

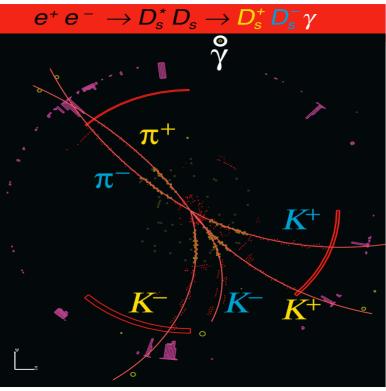
David Cinabro, Wayne State for the CLEO Collaboration

Outline

- New since the winter conferences
- Support of CKM angle γ measures (Strong phase and coherence factor in D \rightarrow K3 π and D \rightarrow K $\pi\pi^{0}$, preliminary binned analysis for strong phase in D \rightarrow K $^{0}\pi\pi$)
- D_S inclusive hadron yields, exclusive ω modes, KKπ Dalitz
- D to two pseudoscalars

CLEO-c: The Experiment

818/pb e⁺e⁻ \rightarrow Ψ (3770) \rightarrow DD, coherent production


586/pb e⁺e⁻→D_s D_s*at 4770 MeV

Threshold and near threshold production yields clean, efficient reconstruction DPF 2009 July

Detector is a classic:

Tracking in two drift chambers

Photons in Csl

Support for CKM y

Interference in $B \rightarrow DK$ sensitive to γ , but need to know the strong phase in the D decay.

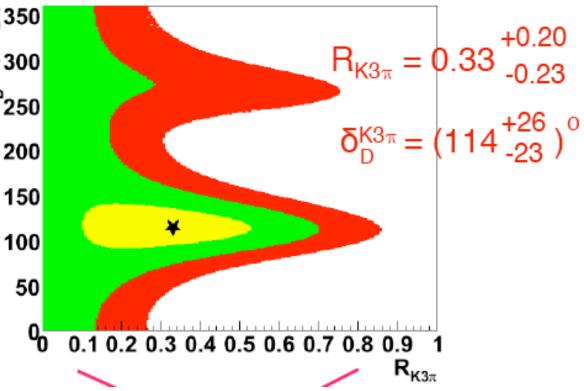
Leads to $\pm 7-9^{\circ}$ on γ which will dominate at LHCb and SuperB.

At CLEO-c take advantage of the Quantum Coherence of the initial DD.

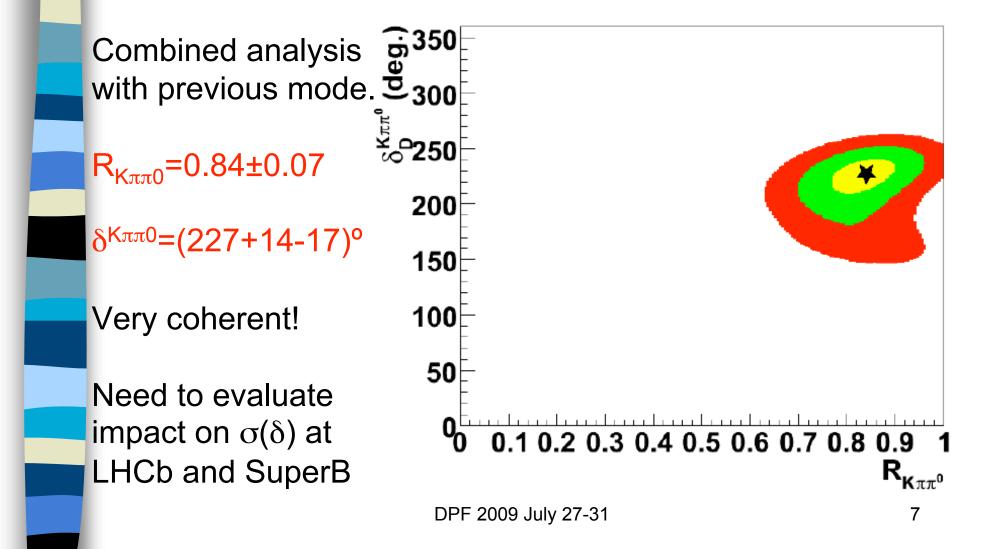
f(D) KCP-conserving strong phase δ CP-violating phase γ j(δ+γ)

Coherence Factor in $D \rightarrow K3\pi$

Idea from Atwood and Soni (PRD 68 033003 (2003) Treat the decay like a two-body decay with a single effective strong phase, $\delta_D^{K3\pi}$. Must introduce a new parameter, $R_{K3\pi}$, the coherence factor, which is near 1 if the decay is dominated by a single mode and near 0 if many modes contribute.


