

2009 Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009) 26-31 JULY 2009

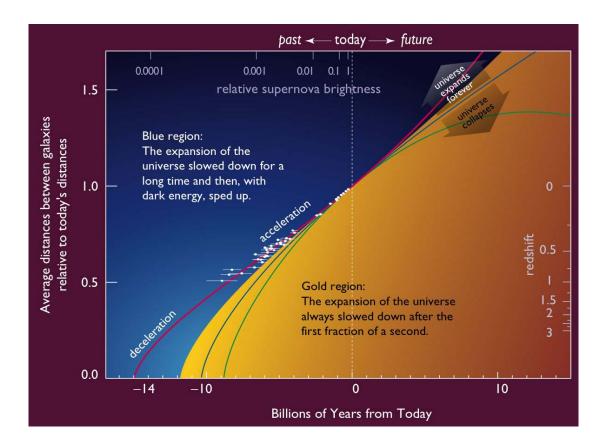
Wayne State University, Detroit, MI

The Dark Energy Survey

Klaus Honscheid Ohio State University On behalf of the C DES Collaboration

The accelerating universe

Evidence for dark energy is two-fold:


Accelerated expansion of the Universe, measured from supernovae type Ia Universe is ~= flat (CMB) but matter content is ~27% (LSS)

Which means either

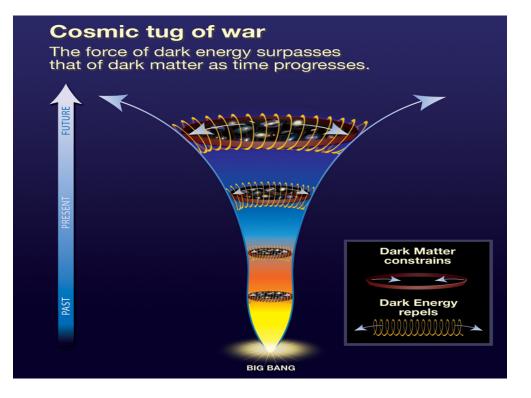
Additional unknown stress energy component with *negative* pressure. **Dark Energy**

or

Break-down of general relativity at large distances

The accelerating universe

Evidence for dark energy is two-fold:


Accelerated expansion of the Universe, measured from supernovae type Ia Universe is ~= flat (CMB) but matter content is ~27% (LSS)

Which means either

Additional unknown stress energy component with *negative* pressure. Dark Energy

or

Break-down of general relativity at large distances.

Describing Dark Energy

The expansion history of the universe

$$H^{2}(z) = \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2} \left(\Omega_{m}(1+z)^{3} + \Omega_{de}(1+z)^{3(1+w)}\right)$$

The DE equation of state

$$w = p/\rho; \quad w(a) = w_o + w_a (1-a)$$

t t u t		
Is w = -1? Is w(z) constant ($w_a = 0$)?	$\omega_X = p_X / p_X$	astro-ph/0108
	$\omega_{\mathbf{x}} = n_{\mathbf{x}} / n_{\mathbf{x}}$	From M. Turne

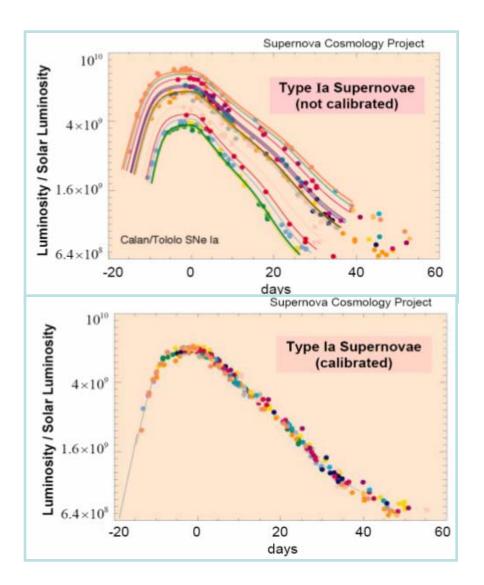
		Candidate	ω	$d\omega/dz$
		Cosmological Constant	-1	0
Currently:	$\sigma(W_0) \sim 0.1$	Rolling Scalar Field (Quintessence)	$-1 \rightarrow 1$	$rac{1/2\dot{\phi}^2 - V(\phi)}{1/2\dot{\phi}^2 + V(\phi)}$
		False Vacuum State	-1	~ 0
	w _o < -0.85 95% CL	Topological Defects (N=1 strings)	-N/3	~ 0
	Ŭ L L C	Others	?	?
	much weaker for w _a			

