Hints for New Physics in Flavor Physics and CP violation

> Enrico Lunghi Indiana University

DPF 2009 - WSU

E.L. and A. Soni: 0707.0212, 0803.4340, 0903.5059 J. Laiho, E.L., R. van de Water: *in preparation*

Outline

- A critical review of the UT fit:
 - New formula for ε_K
 - The role of V_{cb} and V_{ub}
 - Updated inputs

[Andriyash,Ovanesyan,Vysotsky] [Buras,Guadagnoli] [Laiho,EL,van de Water]

- The UT fit and what it suggests about new physics:
 - NP in B_d mixing and in $b \rightarrow s$ amplitudes
 - NP in K mixing and in $b \rightarrow s$ amplitudes
- Operator Analysis of New Physics effects
- Conclusions

[EL,Soni]

[Buras,Guadagnoli] [EL,Soni]

[EL,Soni]

$$\varepsilon_{K} = \frac{A(K_{L} \to (\pi\pi)_{I=0})}{A(K_{S} \to (\pi\pi)_{I=0})}$$

$$= e^{i\phi_{\varepsilon}} \sin \phi_{\varepsilon} \left(\frac{\mathrm{Im}M_{12}^{K}}{\Delta M_{K}} + \frac{\mathrm{Im}A_{0}}{\mathrm{Re}A_{0}}\right)$$

$$= e^{i\phi_{\varepsilon}} \kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K} |V_{cb}|^{2} \lambda^{2} \eta \left(|V_{cb}|^{2} (1-\bar{\rho}) + \eta_{tt}S_{0}(x_{t}) + \eta_{ct}S_{0}(x_{c}, x_{t}) - \eta_{cc}x_{c}\right)$$

- Critical inputs:
 - \hat{B}_K from lattice QCD
 - $|V_{cb}|$ from inclusive and exclusive $b
 ightarrow c\ell
 u$ decays
 - κ_{ε} in the SM from $(\varepsilon'_K/\varepsilon_K)_{\exp}$ and (quenched) lattice QCD

 $|\varepsilon_K| = \kappa_{\varepsilon} C_{\varepsilon} \hat{B}_K |V_{cb}|^2 \lambda^2 \eta \left(|V_{cb}|^2 (1 - \bar{\rho}) + \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right)$

- Experimentally one has: $\phi_{\varepsilon} = (43.51 \pm 0.05)^{o}$
- ImA₀/ReA₀ can be extracted from experimental data on ε'/ε and theoretical calculation of isospin breaking corrections:

•
$$\operatorname{Re}(\varepsilon'_{K}/\varepsilon_{K})_{\exp} \sim \frac{\omega}{\sqrt{2}|\varepsilon_{K}|} \left(\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}} \right)$$
 [PDG]
• $\operatorname{Im}A_{2} = (-9.6 \pm 9.6) \times 10^{-13} \text{ GeV}$ [RBC,
Babich
conservative error estimate

[RBC, CP-PACS, SPQ_{CD}R, Babich, Yamazaki]

• Combining everything:

$$\kappa_{\varepsilon} = 0.92 \pm 0.02$$

[Andryiash,Ovanesyan,Vysotsky; Nierste; Buras,Jamin; Bardeen,Buras,Gerard; Buras,Guadagnoli; Laiho,EL,van de Water]

 $|\varepsilon_K| = \kappa_{\varepsilon} C_{\varepsilon} \hat{B}_K |V_{cb}|^2 \lambda^2 \eta \left(|V_{cb}|^2 (1 - \bar{\rho}) + \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right)$

- Note the quartic dependence on V_{cb} : $|V_{cb}|^4 \sim A^4 \lambda^8$
- Critical input from lattice QCD

$$\langle K^0 | \mathcal{O}_{VV+AA}(\mu) | \bar{K}^0 \rangle = \frac{8}{3} f_K^2 M_K^2 B_K(\mu)$$

- RBC/UKQCD (2+I domain wall fermions): $\hat{B}_K = 0.720 \pm 0.013 \pm 0.037$
- Aubin, Laiho, van de Water (2+1 domain wall valence quarks + MILC staggered gauge configurations): $\hat{B}_K = 0.724 \pm 0.008 \pm 0.028$
- The average reads[†]:

$\hat{B}_K = 0.725 \pm 0.026$

 * * we include an older HPQCD/UKQCD determination and we take correlations into account [Laiho,EL,van de Water]

 $|\varepsilon_K| = \kappa_{\varepsilon} C_{\varepsilon} \hat{B}_K |V_{cb}|^2 \lambda^2 \eta \left(|V_{cb}|^2 (1 - \bar{\rho}) + \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right)$

• Error budget:

All other uncertainties have negligible impact on the combined error

Central value of K_{ϵ} is important

DPF 2008

Interplay between $b \rightarrow s\gamma$, V_{cb} and V_{ub}

[Phillip Urquijo]

DPF 2008

- Exclusive from $B \rightarrow D^{(*)}Iv$. Using form factor from lattice QCD (2+I dynamical staggered fermions) one finds: $|V_{cb}| = (38.6 \pm 1.2) \times 10^{-3}$ [FNAL/MILC] [exp. error on $B \rightarrow D^*$ rescaled to account for the large $\chi^2/dof = 39/21$]
- Inclusive from global fit of $B \rightarrow X_c Iv$ moments.

