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Introduction

The objective of this study was to study solitons (kinks) in scalar field theories in
two-dimensional Anti-de-Sitter space. Such solitons have been studied extensively in
Minkowski space. Some concrete goals of the study were:

I Construction of simple scalar field theories in AdS1+1 that feature analytic soliton
solutions.

I Calculation of the classical soliton mass.

I Study the relation between the soliton’s mass, BPS bound, and topological charge

I Determination of the soliton excitation spectrum.

I Calculation of the one-loop quantum corrections to the soliton’s mass
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AdS space

AdS1+1 space can be viewed as a SO(2, 1) invariant hyperboloidal hypersurface

(X 0)2 + (X 1)2 − (X 2)2 = m2

embedded in a three-dimensional pseudo-Euclidean space with invariant interval

ds2 = (dX 0)2 + (dX 1)2 − (dX 2)2.

Here m parameterizes the inverse length scale in AdS1+1 space. Global coordinates
can be defined as

X 0 = m cos(mt) cosh(mx)

X 1 = m sin(mt) cosh(mx)

X 2 = m sinh(mx).
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AdS space

Global coordinates

The resulting induced metric in these coordinates is

ds2 = cosh2(mx)dt2 − dx2.

I The hyperboloid surface is covered once by mt ∈ [−π, π] and mx ∈ [−∞,∞].
However, in order to avoid closed time curves the covering space is considered by
removing the restriction on the range of the time coordinate.

I A boundary is located at x → ±∞.

I In order to have well defined time evolution, consistent boundary conditions must
be specified apart from initial conditions.
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AdS space

Geodesics

Projections of geodesic trajectories
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In terms of the proper time:

sinh(mx) = ±
p

l2 − 1 sin(m(τ − τ0)).

In terms of the coordinate time:

sinh(mx) = ±
√

l2 − 1 sin[m(t − t0)]q
l2 cos2[m(t − t0)] + sin2[m(t − t0)]

.

Here l and t0 are integration constants. Null geodesics are obtained for l →∞.
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Scalar field theory in AdS1+1

I Two degenerate discrete vacua need to occur in order for kink solutions to exist.

I This can be incorporated in a model by realizing a spontaneously broken Z2

symmetry.

I For simplicity, and to keep the connection with well studied solitons in Minkoski
space, we consider a ”phi to the fourth” scalar potential with a negative mass
term.

The SO(2, 1) invariant Lagrangian density takes the form

L =
1

cosh2(mx)

„
∂φ

∂t

«2

−
„
∂φ

∂x

«2

−
1

2
(−µ2 + λφ2)2.
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Scalar field theory in AdS1+1
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The two degenerate vacua at φ = ± µ√
λ

each spontaneously break the Z2 symmetry,

but leave the SO(2,1) symmetry unbroken.
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Scalar field theory in AdS1+1

The Euler-Lagrange equation of motion is

∂µ

„
∂(L√g)

∂(∂µφ)

«
−
∂(L√g)

∂φ
= 0.

It is convenient to introduce dimensionless variables

s ≡ xm, τ ≡ tm

σ ≡
√
λ
φ

µ
, α ≡

2λµ2

m2
.

The equation of motion then takes the form

1

cosh2(s)

∂2σ

∂τ2
−
∂2σ

∂s2
− tanh(s)

∂σ

∂s
+ ασ(−1 + σ2) = 0.
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Excitation spectrum in the trivial sector

In order to find the excitation spectrum, the scalar field is expanded around one of the
equivalent degenerate vacua:

σ(s, τ) = 1 + η(s, τ).

For small fluctuations only linear terms need to be considered in the equation of
motion:

1

cosh2(s)

∂2η

∂τ2
−
∂2η

∂s2
− tanh(s)

∂η

∂s
+ 2αη = 0.

This equation is solved by separation of variables:

η(s, τ) = e iω̂τX (s).

The equation describing the space dependent part of the normal modes reads

− cosh2(s)
d2X

ds2
− sinh(s) cosh(s)

dX

ds
+ 2α cosh2(s)X = ω̂2X .

It has the form of a time-independent Schrödinger equation, and we can therefore use
familiar tools to find the normalizable eigenfunctions and eigenvalues.
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Excitation spectrum in the trivial sector

Supersymmetry of the equivalent quantum mechanics problem

The normal mode equation can be suggestively written as

H1X = (ω̂2 − g2
2 )X = E (1)X .

This Hamiltonian can be factorized:

H1 = A†A,

with the differential operators A and A† defined by

A† = − cosh(s)
d

ds
+ g2 sinh(s), A = + cosh(s)

d

ds
+ g2 sinh(s),

while the parameter g2 takes the value

g2 =
1

2
+

r
1

4
+ 2α.