C(B→(K3π) _D K)∝r _B ² +(r _D ^{K3π}) ² +2 R _{K3π} r _B r _D ^{K3π} cos(δ	$\delta_{B} + \delta_{D}^{K3\pi} \pm \gamma$)
---	--

At CLEO-c take	Double Tag Rate	Sensitive To
advantage of	K3π vs. K3π	(R _{K3π}) ²
coherent production.	K3π vs. CP	$R_{K3\pi}$ cos(δ _D ^{K3π})
	K3π vs. Kπ	$R_{K3\pi}cos(\delta_{D}^{K\pi}-\delta_{D}^{K3\pi})$


Coherence Factor in $D \rightarrow K3\pi$

Not much sensitivity to CKM γ. Maybe better in a coherent region of the Dalitz plot?

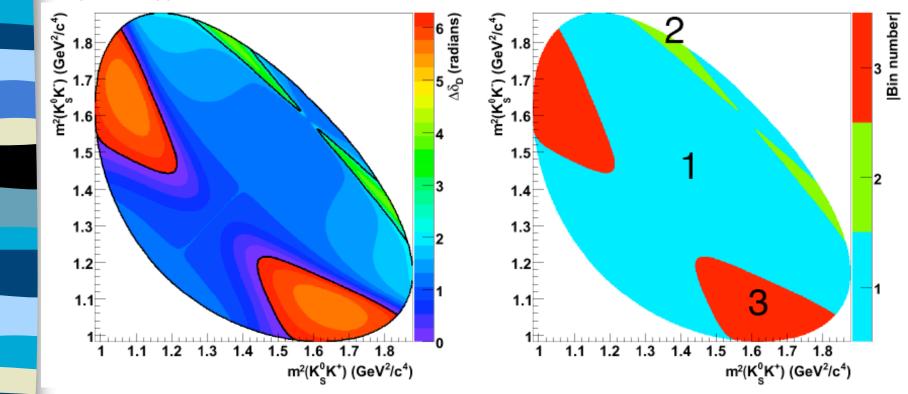
LHCb (1 year) $\sigma(\gamma)$ goes from 9.5° to 7.9° with this input.

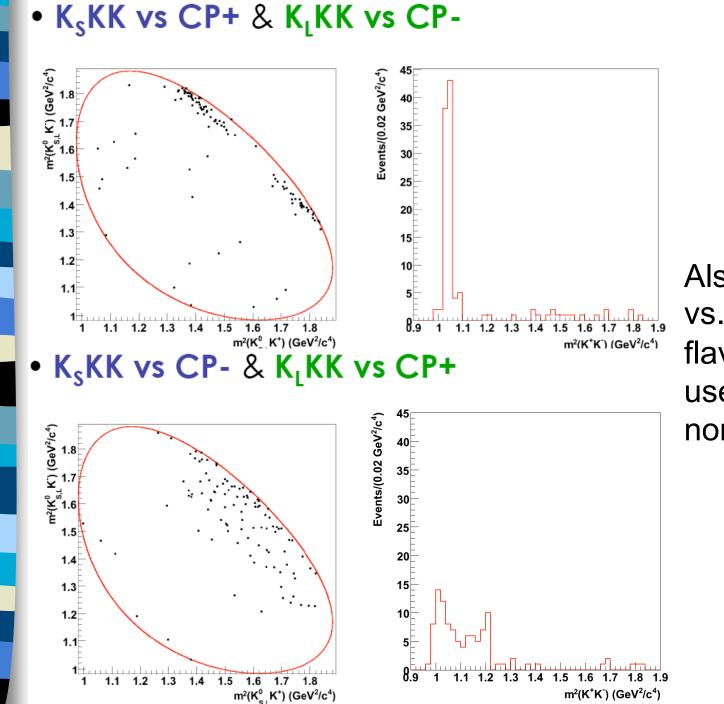
Coherence Factor in $D \rightarrow K \pi \pi^0$

Strong Phase in D→K⁰KK

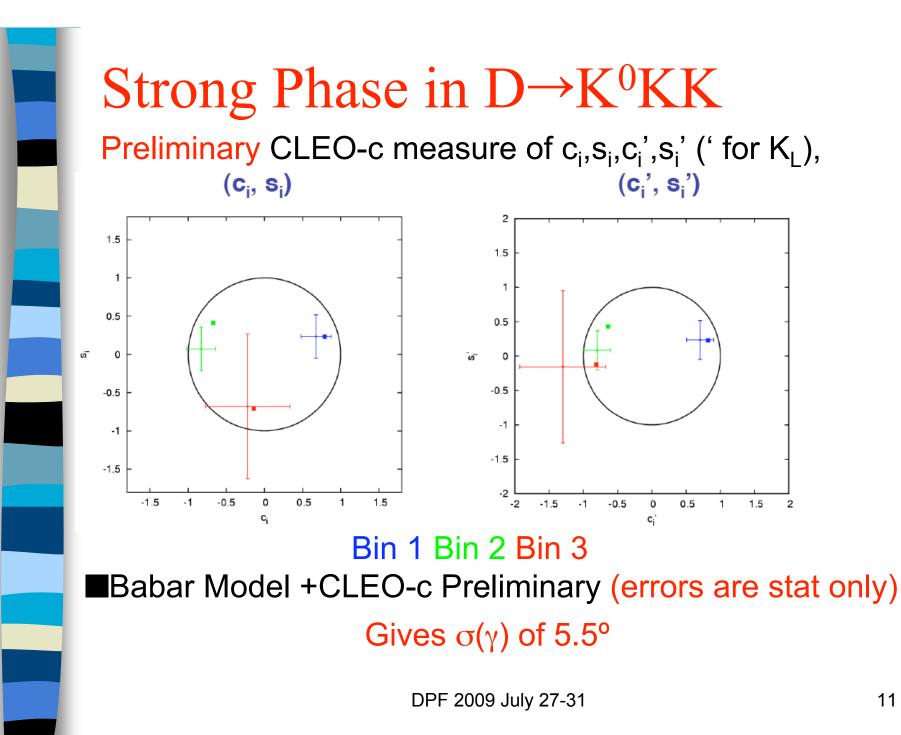
Similar analysis to $D \rightarrow K^0 \pi \pi$ hep-ex/0903.1681

