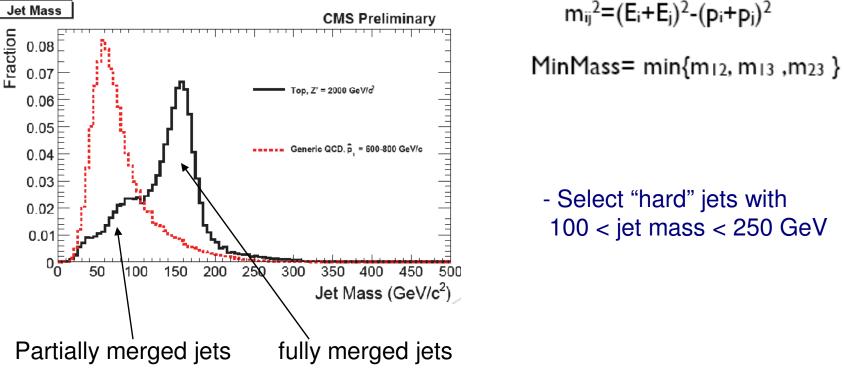
Yes, using CMS simulation find possible to resolve sub-jets inside boosted top jet:


Cambridge Aachen Jet Clustering

- Cambridge Aachen (arXiv:hep-ph/9707323v2) is a sequential recombination (K_T type) clustering algorithm
- For each calorimeter cell and pair of cells determine:
 - K_T : n = 2- anti- K_T : n = -2- CA : n = 0 $d_{ij} = \min(k_{T,i}^n, k_{T,j}^n) \frac{\Delta R_{ij}^2}{R^2}$ $d_{iB} = k_{T,i}^n$
- Algorithm steps:
 - find minimum of d_{ii} and diB
 - if minimum is d_{ii}, merge cells i and j and reiterate
 - if minimum is d_{iB} classify as final jet

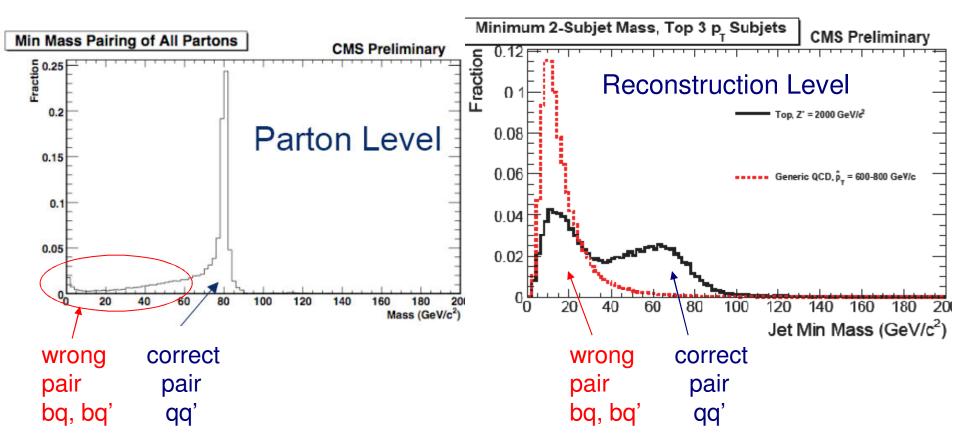
Boosted Top Tagging at CMS

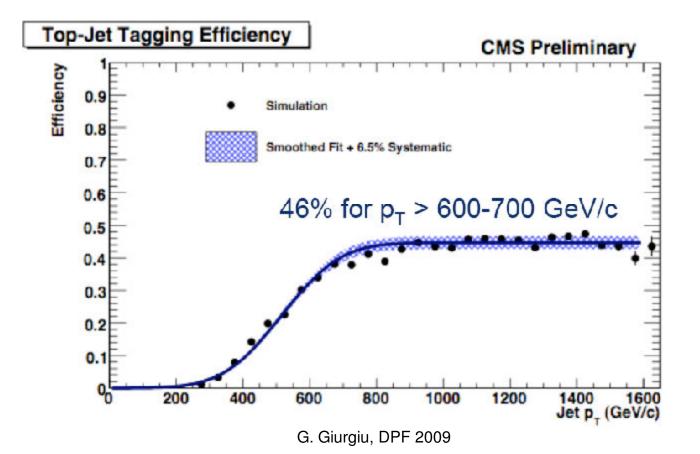

- Define "hard" jet as final jet reconstructed by CA algorithm
 - R = 0.8 \rightarrow d_{ij} < d_{iB} is same as ΔR < 0.8 (merging condition)
 - Jet P_T > 250 GeV
 - | y | < 2.5
- Find sub-jets with $P_T(sub-jet) > 0.05 \times P_T(hard jet)$
 - cluster sequence from previous slide is run backwards and soft clusters are removed
- If at least 3 sub-jets are found can apply top tagging algorithm
- Discriminating variables:
 - number of sub-jets: select hard jets with at least 3 sub-jets
 - jet mass as proxy to top mass
 - among three leading sub-jets minimum di-jet mass pair as proxy to W mass