The probes

Supernovae

Weak Lensing

Cluster Counts


Baryon Accousite Oscillations

For a real explanation see J. Frieman's plenary talk tomorrow

The DES Collaboration

Supernovae la

Strategy: distance probe

•Obtain light curves + calibrate: shape in different bands relates to luminosity.

• Luminosity + app. magnitude + redshift:

$$\chi^2 = \sum_{objects} \frac{(\mu - 5\log(d_L(z;\theta,w))/10pc)^2}{\sigma^2}$$

DES:

•Measure ~2000 SN photometrically, up to z = -1.

•Large sample and improved z-band response

10% of the survey time will be devoted to SN search revisiting an area of 40 sq.deg.
Photometric errors will be addressed w/ on-site measurements of photometry, spectroscopic follow-ups.

Systematics: dust, evolution,

calibration...

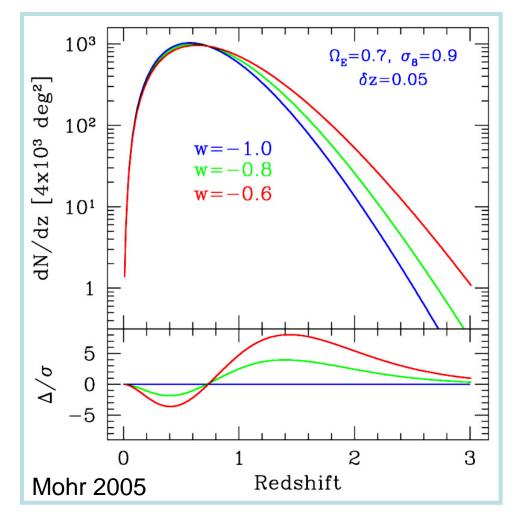
'mature', photometric redshifts

Cluster density

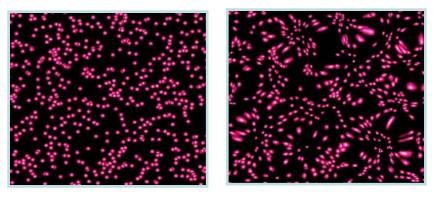
Strategy: structure probe

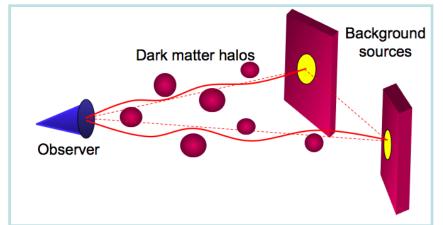
- Obtain number count of galaxy clusters per unit volume.
- counts + cluster mass predictions + redshift:

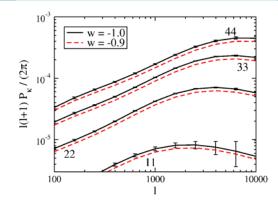
 $\frac{d^2N}{dzd\Omega} = \frac{c}{H(z;\theta,w)} D_A^2 (1+z)^2 \int_0^\infty f(O,z) dO \int_0^\infty p(O \mid M, z) \frac{dn}{dM} (z;\theta) dM$


DES:

• Measure ~20000 clusters up to z~1.3


 Identification using partnership with South Polar Telescope (using Sunyaev-Zeldovich effect) + weak lensing


Systematics: observable-mass relation, photometric redshift, completeness and purity of cluster sample...


