

DPF 2009

.....

2009 Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009) 26-31 JULY 2009

Wayne State University, Detroit, MI

Measurement of the W Boson Mass with 1fb⁻¹ of DØ RunII Data

Jyotsna Osta

University of Notre Dame

On Behalf of the DØ collaboration

Motivation for a precise measurement of M_w

W boson is one of the fundamental carriers of the weak nuclear force

Experimental observables

- Three important signatures -
 - Lepton (Electron/Muon)
 - Neutrino
 - Recoiling hadrons
- W boson is reconstructed in plane transverse to beamline of detector
 - Cannot reconstruct the longitudinal momentum (p_{z}) of neutrino
- W mass is measured using three physical observables :
 - $\mathbf{p}_{T}^{\text{lepton}}$ sensitive to motion of W boson (\mathbf{p}_{T}^{W})
 - **m**_T sensitive to missing energy resolution
 - $\mathbf{p}_{T}^{\text{neutrino}}$ ($\mathbf{p}_{T}^{\text{neutrino}}$) sensitive to both effects but is not 100% correlated with the other 2 measurements
- For an uncertainty of $\Delta M_{W} = 0.05\%$
 - Precision on EM response $\sim 0.05\%$
 - Precision on HAD recoil $\sim 1\%$

$$m_T^2 = (|E_T^e| + |E_T^v|)^2 - (\overrightarrow{p}_T^e + \overrightarrow{p}_T^v)^2$$
$$m_T^2 = 2E_T^e E_T^v (1 - \cos\varphi_{ev})$$

Strategy for the M_w measurement

This analysis focuses on $W \rightarrow ev$ mode of decay only

- **Compare m_T**, \mathbf{p}_{T}^{e} , \mathbf{E}_{T}^{e} distributions from data with corresponding templates from Monte-Carlo
- **Develop** a fast parameterized MC simulation (PMCS)
 - models response, resolution, recoil, efficiencies using parameters tuned to $Z \rightarrow ee$ data
 - uses NLO event generators for modeling production and decay of W & Z bosons
 - **RESBOS** : [C. Balazs and C.P. Yuan; Phys. Rev. D56, 5558 (1997)]
 - Gluon resummation for low boson $\boldsymbol{p}_{_{T}}$ and NLO perturbative QCD calculations for high boson $\boldsymbol{p}_{_{T}}$
 - **PHOTOS** : [E. Barbiero, Z. Was and B. van Eijk; Comp Phys Comm. 79, 291 (1994)]
 - Simulates radiative corrections for ≤ 2 FSR photons
- **Perform** a Geant MC analysis first to ensure analysis tools and methods work correctly and effectively
- On to a blinded data analysis M_w values were obscured by an offset, uncertainties were never hidden ! Results unblinded after analysis won approval !

• Missing Energy > 25 GeV

Jyotsna Osta

10

DPF, July 28th 2009,

Estimated from full simulation GEANT MC

Jyotsna Osta

electron

1.2

0.9

0.8

⊾ eta=0.2

10² raw energy (GeV) Electron energy reconstructed in CAL 6

Efficiencies

 $\overrightarrow{p}_{T}(e)$

 $\dot{p}_{T}(v)$

u

u_{ll}

 $\stackrel{\rightarrow}{\mathrm{u}}_{\mathrm{T}}$

PMCS models various electron selection efficiencies

- Electron-only : trigger, CAL-based ID, tracking
 - from Z data; tag and probe; parameterized using : η , p_T^{e} , z_{vtx}
- W event topology : spatial proximity of recoil to electron
 - from Z data; parameterized using : p_T^{e} , $u_{//}$
- Additional hadronic energy in CAL at high luminosity

- from full MC + ZB data; parameterized using Scalar $E_{T}^{}$, $u_{II}^{}$

Jyotsna Osta

Electron Simulation – energy response and resolution

Electron energy response :

using $Z \rightarrow ee$ events from data, known Z mass value from LEP

$$\mathbf{E}_{\text{measured}} = \boldsymbol{\alpha} \cdot \mathbf{E}_{\text{true}} + \boldsymbol{\beta}$$