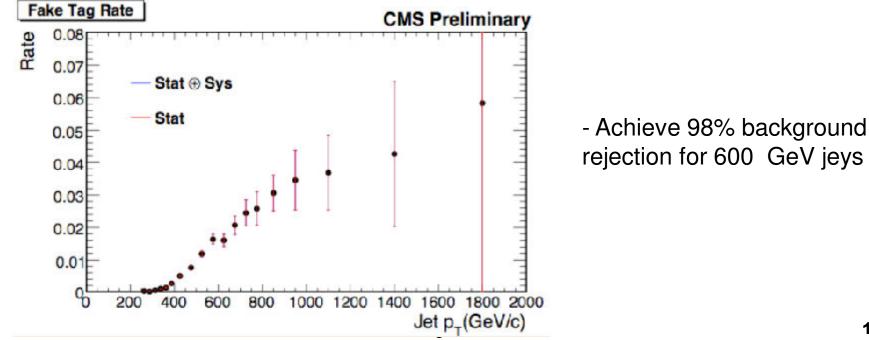
W

Discriminating Quantities: Jet Mass


- Study discriminating variables on:
 - signal boosted top jets from $Z' \rightarrow tt$ decays with different Z' mass
 - background QCD jets with P_T similar to boosted top jet from Z'

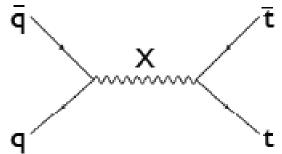

Discriminating Quantities: Minimum Di-Jet Mass

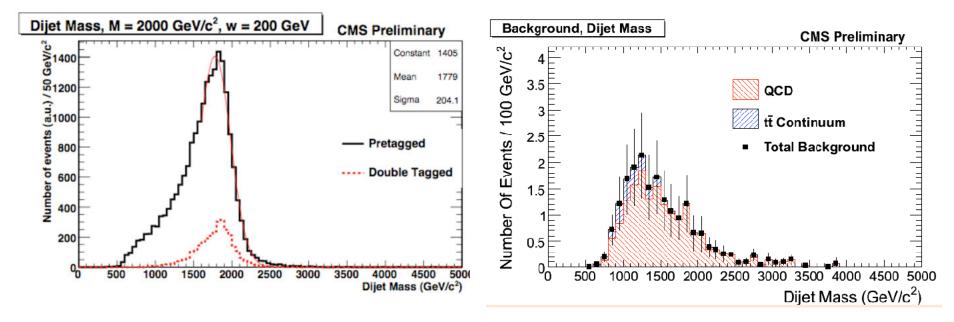
- Minimum di-jet invariant mass is good proxy to W mass
 - provides excellent separation between signal and background
 - select minimum sub-jet pair mass > 50 GeV


Efficiency

- Determined from simulation by counting selected top jets among all true top jets
- Systematic uncertainties:
 - Theoretical: re-normalization scale (Λ_{QCD}), fragmentation model, ISR/FSR
 - Experimental: due to $P_T(10\%)$, y(50%) and Φ (50%) resolution

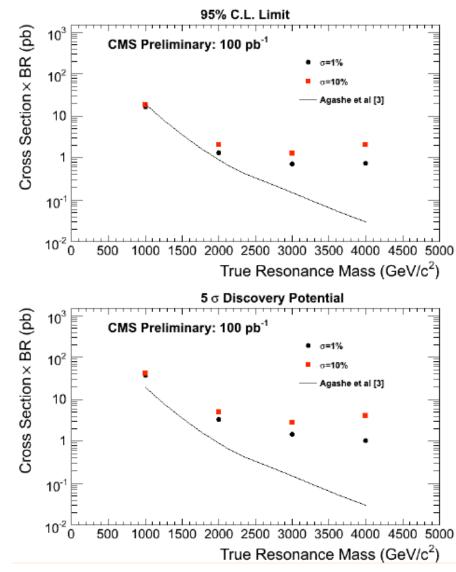
Mistag Rates


- Determined from di-jet samples
- Select events with one jet that fails at least one of top tagging requirement (anti-tag):
 - at least 3 sub-jets
 - -100 < jet mass < 250 GeV
 - min di-jet mass > 50 GeV
- Other jet in event used as "probe"
 - apply top tagging algorithm on these signal depleted jets