Very sensitive, systematics, untested

Weak lensing

Strategy: structure probe

•Statistical measurement of distortions of background objects created by intervening matter (shear-shear).

• Foreground galaxy cross-correlations with shear (galaxy-shear).

•Shear angular power spectrum as function of redshift:

$$P_{l}(z_{s}) = \int_{0}^{z} \frac{H(z)}{D_{A}^{2}(z)} |W(z, z_{s})| P(k; z) dz$$

•It means measuring shapes and redshifts.

DES:

- Shapes of ~3e8 galaxies.
- PSF < 0.9" FWHM
- **Systematics:** photo-z's, PSF anisotropy, shear calibration

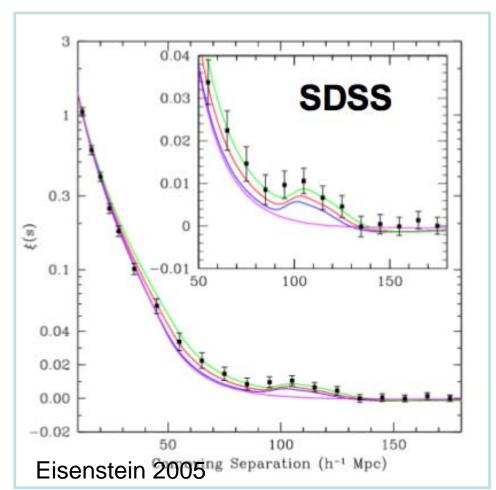
Theoretically well-founded, untested

Galaxy angular clustering

Strategy: distance probe

CMB provides scale of acoustic peak.
Search for this peak in angular two-point correlation function of galaxies (of a certain type) in redshift shells.

•This gives an estimation of the expansion history.


DES:

•Power spectrum of ~3e8 galaxies up to z~1.5.

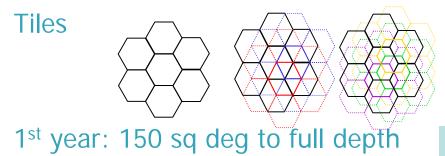
•Probe larger volume and redshift range than current state-of-the-art (SDSS)

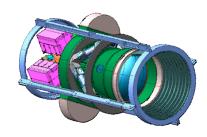
Systematics: photo-z's, projection effects, non-linear evolution, galaxy-mass relationship (bias).

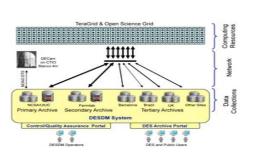
doable (SDSS), spectrograph

The Dark Energy Survey

5000 sq deg in 5 filter bands Overlap with SPT, Vista, SDSS


Overlap with South Pole Telescope Survey (4000 sq deg)


Components



Connector region (800 sq deg)

Overlap with SDSS equatorial Stripe 82 for calibration (200 sq deg)

Blanco 4 m Telescope at CTIO

Located on Cerro Tololo (Chile)

Site delivers median seeing of 0.65" (Sept-Feb) Current instrument, telescope achieve only 0.9" (median)