 $\alpha \rightarrow \text{scale} \qquad \beta \rightarrow \text{offset}$

• We use non-monochromaticity of the Z electrons to constrain α and β simultaneously \rightarrow use f_z method

 M_z (measured) = $\alpha \cdot M_z$ (true) + $f_z \cdot \beta$

- where f_z is calculable from kinematics
- M_{Z} (measured) vs. f_{Z} templates generated for range of $\alpha \& \beta$ values \rightarrow get α and β

Electron energy resolution :

$$\frac{\sigma_{EM}}{E} = \sqrt{C_{EM}^2 + \frac{S_{EM}^2}{E_T} + \frac{N_{EM}^2}{E^2}}$$

- Sampling term S_{EM} determined as function of energy & incidence angle
 - S_{EM} determined from full simulation (Geant) MC
- **Constant** term extracted from fit to observed width of $Z \rightarrow$ ee peak

•
$$C_{EM} = (2.05 \pm 0.10)\%$$

Jyotsna Osta

 $\begin{aligned} \alpha &= 1.0111 \pm 0.0043 \\ \beta &= -0.404 \pm 0.209 \ GeV \\ correlation &= -0.997 \end{aligned}$

Jyotsna Osta

DPF, July 28th 2009,

Tuning model to data

- Fine tune to match modeled recoil to that from data
 - Addl. params. introduced to account for correl. between components
 - Using $\mathbf{Z} \rightarrow \mathbf{e}^+ \mathbf{e}^-$ events as a control sample
 - Define $\hat{\eta}$ and $\hat{\xi}$ axes (first used by UA2 collab)
 - Use momentum imbalance as diagnostic variables

•
$$\eta$$
-imbalance : $(\overrightarrow{P}_{t}^{ee} + \overrightarrow{P}_{t}^{rec})$.

 $\eta \xrightarrow{\overrightarrow{P_{t}^{rec}}, \widehat{\eta}} \overrightarrow{P_{t}^{rec}} \xrightarrow{\overrightarrow{P_{t}^{rec}}, \widehat{\eta}} \overrightarrow{P_{t}^{rec}} \xrightarrow{\overrightarrow{P_{t}^{rec}}, \widehat{\eta}} \overrightarrow{P_{t}^{rec}} \xrightarrow{\overrightarrow{P_{t}^{rec}}, \widehat{\xi}} \overrightarrow{P_{t}^{rec}} \xrightarrow{\overrightarrow{P_{t}^{rec}}, \widehat{\xi}} \overrightarrow{P_{t}^{rec}} \xrightarrow{\overrightarrow{P_{t}^{rec}}, \widehat{\xi}} \overrightarrow{P_{t}^{rec}} \xrightarrow{\overrightarrow{\eta}} \overrightarrow{P_{t}^{rec}} \overrightarrow{p_{t}^{rec}} \xrightarrow{\overrightarrow{\eta}} \overrightarrow{P_{t}^{rec}} \overrightarrow{p_{t}^{rec}} \xrightarrow{\overrightarrow{\eta}} \overrightarrow{P_{t}^{rec}} \xrightarrow{\overrightarrow{\eta}} \overrightarrow{p_{t}^{rec}} \overrightarrow{p_{t}^{rec}} \xrightarrow{\overrightarrow{\eta}} \overrightarrow{p_{t}^{rec}} \overrightarrow{p_{t}^{rec$

Jyotsna Osta

DPF, July 28th 2009,

Onto collider data - Z and W (m_T) mass fits !

Z mass value (LEP) was an input to estimating the electron energy response and resolution PDG MZ = 91.1876 ± 0.0021 GeV

Onto collider data - W mass fits $-p_{T}^{e}$ and $\not\!\!\!E_{T}$

J

Statistical and Sytematic Uncertainties on $\boldsymbol{M}_{\!_{\boldsymbol{W}}}$

	$\sigma(M_w) \text{ MeV}$		
Source	m _T	p_{T}^{e}	₽₽ _T
Statistical	23	27	23
Systematic - Experimental Electron energy response Electron energy resolution Electron energy non-linearity Electron energy loss differences Recoil model Efficiencies Backgrounds Experimental Subtotal	34 2 4 4 6 5 2 35	34 2 6 4 12 6 5 37	34 3 7 4 20 5 4 4 1
Systematic - W production and decay model PDF QED Boson pT W model Subtotal	10 7 2 12	11 7 5 14	11 9 2 17
Systematic – Total	37	40	44