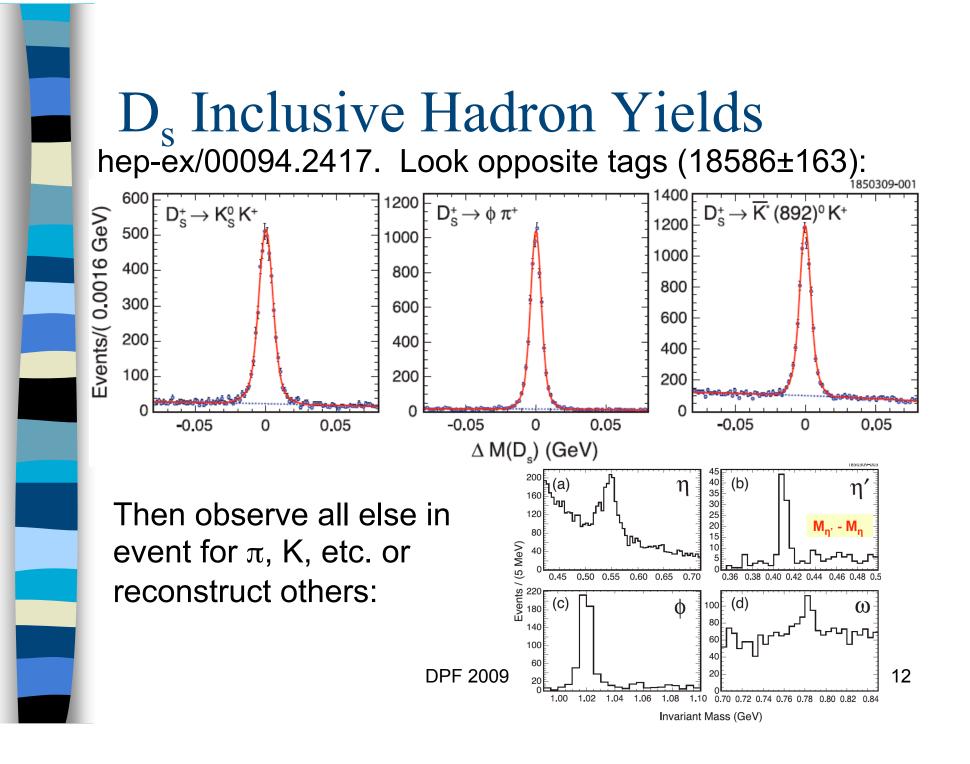
B-Factory analyses get $\sigma(\gamma)$ of 5-9° using these two modes


Idea from Bondar and Poluektov (Eur.Phys.J.C47:347(2006)

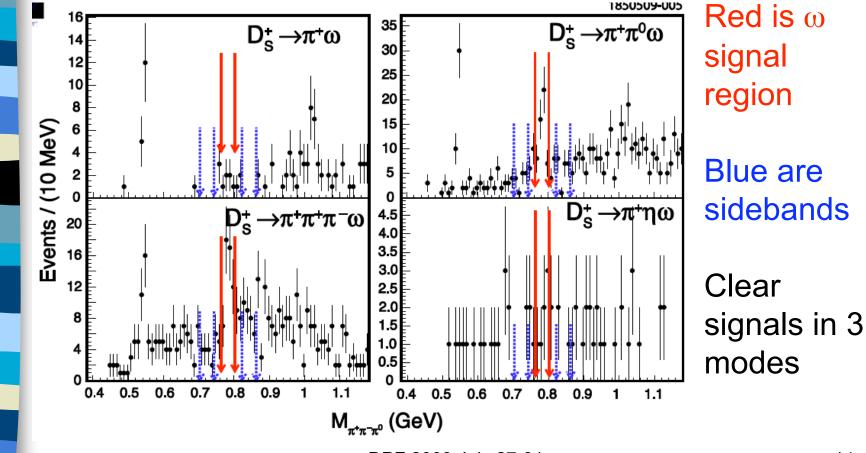

Measure cos and sin of strong phase difference in bins across the Dalitz plot. Most sensitive if bins are equally spaced in $\Delta\delta_D$

Difficult to quantify error from uncorrelated analysis replaced by CLEO-c statistical error. Preliminary!