The Hamiltonian H1 forms a supersymmetric system together with H2 = AA†.
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Excitation spectrum in the trivial sector

The ground state energy of Hamiltonian H1 vanishes, and the ground state
wavefunction of H1 is annihilated by the operator A:

E
(1)
0 = 0 AX

(1)
0 = 0

Moreover, supersymmetry relates the eigenfunctions and eigenvalues of the
Hamiltonians H1 and H2:

E
(2)
n = E

(1)
n+1 X

(2)
n = AX

(1)
n+1

X
(1)
n+1 = A†X

(2)
n
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Excitation spectrum in the trivial sector

Shape invariance of the equivalent quantum mechanics problem

The Hamiltonians H1 and H2 take very similar forms:

H1 = A†A

= cosh2(s)

»
−

d2

ds2
− tanh(s)

d

ds

–
+ (g2

2 − g2) cosh2(s)− g2
2

H2 = AA†

= cosh2(s)

»
−

d2

ds2
− tanh(s)

dX

ds

–
+ (g2

2 + g2) cosh2(s)− g2
2 .

In fact, the two Hamiltonians are related by shape invariance, a combination of a shift
in the parameter g2 and an additive constant:

H2(s; g2) = H1(s; g2 + 1) + 2g2 + 1.
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Excitation spectrum in the trivial sector
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The spectra of H1 and H2 are now algebraically determined by the combination of
supersymmetry and shape invariance:

E
(1)
0 (g1) = 0

E
(1)
1 (g2) = 2g2 + 1

E
(1)
2 (g2) = 4g2 + 4

. . .

E
(2)
0 (g2) = 2g2 + 1

E
(2)
1 (g2) = 4g2 + 4

. . .
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Excitation spectrum in the trivial sector

The general expression for the energy spectrum of H1 is:

E
(1)
n = 2ng2 + n2

The excitation spectrum of the scalar field theory in the trivial vacuum is thus

ω̂n =

q
E

(1)
n + g2

2 = n + g2 = n + 1
2

+
q

1
4

+ 2α.

This equally spaced spectrum is consistent with the unbroken SO(2, 1) symmetry. The
physical “meson ”mass is defined as the lowest frequency:

mphys

m
= ω̂0 =

"
1

2
+

r
1

4
+ 2α

#
.

For the particular value α = 1 this relation becomes:

mphys = 2m.
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Soliton solution

A soliton is a static solution to the equation of motion

1

cosh2(s)

∂2σ

∂τ2
−
∂2σ

∂s2
− tanh(s)

∂σ

∂s
+ ασ(−1 + σ2) = 0

that interpolates between the two vacua at σ0 = ±1. An analytic solution of this type
was found for α = 1:

σsol(s) = tanh(s).
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In what follows we will further consider this particular value of α.
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Classical soliton mass

Classical soliton mass

The covariant energy momentum tensor for the model is given by

Tµν = ∂µφ∂νφ− gµνL.

The classical energy functional is

E [φ] =

Z ∞
−∞

dx
√
−gH =

Z ∞
−∞

dx
√
−gT 0

0 .

The classical mass of a static soliton is

Msol =

Z ∞
−∞

dx
√
−g [Hsol −H0] =

Z ∞
−∞

cosh(mx)dx

»
1

2
(
dφsol

dx
)2 + V (φsol)

–
.

The resulting soliton mass in the special case α = 1 is determined to be

Msol =
3π

16

m3

λ2
.



Solitons in AdS space

Solitons in AdS space

Excitation spectrum in the one soliton sector

Soliton excitation spectrum

In order to find the soliton excitation spectrum the scalar field is expanded around the
soliton solution:

σ(s, τ) = tanh(s) + η(s, τ).

The linearized equation of motion then takes the form

1

cosh2(s)

∂2η

∂τ2
−
∂2η

∂s2
− tanh(s)

∂η

∂s
+ 3 tanh2(s)η − η = 0.

This equation is again solved by separation of variables:

η(s, τ) = e iω̂τX (s).
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Excitation spectrum in the one soliton sector

The space dependent part of the normal mode equation reads:

− cosh2(s)
d2X

ds2
− sinh(s) cosh(s)

dX

ds
+ 2 cosh2(s)X − 3X = ω̂2X .

This looks very similar to the normal mode equation in the trivial vacuum for α = 1
which was discussed earlier. The normalizable modes and the eigenvalues can again be
found by employing a combination of supersymmetry and shape invariance.

It is curious that for α = 1 the analogous time-independent Schrödinger equation
takes the form

H1X = (ω̂2 − 1)X = E (1)X ,

with the Hamiltonian H1 exactly as before in the trivial sector, and g2 = 2, its value
for α = 1. Just the relation between the energy eigenvalues and the excitation
frequencies is modified.
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Excitation spectrum in the one soliton sector

In summary, for α = 1 the normal mode functions in the trivial and one-soliton sectors
are identical, but the frequency spectra are distinct!
The excitation spectrum in the trivial sector is

ω̂n = n + 2, n ∈ N,

while in the one-soliton sector

ω̂sol
n =

q
(n + 2)2 − 3, n ∈ N.