Preliminary W mass results from D0

- Results in good agreement with previous measurements
- Correlation matrix from combining the 3 results :

	m _T	p_{T}^{e}	\mathbf{E}_{T}
m _T	1	0.83	0.82
p_{T}^{e}		1	0.68
₽			1

Combined DØ measurement for M_w :

 $80.401 \pm 0.021(\text{stat}) \pm 0.038(\text{syst}) \text{ GeV}$ $\Rightarrow 80.401 \pm 0.043 \text{ GeV}$

- With > 4fb⁻¹of data being analyzed currently :
 - the $\Delta M_{\rm w}$ per experiment is estimated ~ 25 MeV !
 - combined $\Delta M_{W} \sim 15$ MeV possible by next year !

Jyotsna Osta

Summary and Outlook

Backup Slides

Jyotsna Osta

DPF, July 28th 2009,

17

MC event generators used for analysis

- PMCS uses NLO event generators for modeling production and decay of W & Z bosons :
 - For QCD corrections -
 - **ResBos** [C. Balazs and C.P. Yuan; Phys. Rev. D56, 5558 (1997)]
 - Gluon resummation accounts for low boson momenta
 - NLO perturbative QCD calculations at high boson momenta
 - For QED corrections
 - Photos [E. Barbiero, Z. Was and B. van Eijk; Comp Phys Comm. 79, 291 (1994)]
 - Simulates single/double final-state photon radiative corrections (FSR) during the production and decay of W and Z bosons
 - Effect of full electroweak corrections studied using WGRAD/ZGRAD [Bauer, Keller and Wackeroth; Phys. Rev. D59, 013002 (1999)]

Energy response linearity

• Two average longitudinal profiles of showers at electron energy E=45 GeV for "normal" and "extreme" angles of incidence

- Shower maximum is in EM1 for eta=1 !
 - Notice the fraction of energy loss in the dead material !
- During reconstruction high weights are applied to the early layers (especially EM1) to compensate partially for losses in dead material
 - what is the situation when there are significant losses in dead material?

N.B. - Profiles have been made using GFLASH – a fast parameterized toy model for EM showers Jyotsna Osta DPF, July 28th 2009, 20

Energy dependence and fluctuations

• Two longitudinal profiles showing shower-to-shower fluctuations for two different electron energies

- Fraction of energy lost in the dead material varies from shower to shower
 - position of shower maximum (in X_0) varies approximately as ln(E)
- Relative importance of shower-to-shower fluctuations also depend on energy of the incident electrons

N.B. - Profiles have been made using GFLASH – a fast parameterized toy model for EM showers Jyotsna Osta DPF, July 28th 2009, 2

Impact on energy resolution of electrons

- GFLASH simulation of energy resolution of electrons shows deviations from that of an ideal sampling calorimeter !
- Resolution at normal incidence for different electron energies

$$\frac{\sigma_{EM}}{E} = \sqrt{C^2 + \frac{S^2}{E_T} + \frac{N^2}{E^2}}$$

For an ideal sampling calorimeter (no dead material) $\sigma_{_{\rm E}}/E \sim 1/\sqrt{E}$!

• Resolution at an energy E=45 GeV for different angles of incidence (eta)

For an ideal sampling calorimeter (no dead material) $\sigma_{_{\rm E}}/E \sim 1/\sqrt{\sin\theta}$!