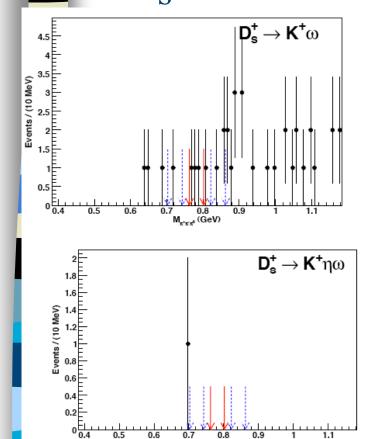

Strong Phase in D→K⁰KK


Use Babar Dalitz analysis to define bins (PRD 78, 032023 (2008))

Also K^0KK vs. a $K\pi$ flavor tag is used for normalization

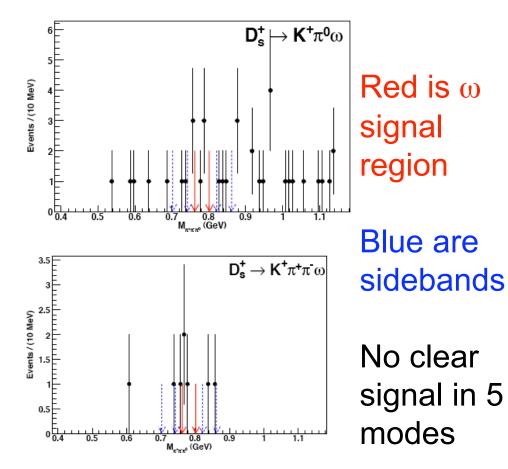


D_s Inclusive Hadron Yields


		0			prediction based on
Mode	Yield(%)	K_L^0 Mode	Yield(%)	$\mathcal{B}(PDG)(\%)$	summing excl. rates [1]
$D_s^+ \to \pi^+ X$	$119.3 \pm 1.2 \pm 0.7$				125.5 ±11.1
$D_s^+ \to \pi^- X$	$43.2 \pm 0.9 \pm 0.3$				46.6±6.8
$D_s^+ \to \pi^0 X$	$123.4 \pm 3.8 \pm 5.3$				112.5±8.0
$D_s^+ \rightarrow K^+ X$	$28.9 \pm 0.6 \pm 0.3$			$20 + \frac{18}{-14}$	27.3 ± 1.4
$D_s^+ \to K^- X$	$18.7 \pm 0.5 \pm 0.2$			$13 \ {}^+_{-} \ {}^{14}_{12}$	18.4±0.7
$D_s^+ \rightarrow \eta X$	$29.9 \pm 2.2 \pm 1.7$				32.7 ± 2.9
$D_s^+ \rightarrow \eta' X$	$11.7 \pm 1.7 \pm 0.7$				18.2±2.1
$D_s^+ \rightarrow \phi X$	$15.7 \pm 0.8 \pm 0.6$				19.2±2.4
$D_s^+ \to \omega X$	$6.1 \pm 1.4 \pm 0.3$				0.8±0.1
$D_s^+ \to f_0(980)X, f_0(980) \to \pi^+\pi^-$	< 1.3% (90% CL)				_
$D_s^+ \to K_S^0 X$	$19.0\pm1.0\pm0.4$	$D_s^+ \rightarrow K_L^0 X$	15.6 ± 2.0	20 ± 14	K°: 18.4±2.0, K° 22.7±2.2
$D_s^+ \rightarrow K_S^0 K_S^0 X$	$1.7 \pm 0.3 \pm 0.1$	$D_s^+ \rightarrow K_L^0 K_S^0 X$	5.0 ± 1.0	1	
$D_s^+ \rightarrow K_S^0 K^+ X$	$5.8 \pm 0.5 \pm 0.1$	$D_s^+ \rightarrow K_L^0 K^+ X$	5.2 ± 0.7		
$D_s^+ \rightarrow K_S^0 K^- X$	$1.9 \pm 0.4 \pm 0.1$	$D_s^+ \rightarrow K_L^0 K^- X$	1.9 ± 0.3		
$D_s^+ \to K^+ K^- X$	$15.8\pm0.6\pm0.3$				
$D_s^+ \to K^+ K^+ X$	< 0.26% (90% CL)				
$D_s^+ \rightarrow K^- K^- X$	$< 0.06\%~(90\%~{\rm CL})$				-

Compare with prediction of Gronau and Rosner (hep-ph/0903.2287) Why is ω so large?