Commissioned in 1974

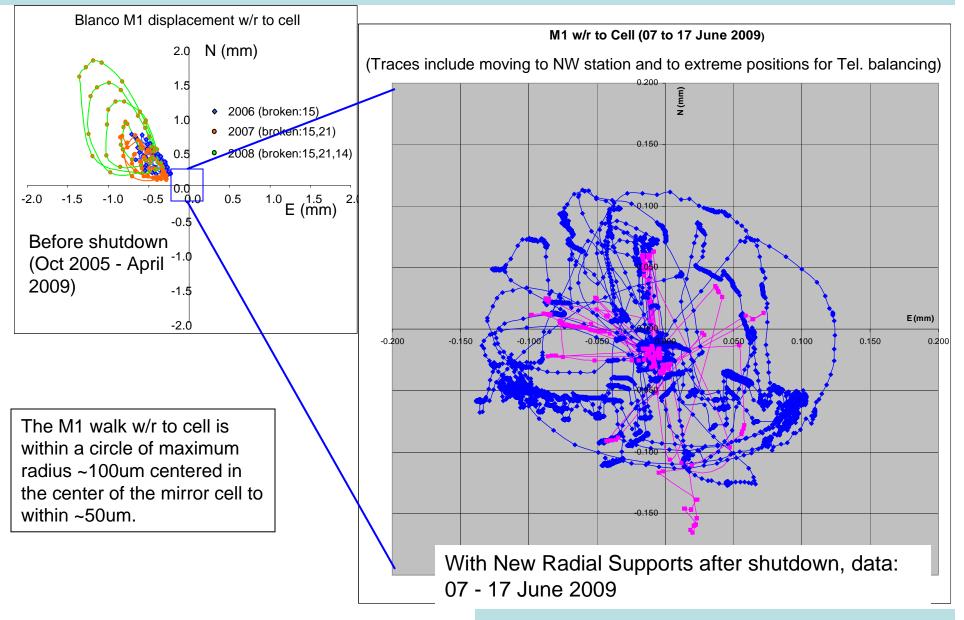
Near twin of Mayall 4-m on Kitts Peak

Mirror

Solid primary mirror 50 cm thick, 15 tons Mechanical radial support Controllable axial support

Blanco Upgrade Project

Successfully upgraded primary radial mirror support

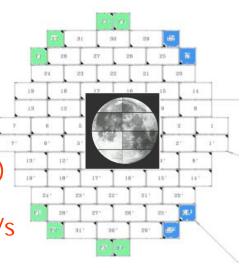

New telescope control system

New servo controller, encoder Improved tracking & pointing Faster slew time

2 degrees in 17 seconds (DECam readout)

Construct clean room for DES/DECam

Blanco Status


The DECam Instrument

•Shutter

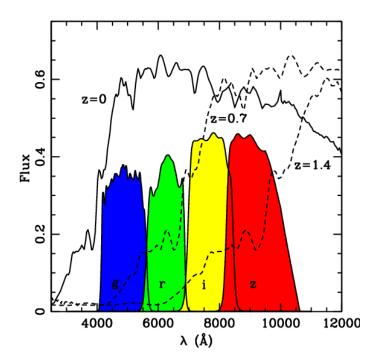
•Filters, entire prime focus cage of the Blanco.

- 520 megapixel CCD camera
- Low noise electronics
- Combination shutter-filter system
- Wide field optical corrector (2.2 deg. FOV)
- Hexapod to provide adjustability

Focal plane parameters: •62 Image CCD (2kx4k) •4 Guide, 8 Focus (2kx2k) •Pixel size 0.27" /15µm •Readout speed 250 kpix/s