Triggers used

- Data used has been obtained from EM inclusive skims
 - EM + MET sample for studying Ws
 - 2EM sample for studying Zs
 - EM + Jet sample for studying jet-faking-electron probability
- Requirements for EM+MET :
 - 1 EM with pT > 20 GeV, $|\eta_{det}| < 1.2$, EmFrac > 0.9 and raw MET > 20 GeV
- Requirements for 2 EM :
 - 2 EM with pT > 20 GeV, EMFrac > 0.9 and iso < 0.2
- Requirements for EM + Jet :
 - 1 EM with pT > 20 GeV, $|\eta_{det}| < 1.2$, EmFrac > 0.9 and iso < 0.2
 - 1 Jet with pT > 20 GeV, $|\eta_{det}| < 0.8$ or $1.5 < |\eta_{det}| < 2.5, 0.05 < EMFrac < 0.95$, chFrac<0.4, hotcellratio<10 and n90>10
- Trigger lists for dataset : v8-11, v12, v13, v14
- Single electron triggers : EM_HI_SH for v8-11, E1_SHT20 for v12, E1_SHT22 for v13, E1_SHT25 for v14

Modeled recoil: $\mathbf{u}_{T} = \mathbf{u}_{T}^{HARD} + \mathbf{u}_{T}^{SOFT} + \mathbf{u}_{T}^{ELEC} + \mathbf{u}_{T}^{FSR}$

- $\mathbf{u}_{\mathrm{T}}^{\mathrm{HARD}} = \mathbf{f}(\mathbf{q}_{\mathrm{T}})$
 - Recoiling partons from the hard scatter that produced vector boson
 - Parameterized function obtained from $Z \rightarrow vv$ FULL MC. Later fine-tuned to match $Z \rightarrow ee$
- $\mathbf{u}_{\mathrm{T}}^{\mathrm{SOFT}} = \boldsymbol{\alpha}_{\mathrm{MB}} \cdot \mathbf{E}_{\mathrm{T}}^{\mathrm{MB}} + \boldsymbol{\alpha}_{\mathrm{ZB}} \cdot \mathbf{E}_{\mathrm{T}}^{\mathrm{ZB}}$
 - Spectator partons interactions (underlying event)
 - Modeled from MB events \rightarrow same lumi profile as data. $\alpha_{_{MB}}$ is for fine-tuning
 - Additional partons interactions, electronics noise, pileup
 - Modeled from ZB events \rightarrow same epoch as data. $\alpha_{_{ZB}}$ is for fine-tuning
- $\mathbf{u}_{\mathrm{T}}^{\mathrm{ELEC}} = -\Sigma \Delta \mathbf{u}_{//} \cdot \mathbf{p}_{\mathrm{T}}^{\mathrm{e}}$
 - Recoil energy present under electron window
 - Energy leakage outside the electron cluster
 - Modeled from single energy electrons in FULL MC
- $\mathbf{u}_{\mathrm{T}}^{\mathrm{FSR}} = \Sigma \mathbf{p}_{\mathrm{T}}(\boldsymbol{\gamma})$
 - FSR photons far away from "mother" electrons, so part of recoil
- Jyotsna Osta A detailed model of the calorimeter response to FSR photons is used for this

Uninstrumented material in the detector

- For an accurate estimate of dead material we study the fractional electron energy sampled by each layer (EM1-EM4) as a function of incident angle (η)
 - Compare DATA and GEANT MC

Fractional energy deposits between data and GEANT simulation do not match !

• We vary the size of dead region incrementally in GEANT simulation and compare it with collider data

Found some missing material !

• We found $0.163X_0$ of extra dead material which was missing in GEANT MC simulation

Jyotsna Osta

DPF, July 28th 2009,

MC closure test results: $Z \rightarrow e e$

MC closure test results: $W \rightarrow e \nu$

MC closure test results: $W \rightarrow e \nu$

Consistency Checks – I

• Instantaneous Luminosity (split data into 2 subsets – high and low inst. luminosities)

• **Time** (data taking period)

Consistency Checks – II

• Scalar $\mathbf{E}_{\mathbf{T}}$ (total "visible" energy as seen in plane transverse to beam in calorimeter)

• Electron distance from phi cracks

- QCD (di-jet) $(1.49 \pm 0.3 \%)$: one jet fakes as an electron
 - determined from QCD data
- $Z \rightarrow ee (0.80 \pm 0.01 \%)$: one electron lost in ICR(between central and end cal)
 - determined from $Z \rightarrow ee$ data
- W $\rightarrow \tau v (1.60 \pm 0.02 \%)$: Taus decaying into evv
 - determined from GEANT (full) MC
- For all 3 observables: estimated backgrounds are added to simulated signal from W PMCS