D_s Exclusive ω Modes hep-ex/0906.2138 Look opposite tags:


 D_s Exclusive ω Modes

0.7 0.8 Μ_{π'π κ}º (GeV)

0.9

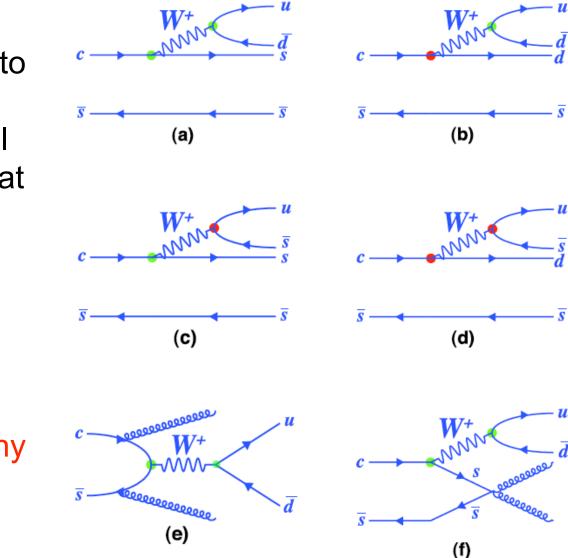
1.1

-
-

 D_s Exclusive ω Modes

Mode	$N_{ m Sg}$	$N_{\rm Sd}$	$N_{ m Ss}$	$\epsilon_{DT}(\%)$
$D_s^+ o \pi^+ \omega$	6.0	0.0	6.0 ± 2.4	4.07 ± 0.08
$D_s^+ \to \pi^+ \pi^0 \omega$	53.0	19.0	$34.0{\pm}7.9$	$1.75 {\pm} 0.04$
$D_s^+ \to \pi^+ \pi^+ \pi^- \omega$	54.0	24.8	29.2 ± 8.2	2.64 ± 0.07
$D_s^+ \to \pi^+ \eta \omega$	7.0	2.5	4.5 ± 2.9	$0.76 {\pm} 0.04$
$D_s^+ \to K^+ \omega$	3.0	2.0	1.0 ± 2.0	$3.66 {\pm} 0.08$
$D_s^+ \to K^+ \pi^0 \omega$	4.0	2.5	1.5 ± 2.3	$1.32 {\pm} 0.05$
$D_s^+ \to K^+ \pi^+ \pi^- \omega$	3.0	1.5	1.5 ± 1.9	1.72 ± 0.05
$D_s^+ \to K^+ \eta \omega$	0.0	0.0	$0.0\ \pm 0.0$	$0.45{\pm}0.03$

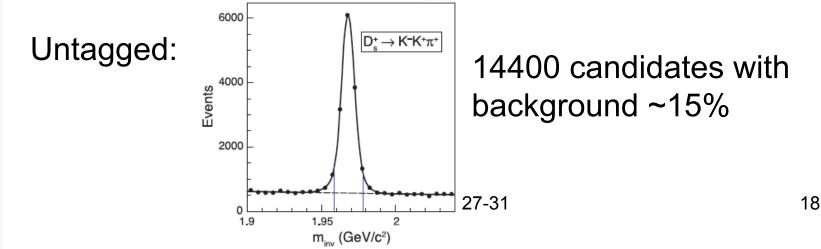
Note that 0.52±0.30 of $\pi\pi^0$ goes via ρ from fitting the $\pi\pi^0$ mass.