Note that the lowest frequency in the one-soliton sector is ωsol
0 = m. This mode is

obtained by acting on the soliton solution with a spontaneously broken SO(2, 1)
symmetry generator. It is equivalent to the zero mode (Nambu-Goldstone) of solitons
in Minkowski space.
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Excitation spectrum in the one soliton sector

The normal mode functions for α = 1 can be written in terms of the Jacobi
polynomials as

Xn(s) = Bn
1

cosh2(s)
P

(3/2,3/2)
n (tanh(s)).

The normalization constant is given by

Bn =

s
(n + 2)

8

Γ(n + 1)Γ(n + 4)

Γ(n + 5/2)2
.

The normal mode functions then satisfy the orthonormality conditionZ ∞
−∞

1

cosh s
X †n (s)Xm(s)ds = δnm.
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Excitation spectrum in the one soliton sector
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The first three normal mode functions for α = 1. Note the similarity of the both the
spectrum and mode functions with the energy spectrum and energy eigenfunctions of
the regular quantum mechanical harmonic oscillator.
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Quantization, regularization, and renormalization

Canonical quantization:

H =
1

2
π2 +

1

2

∂φ

∂x

2

+ V (φ).

Expand the field and the canonical momentum in terms of the normal modes:

φ =
NX

n=0

an√
2ωn

Xn(x)e iωnt +
a†n√
2ωn

X †n (x)e−iωnt .

π =
NX

n=0

−ian

r
ωn

2

Xn(x)

cosh(mx)
e iωnt + ia†n

r
ωn

2

X †n (x)

cosh(mx)
e−iωnt .

Impose the quantization condition:

h
an, a

†
m

i
= δnm.
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Quantization, regularization, and renormalization

Canonical quantization

The normalization condition is implied by the normal ordering procedure:

: H : = H −
Z ∞
−∞

cosh(mx)dx

»
1

2
δm2φ2 + D

–
.

The theory is regulated by cutting off the mode sums at large mode number N. The
mass counter term is logarithmically divergent:

δm2 = 6λ2
NX

i=0

1

2ωi
Xi (x)X †i (x) =

3

π
λ2 [ln(N) + γ − 1 + ln(2)] .

The vacuum energy counter term has a quadratic divergence:

D =
NX

i=0

1

2
ωi =

1

4
m(N + 4)(N + 1).
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Quantum corrections to the soliton mass

To one loop order there are two contributions to the quantum corrections of the
soliton mass.
Due to the mass renormalization:

∆M1 = −
Z ∞
−∞

cosh(mx)dx
1

2
δm2

ˆ
φ2

sol − φ
2
0

˜
=

3

2
m [ln(N) + γ − 1 + ln(2)] .

Due to the vacuum energy renormalization:

∆M2 =
NX

i=0

ωsol
i − D

= −
3

2
m [ln(N) + γ − 1] +

1

2
mCS

Here Schroeder’s number is defined as

CS =
∞X
i=0

»q
(i + 2)2 − 3− (i + 2) +

3

2

1

(i + 2)

–
≈ −0.3485.
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Quantization, regularization, and renormalization

Quantum corrections to the soliton mass

The divergent parts of the two contributions cancel against eachother. The finite,
physical mass of the soliton including its one-loop quantum corrections is thus

Msol = Mclas + M1 + M2 =
3π

16

m3

λ2
+

1

2
m [3 ln 2 + CS ].
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Quantum corrections to the soliton mass

Discussion

I A zero mode is generically obtained in the excitation spectrum of solitons in
Minkowski space due to the spontaneously broken translation symmetry. In
Anti-de-Sitter space, the corresponding spontaneously broken symmetry generator
gives generically rise to a mode with ω = m.

I It turns out that the supersymmetric and shape invariant quantum mechanical
models we encountered are already known. They are equivalent by a coordinate
transformation to the Scarf I potentials.

I The soliton solution in Anti-de-Sitter space was obtained as a static solution to
the second order Euler-Lagrange equation. Due to the explicit coordinate
dependence of the Hamiltonian density it is not possible to derive a BPS bound
and a first order BPS equation as in Minkowski space. The mass of the soliton in
Anti-de-Sitter space therefore seems not to be a topological charge.
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Conclusions

I An analytic soliton (kink) solution in a scalar field theory in AdS1+1 space was
constructed. Its classical mass was determined.

I The excitation spectrum both in the trivial sector and the soliton sector were
determined analytically by using a combination of supersymmetry and shape
invariance.

I The spectra were then used to calculate the quantum corrections to the soliton
mass to one-loop order in the semi-classical approximation.
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