10

Application: Heavy Resonance \rightarrow tt


- Search for heavy resonances (Z', g_{KK}) decaying to tt pairs where top quarks decay hadronically (CMS note EXO-09-002)
- Select top jets using boosted top tagging algorithm
- Backgrounds
 - QCD jets (dominant)
 - continuum tt, W/Z+jets, single top

G. Giurgiu, DPF 2009

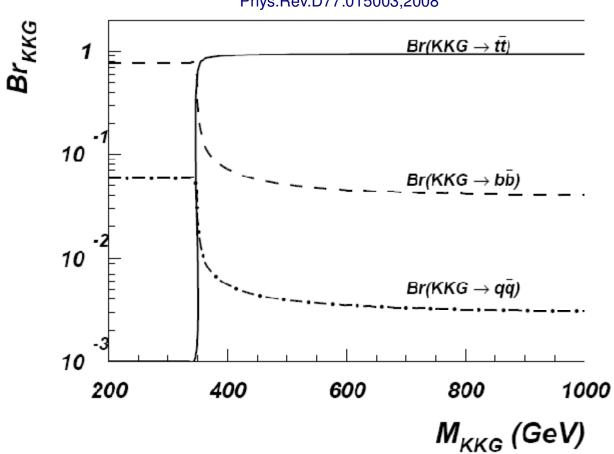
Heavy Resonance → <code>tt Significance Study</code>

CMS note PAS EXO-09-002

- Expected 95% C.L. :

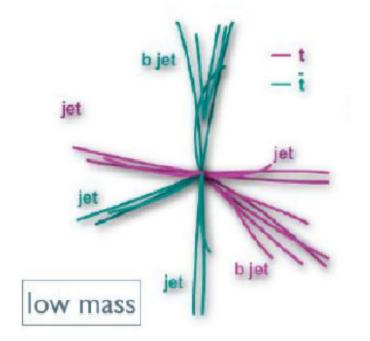
- 1 TeV: 17.2 pb - 2 TeV: 1.5 pb - 3 TeV: 0.7 pb

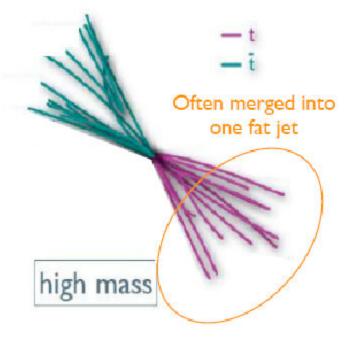
- Similar studies performed at CMS in muon+jet channel CMS notes: EXO-09-008 TOP-09-009


- Combination of analyses will give the best limit

Conclusions

- Boosted top tagging algorithm implemented at CMS
 - identifies high P_T hadronic top decays
 - based on sub-jet identification


- Achieves ~46% efficiency and ~98% background rejection for ~600 GeV jets


- Will be used in searches for high mass New Physics resonances

Phys.Rev.D77:015003,2008

Highly boosted tops \Rightarrow Easy to associate jets

Top pair ~ at rest ~6 jets Boosted top pairs ~2-3 jets

Top Tagging Uncertainty

Signal and Background Sys	stematic Uncertainty
---------------------------	----------------------

Effect	Systematic Uncertainty (%)	
Initial State Radiation	1	
Final State Radiation	2	
Renormalization Scale	3	
Light Quark Fragmentation	< 1	
Heavy Quark Fragmentation	< 1	
Theoretical Uncertainty	3.8	
Momentum Smearing + 10%	3.3	
Azimuthal Smearing + 50%	2.9	
Rapidity Smearing + 50%	2.9	
Detector-Based Uncertainty	5.3	
Total Systematic Uncertainty	6.5	

Quantity	Relative	Uncertainty
	Uncertainty	on S and B
	-	at $m_0 = 2 \text{ TeV}/c^2$
Signal Uncer	tainties	
Top Tagging Efficiency	6.5%	13%
JES Uncertainty on Acceptance	5%	5%
Total Signal Uncertainty		14%
Background Un	certainties	2.
Statistical uncertainty	10%	10%
JES Uncertainty on QCD Background	35%	33%
tt Continuum Contribution	100%	5%
Luminosity	10%	10%
Total Background Uncertainty		36%