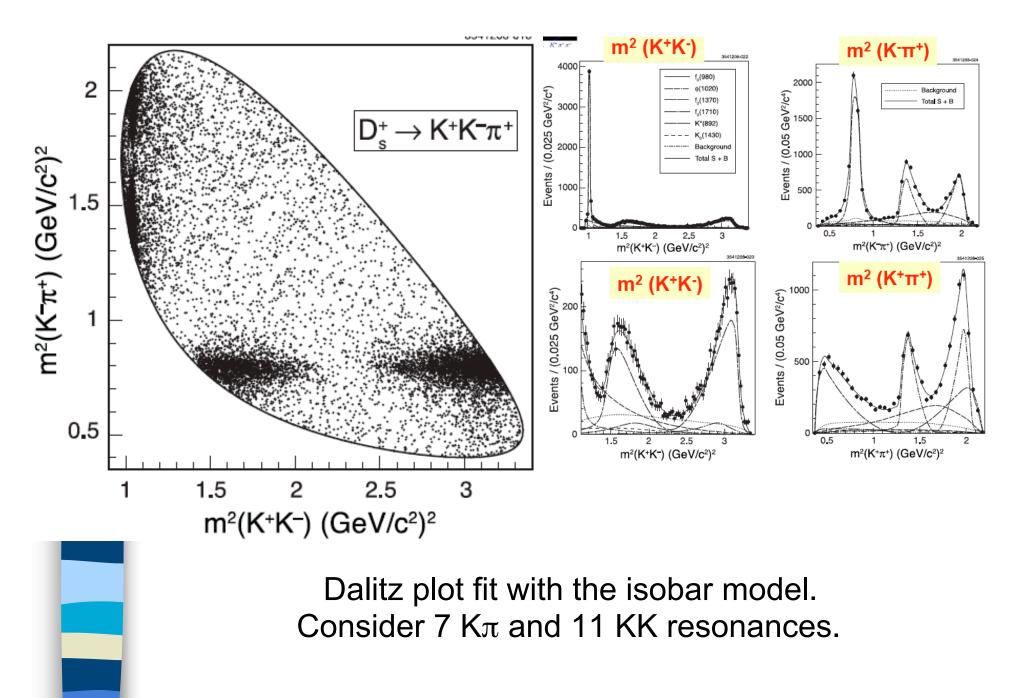

Mode	$\mathcal{B}_{ ext{mode}}(\%)$	
$D_s^+ \to \pi^+ \omega$	$0.21 \pm 0.09 \pm 0.01$	Sum of exclusive
$D_s^+ \to \pi^+ \pi^0 \omega$	$2.78 \pm 0.65 \pm 0.25$	consistent with
$D_s^+ \to \pi^+ \pi^+ \pi^- \omega$	$1.58 \pm 0.45 \pm 0.09$	inclusive (~6%).
$D_s^+ \to \pi^+ \eta \omega$	$0.85 \pm 0.54 \pm 0.06$	
	< 2.13 (90% CL)	D. likes to
$D_s^+ \to K^+ \omega$	< 0.24 (90% CL)	D _s likes to
$D_s^+ \to K^+ \pi^0 \omega$	< 0.82 (90% CL)	go to ω?
$D_s^+ \to K^+ \pi^+ \pi^- \omega$	< 0.54 (90% CL)	
$D_s^+ \to K^+ \eta \omega$	< 0.79 (90% CL)	16

D_s Inclusive Hadron Yields

Can use the inclusive yields to measure the amplitudes of all the diagrams that contribute to D_s decay.

See paper for results.

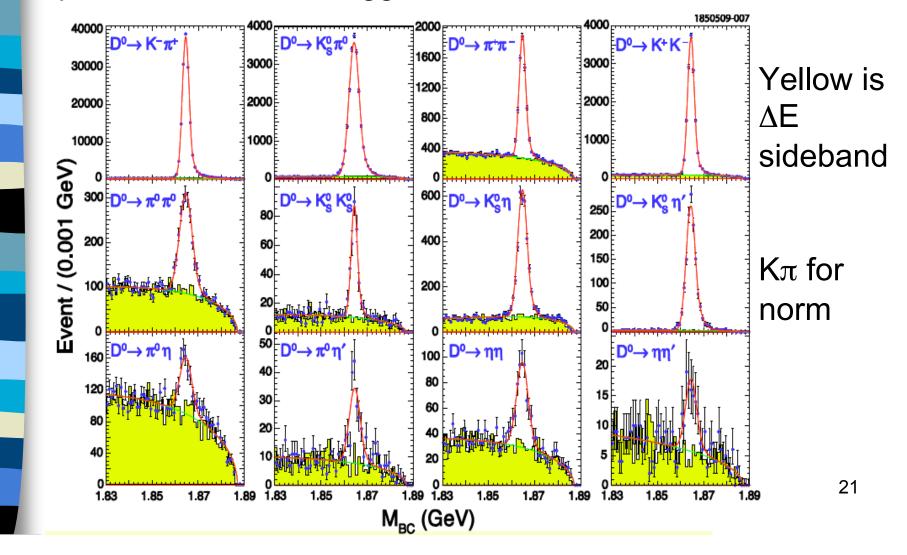

Still not clear why the D_s likes to decay to ω ?