DECam presentation in Detector Session on Friday

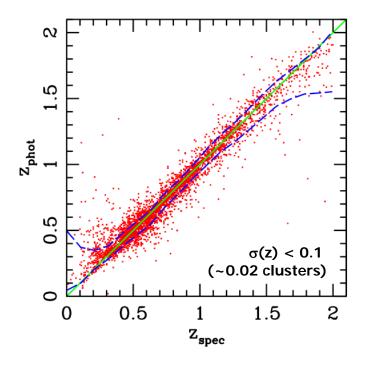
Hexapod


Corrector

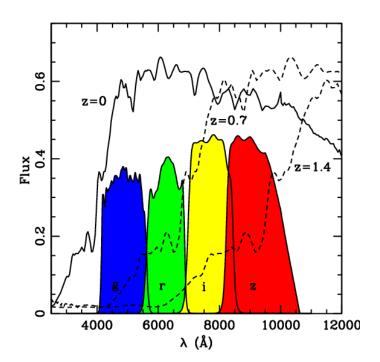
•CCD,

•Readout

Electronics

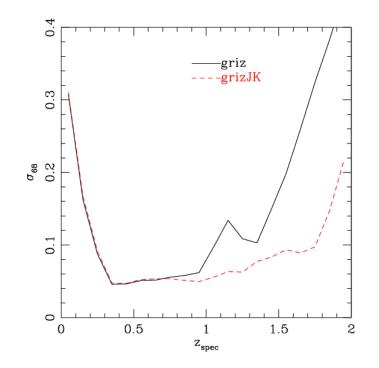

Photometric Redshifts

DES griz filters (Y not shown)


 10σ Limiting Magnitudes around 24 (~ 20 for JHK)

 $\sigma(z) \sim 0.1$ to $z \sim 1.3$

Photometric redshift vs. true redshift for simulated DES galaxy survey, including DES *grizY* and *JHK* near-infrared imaging from the planned Vista Hemisphere Survey at ESO (Frieman, Cunha, Lin et al)


Photometric Redshifts

DES griz filters (Y not shown)

 10σ Limiting Magnitudes around 24 (~ 22 for JHK)

 $\sigma(z) \sim 0.1$ to $z \sim 1.3$

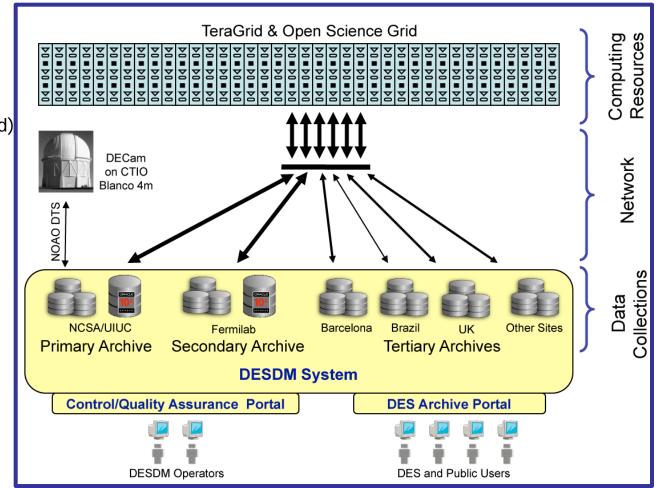
Photometric redshift vs. true redshift for simulated DES galaxy survey, including DES *grizY* and *JHK* near-infrared imaging from the planned Vista Hemisphere Survey at ESO (Frieman, Cunha, Lin et al)

DES Data Management Components

Receive Images from CTIO

- 520 Mpix per image (1 GB or 0.6 GB compressed)
- Microwave link to CTIO
- Fiber link to NCSA (NOAO)