Diagnostic plots from Z \rightarrow ee data/MC comparisons

Good agreement between PMCS and data, useful for checking that the calibrations are working fine !
 Jyotsna Osta DPF, July 28th 2009,

Diagnostic plots from W \rightarrow ev data

• Parameterized MC tuned to Z data describes W very well too ! Jyotsna Osta DPF, July 28th 2009,

Some information

- In Run I, they had single particle resolution :
 - e: $\sigma/E = 15\%/\sqrt{E} + 0.3\%$
 - π : $\sigma/E = 45\%/\sqrt{E} + 4\%$
- Resolution of calorimeter is 4% at E=45 GeV
- Pseudorapidity : $\eta = -\ln(\tan\theta/2)$ where θ is the angle between the p and beam axis \rightarrow
 - $\eta = \frac{1}{2} \ln \left[(|p| + p_{I}) / (|p| p_{I}) \right]$ where p_{I} is the component of p along beam direction
 - When v~c: $\eta = y(rapidity) = \frac{1}{2} \ln [(E + p_1) / (E p_1)]$
- $p = rqB (q \rightarrow charge of particle; r \rightarrow radius of curvature)$
- Momentum resolution of tracker depends on :
 - magnetic field (B)
 - number of measurements
 - Lever arm (radius of tracker)
 - single hit resolution (SHR)
 - momentum + detector granularity + mass of detector (affects negatively) feed into SHR
- $M_W = M_Z \cos \theta_W$
- $\alpha_{EM} = EM$ coupling at $Q = M_Z c^2$, $G_F = 1.16637(1) \times 10^{-5} \text{ GeV}^{-2}$, $M_Z = 91.1876 \pm 0.0021 \text{ GeV}/c^2$, $\theta_W \sim 30^\circ$
- •

DPF, July 28th 2009,

Addtl. info on Electron Energy Scale

- Electron energy scale : $E(measured) = \alpha . E(true) + \beta$
- For a 2-body decay assuming $\beta \ll (E1+E2)$ we get : $M_z(measured) = \alpha \cdot M_z(true) + f_z \cdot \beta$

A strategy for establishing the final energy scale and possible offset in the response was implemented. Inherent to this program is the assumption that the measured energy E^{meas} is related to the true energy, E^{true} , by a scale α and offset δ :

$$E^{\text{meas}} = \alpha E^{\text{true}} + \delta. \tag{20}$$

Then, for a two body decay when $\delta \ll (E_1 + E_2)$, the measured invariant mass of the decay products m^{meas} is related to the true mass m^{true} by

$$m^{\text{meas}} \approx \alpha m^{\text{true}} + \delta \times f.$$
 (21)

Here, f is a parameter that depends on the kinematics of the decay and is given by

$$f = \frac{(E_1^{\text{meas}} + E_2^{\text{meas}})(1 - \cos \gamma)}{m^{\text{meas}}}$$
(22)

where $E_{1,2}^{\text{meas}}$ are the measured energies of the two decay products and γ the opening angle between them. When δ is small, *f* is nearly equal to $\partial m^{\text{meas}}/\partial \delta$. Hence, sensitivities to δ can be different, depending on *f*.

Consequently, the dependence of the measured ratio of the *W* boson to *Z* boson masses on α , δ can be estimated from the relation

$$\frac{M_{W}(\alpha,\delta)}{M_{Z}(\alpha,\delta)}\Big|_{\text{meas}} = \frac{M_{W}}{M_{Z}}\Big|_{\text{true}} \left[1 + \frac{\delta}{\alpha} \cdot \frac{f_{W}M_{Z} - f_{Z}M_{W}}{M_{Z} \cdot M_{W}}\right].$$
(23)

Here, f_W and f_Z correspond to average values of f for the W and Z bosons, respectively. Note that the determination of M_W from this ratio is insensitive to α if $\delta=0$, and that the correction due to a non-vanishing value for δ is strongly suppressed due to the fact that the W and Z boson masses are nearly equal.

The values of α and δ were determined from the analysis of collider events containing two-body decays for which m^{true} is known from other measurements. The liquid argon

Jyotsna Osta