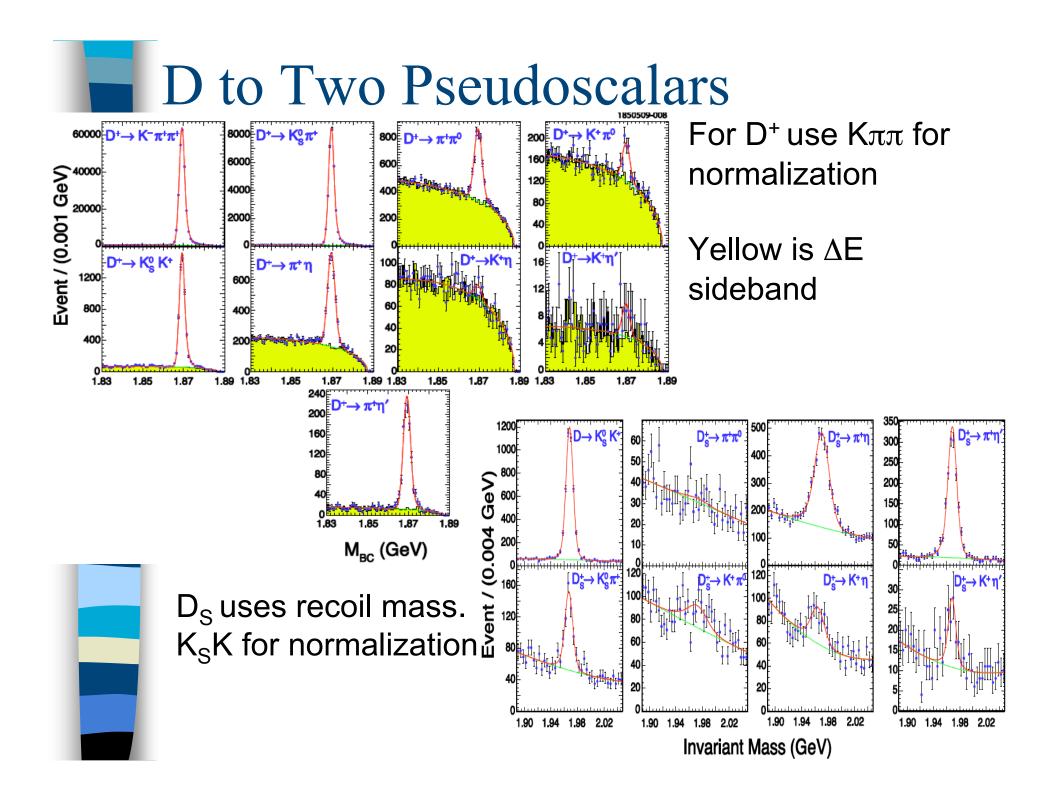


D_s →KKπ Dalitz PRD 79, 072008(2009)

 $D_s \rightarrow \phi \pi$ is a common normalization mode.

E687 (700 signal PLB 351, 591(1995)) finds substantial (~10%) contribution from $f_0(980)$ in the KK π Dalitz plot which leads to unacceptable dependence on exactly how one defines the ϕ in $D_s \rightarrow \phi \pi$ when used for normalization.




$D_s \rightarrow KK\pi Dalitz$					
Mode	Param	E687	CLEO-c		
$\overline{\textit{K}}^{*o}(892)\textit{K}^+$	FF (%)	$\textbf{47.8} \pm \textbf{4.6} \pm \textbf{4.0}$	47.4 \pm 1.5 \pm 0.4		
	Phase (°)	o (fixed)	o (fixed)		
$\overline{K}_{o}^{*o}(1430)K^{+}$	FF (%)	9.3 \pm 3.2 \pm 3.2	3.9 \pm 0.5 \pm 0.5		
	Phase (°)	152 \pm 40 \pm 39	146 \pm 8 \pm 8		
ϕ (1020) π^+	FF (%)	39.6 \pm 3.3 \pm 4.7	$42.2\pm1.6\pm0.3$		
	Phase (°)	178 \pm 20 \pm 24	$-8\pm4\pm4$		
$f_{ m o}($ 980 $)\pi^+$	FF (%)	11.0 \pm 3.5 \pm 2.6	28.2 \pm 1.9 \pm 1.8		
	Phase ($^{\circ}$)	159 \pm 22 \pm 16	157 \pm 3 \pm 4		
$f_{ m o}$ (1710) π^+	FF (%)	3.4 \pm 2.3 \pm 3.5	$3.4\pm0.5\pm0.3$		
	Phase (°)	110 \pm 20 \pm 17	89 \pm 5 \pm 5		
$f_{ m o}$ (1370) π^+	FF (%)		4.3 \pm 0.6 \pm 0.5		
	Phase (°)	_	$53\pm5\pm6$		

Much more precise than previous result, see $f_0(980)$ at the ~30% level, and need an $f_0(1370)$ contribution to get good agreement with the data. Limits on 12 unobserved.