Nightly Processing

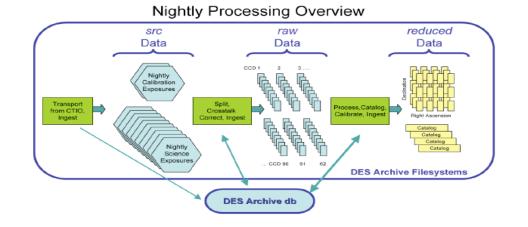

• Use grid

Data Archive

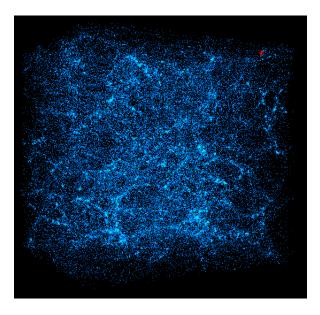
- Image Data
- Catalogs
- ~ 4PB

Data Access Portal

 Data becomes public after 1 year



Nightly Processing

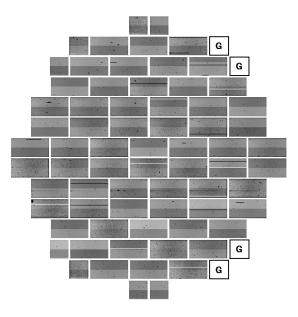

Develop integrated set of tools for processing data

- Nightly processing pipeline
 - Detrending, astrometric refinement, remapping for coaddition and difference imaging, cataloging, ingestion to DES Archive and photometric calibration
- Coaddition pipeline (w/PSF Homogenization)
 - Build and catalog deeper images of the sky
- Weak Lensing Pipeline
 - Extract shear measurements from the survey data
- Difference Imaging Pipeline
 - Catalog variable objects
- Photo-z Pipeline

Data Challenges

Simulation

N-Body Simulation


• Dark Matter

Add galaxies

- Realistic distribution
- Model shapes
- Shear

Add Stars

- SDSS Stripe 82
- Catalogs

Observation Model

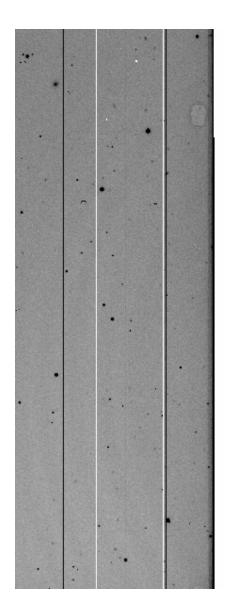
- Atmosphere
- Extinction
- Sky brightness

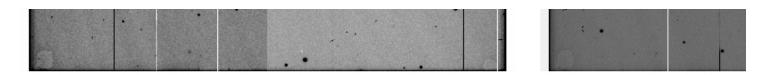
Optics

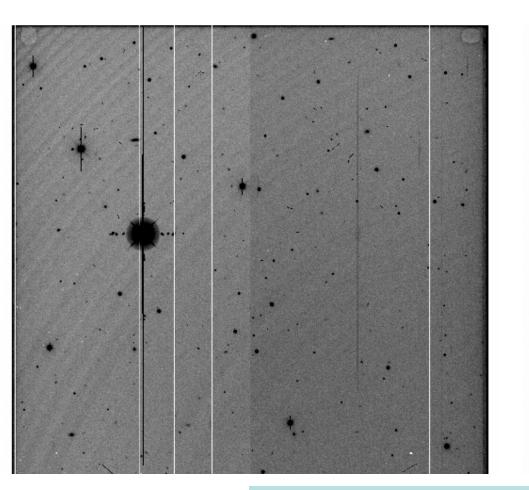
- Blanco telescope
- DES Corrector
- Pupil ghost etc.

Detector

- QE, Gain
- Bias, Noise
- Bad columns


Images Catalogs


- Data Challenges
- Science Groups


Data Challenge 4

- ~2600 science images
- Calibration images
- Standard star images

DC 5: Artifacts, Cosmic Rays, Cross Talk

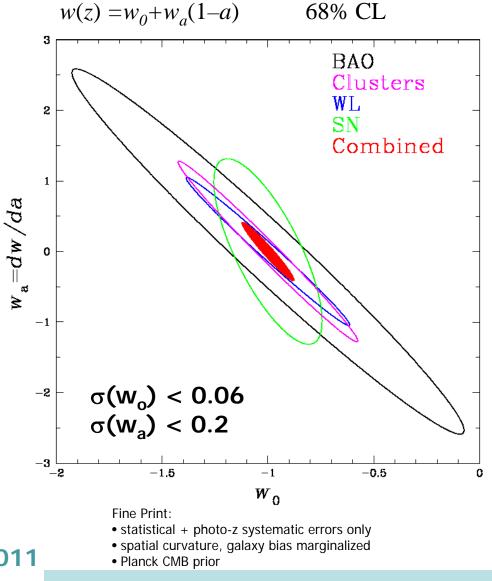
. .

K. Honscheid, DPF 2009, July 27, 2009

Summary and Forecast

The **Dark Energy Survey** is been a near term project to explore the nature of **Dark Energy**

Using 4 complementary probes


Supernovae Cluster counting Weak lensing tomography BAO

Combined with a

New wide field camera Upgraded Blanco 4-m Telescope High Performance Data Management system

Will lead to tight systematics control and a factor of **4.6** in the DETF figure of merit over Stage II.

On schedule to start in September 2011

DES Timeline

Now	Finalize design; select and test CCDs
	Complete Blanco Telescope Upgrades
	Start Data Challenge 5
During 2010	All camera elements (except optics) will be integrated and tested at Fermilab with a fullsize telescope simulator.
Early 2011	Camera arrives at CTIO
	Installation
Summer 2011	Commissioning
Fall 2011	First Light
	Survey begins

Additional Slides

Expected Uncertainties for DES

Method/Prior	Uniform	WMAP	Planck
Clusters:			
abundance	0.13	0.10	0.04
w/ WL mass calibration	0.09	0.08	0.02
Weak Lensing:			
Shear-shear (S-S)	0.15	0.05	0.04
Galaxy-shear(G-S)+G-G	0.08	0.05	0.03
S-S+G-S+G-G	0.03	0.03	0.02
S-S+bispectrum	0.07	0.03	0.03
Galaxy angular clustering	0.36	0.20	0.11
Supernovae Ia	0.34	0.15	0.04

Table 1: Example forecast marginalized 68% CL statistical DES constraints on constant equation of state parameter w.

Assuming CDM, negligible neutrino masses, adiabatic Gaussian primordial perturbations w/ power law spectrum, flat Universe.

DES Forecast (Planck priors)

Method	$\sigma(\Omega_{DE})$	$\sigma(w_0)$	$\sigma(w_a)$	z_p	$\sigma(w_p)$	$[\sigma(w_a)\sigma(w_p)]^{-1}$
BAO	0.010	0.097	0.408	0.29	0.034	72.8
Clusters	0.006	0.083	0.287	0.38	0.023	152.4
Weak Lensing	0.007	0.077	0.252	0.40	0.025	155.8
Supernovae	0.008	0.094	0.401	0.29	0.023	107.5
Combined DES	0.004	0.061	0.217	0.37	0.018	263.7
DETF Stage II Combined	0.012	0.112	0.498	0.27	0.035	57.9

Table 1: 68% CL marginalized forecast errorbars for the 4 DES probes on the dark energy density and equation of state parameters, in each case including Planck priors *and* the DETF Stage II constraints. The last column is the DETF FoM; z_p is the pivot redshift. Stage II constraints used here agree with those in the DETF report to better than 10%.

Principle Systematic Uncertainties

Table 2: Dominant sources of systematic error and methods for controlling them; see text.

Method	Dominant Systematic Errors	Primary Controls			
Clusters	Sample selection	SZE + optical cluster selection; simulations			
Clusters	Mass-observable relation	Self-calibration; statistical WL masses			
	Multiplicative shear	Measurement algorithm; shear vs. gal. size			
	Additive shear	PCA; active focus; wave-front sensing &			
Weak Lensing		alignment control			
	Photo-z biases	Spectroscopic calibration sets			
	Small-scale power spectrum	Null small-scale power; high-res. simulations			
	Bias prescription errors	Angular bispectrum; clustering by type			
Angular abustaring	Large-scale photometric	Calibration strategy; clustering by color;			
Angular clustering	calibration errors	angular sub samples			
	Photo-z biases	Spectroscopic calibration sets			
	SN evolution	Low and high z SNe comparison			
Supermetree In	Photometric errors	Calibration strategy; artificial SNe			
Supernovae Ia	Extinction	SN color and host galaxy information			
	Photo-z errors & biases	SN spectroscopic calib. sub sample			