D to Two Pseudoscalars

hep-ex/0906.3198, untagged, beam constraint for D⁰ and D⁺

D to Two Pseudoscalars

Mode	$\mathcal{B}_{\mathrm{mode}}/\mathcal{B}_{\mathrm{Normalization}}$ (%)	This result \mathcal{B} (%)	\mathcal{A}_{CP} (%)
$D^0 \to K^+ K^-$	$10.41 \pm 0.11 \pm 0.11$	$0.407 \pm 0.004 \pm 0.004 \pm 0.008$	
$D^0 ightarrow K^0_S K^0_S$	$0.41\pm0.04\pm0.02$	$0.0160 \pm 0.0017 \pm 0.0008 \pm 0.0003$	
$D^0 \to \pi^+ \pi^-$	$3.70\pm0.06\pm0.09$	$0.145 \pm 0.002 \pm 0.004 \pm 0.003$	
$D^0 \to \pi^0 \pi^0$	$2.06\pm0.07\pm0.10$	$0.081 \pm 0.003 \pm 0.004 \pm 0.002$	
$D^0 \to K^- \pi^+$	100	3.9058 external input [2]	$0.5\pm0.4\pm0.9$
$D^0 \to K^0_S \pi^0$	$30.4 \pm 0.3 \pm 0.9$	$1.19 \pm 0.01 \pm 0.04 \pm 0.02$	
$D^0 \to K^0_S \eta$	$12.3 \pm 0.3 \pm 0.7$	$0.481 \pm 0.011 \pm 0.026 \pm 0.010$	
$D^0 o \pi^0 \eta$	$1.74\pm0.15\pm0.11$	$0.068 \pm 0.006 \pm 0.004 \pm 0.001$	
$D^0 \to K^0_S \eta'$	$24.3 \pm 0.8 \pm 1.1$	$0.95\pm0.03\pm0.04\pm0.02$	
$D^0 \to \pi^0 \eta'$	$2.3 \pm 0.3 \pm 0.2$	$0.091 \pm 0.011 \pm 0.006 \pm 0.002$	
$D^0 \rightarrow \eta \eta$	$4.3 \pm 0.3 \pm 0.4$	$0.167 \pm 0.011 \pm 0.014 \pm 0.003$	
$D^0 \to \eta \eta'$	$2.7 \pm 0.6 \pm 0.3$	$0.105 \pm 0.024 \pm 0.010 \pm 0.002$	
Mode	$\mathcal{B}_{\mathrm{mode}}/\mathcal{B}_{\mathrm{Normalization}}$ (%)) This result \mathcal{B} (%)	\mathcal{A}_{CP} (%)
$D^+ \rightarrow K^- \pi^+ \pi^+$	100	9.1400 external input [2]	$-0.1 \pm 0.4 \pm 0.9$
$D^+ \to K^0_S K^+$	$3.35 \pm 0.06 \pm 0.07$	$0.306 \pm 0.005 \pm 0.007 \pm 0.007$	$-0.2 \pm 1.5 \pm 0.9$
$D^+ \to \pi^+ \pi^0$	$1.29 \pm 0.04 \pm 0.05$	$0.118 \pm 0.003 \pm 0.005 \pm 0.003$	$2.9 \pm 2.9 \pm 0.3$
$D^+ \to K^0_S \pi^+$	$16.82 \pm 0.12 \pm 0.37$	$1.537 \pm 0.011 \pm 0.034 \pm 0.033$	$-1.3 \pm 0.7 \pm 0.3$
$D^+ \to K^+ \pi^0$	$0.19 \pm 0.02 \pm 0.01$	$0.0172 \pm 0.0018 \pm 0.0006 \pm 0.0004$	-3.5 \pm 10.7 \pm 0.9
$D^+ \to K^+ \eta$	< 0.14 (90% C.L.)	< 0.013 (90% C.L.)	
$D^+ \to \pi^+ \eta$	$3.87 \pm 0.09 \pm 0.19$	$0.354 \pm 0.008 \pm 0.018 \pm 0.008$	$-2.0 \pm 2.3 \pm 0.3$
$D^+ \to K^+ \eta'$	< 0.20 (90% C.L.)	< 0.018 (90% C.L.)	
$D^+ \to \pi^+ \eta'$	$5.12 \pm 0.17 \pm 0.25$	$0.468 \pm 0.016 \pm 0.023 \pm 0.010$	$-4.0 \pm 3.4 \pm 0.3$
		PF 2009 July 27-31	2

D to Two Pseudoscalars

Mode	$\mathcal{B}_{\mathrm{mode}}/\mathcal{B}_{\mathrm{Normalization}}$ (%)	This result \mathcal{B} (%)	\mathcal{A}_{CP} (%)
$D_s^+ \to K_S^0 K^+$	100	1.4900 external input [3]	$4.7 \pm 1.8 \pm 0.9$
$D_s^+ \to \pi^+ \pi^0$	< 2.3 (90% C.L.)	< 0.037 (90% C.L.)	
$D_s^+ \to K_S^0 \pi^+$	$8.5 \pm 0.7 \pm 0.2$	$0.126\pm0.011\pm0.003\pm0.007$	$16.3 \pm 7.3 \pm 0.3$
$D_s^+ \to K^+ \pi^0$	$4.2 \pm 1.4 \pm 0.2$	$0.062\pm0.022\pm0.004\pm0.004$	$-26.6 \pm 23.8 \pm 0.9$
$D_s^+ \to K^+ \eta$	$11.8 \pm 2.2 \pm 0.6$	$0.176\pm0.033\pm0.009\pm0.010$	$9.3 \pm 15.2 \pm 0.9$
$D_s^+ \to \pi^+ \eta$	$123.6 \pm 4.3 \pm 6.2$	$1.84 \pm 0.06 \pm 0.09 \pm 0.11$	$-4.6 \pm 2.9 \pm 0.3$
$D_s^+ \to K^+ \eta'$	$11.8 \pm 3.6 \pm 0.6$	$0.18\pm0.05\pm0.01\pm0.01$	$6.0\pm18.9\pm0.9$
$D_s^+ \to \pi^+ \eta'$	$265.4 \pm 8.8 \pm 13.9$	$3.95\pm0.13\pm0.21\pm0.23$	$-6.1 \pm 3.0 \pm 0.3$

Uncertainties are statistics, systematics, and branching of the normalizing mode. Much improved and many new branchings.

No evidence of CP Asymmetry at the % level in D⁰ and D⁺ or the 10% level in D_S.

Summary

- CLEO-c measures of D strong phases improves CKM γ results
- Much more complete picture of D_S decay pattern
- The D_S likes to go to ω ?
- Much improved $D_S \rightarrow KK\pi$ Dalitz
- No evidence for CP asymmetries in D decays