[Büchmuller,Flächer]

DPF 2008

Inclusion of b→sγ has strong impact on quark masses but not on V_{cb}

- NNLO in α_s and O(1/m_b⁴) known
- Calculation of $O(\alpha_s/m_b^2)$ under way
- Issue of mb is relevant for Vub

 $|V_{cb}| = (41.48 \pm 0.75) \times 10^{-3}$

 2σ discrepancy between inclusive and exclusive

- Exclusive from B→πIV. Using form factor from lattice QCD (2+1 dynamical staggered fermions) one finds:
 - $|V_{ub}| = (3.42 \pm 0.37) \times 10^{-4}$ [HPQCD, FNAL/MILC]
- Inclusive from global fit of B→X_uIV moments. $|V_{ub}| = (3.96 \pm 0.15_{\exp -0.23 \text{th}}) 10^{-3}$ [Gambino,Giordano,Ossola, Uraltsev (GGOU)] $|V_{ub}| = (4.26 \pm 0.14_{\exp -0.13 \text{th}}) 10^{-3}$ [Andersen,Gardi (DGE)] $|V_{ub}| = (4.32 \pm 0.16_{\exp -0.27 \text{th}}) 10^{-3}$ [Bosch,Lange,Neubert,Paz (BLNP)]

1.2σ discrepancy between inclusive and exclusive

B_q mixing

• We consider the ratio of the B_s and B_d mass differences:

$$\frac{\Delta M_{B_s}}{\Delta M_{B_d}} = \frac{m_{B_s}}{m_{B_d}} \frac{\hat{B}_s f_{B_s}^2}{\hat{B}_d f_{B_d}^2} \left| \frac{V_{ts}}{V_{td}} \right|^2 = \frac{m_{B_s}}{m_{B_d}} \xi^2 \left| \frac{V_{ts}}{V_{td}} \right|^2$$

- No dependence on V_{cb}
- Two unquenched determinations:
 - FNAL/MILC: $\xi = 1.205 \pm 0.036 \pm 0.037$
 - HPQCD: $\xi = 1.258 \pm 0.025 \pm 0.021$
- Average: $\xi = 1.243 \pm 0.028$

- We will consider the asymmetries in the $J/\psi, \ \phi, \ \eta'$ modes
- A case can be made for the $K_s K_s K_s$ final state

[Cheng, Chua, Soni]

Current fit to the unitarity triangle

Heart of the problem

- Exclusive V_{cb} triggers a very serious tension in the fit
- No preference between scenarios with new physics in K or B_d mixing
- The tie is broken by the inclusion of additional constraints (α, γ, V_{ub})

DPF 2008

Heart of the problem

Model Independent Interpretation

• The tension in the UT fit can be interpreted as evidence for new physics contributions to ε_K and to the phases of B_d mixing and of $b \rightarrow s$ amplitudes:

$$\varepsilon_{K} = \varepsilon_{K}^{\mathrm{SM}} C_{\varepsilon}$$

$$M_{12} = M_{12}^{\mathrm{SM}} e^{2i\phi_{d}} r_{d}^{2}$$

$$A(b \to s\bar{s}s) = [A(b \to s\bar{s}s)]_{\mathrm{SM}} e^{i\theta_{A}}$$

- This implies: $a_{\psi K_s} = \sin 2(\beta + \phi_d)$ $\sin 2\alpha_{\text{eff}} = \sin 2(\alpha - \phi_d)$ $\Delta M_{B_d} = (\Delta M_{B_d})^{\text{SM}} r_d^2$ $a_{(\phi,\eta')K_s} = \sin 2(\beta + \phi_d + \theta_A)$
- In general NP will affect in different ways the various $b \to s$ channels [I will discuss this possibility in the operator level analysis]

Model Independent Analysis: B_d

Model Independent Analysis: K

- Alternative solution to the stress in the UT fit is NP in ε_K [Buras,Guadagnoli]
- A new phase in penguin amplitudes (θ_A) is still required
- Assuming $\phi_d = 0$ we find:

 $C_{\varepsilon} = 1.28 \pm 0.15$ $\theta_A = (-3.9 \pm 2.4)^{\circ}$

Correlation with other observables

- Proper treatment of new physics effects in penguin amplitudes is better implemented with NP contributions to the QCD and EW penguin operators
- Correlation between the $b \rightarrow s \bar{s} s$ and KT asymmetries:

 $A_{CP}(B^- \to K^- \pi^0) - A_{CP}(\bar{B}^0 \to K^- \pi^+) = \begin{cases} (14.8 \pm 2.8) \% & \exp\\ (2.2 \pm 2.4) \% & \text{QCDF} \end{cases}$

- QCDF result very stable under variation of all the inputs
- Possible issue with large color suppressed contributions to the $K^-\pi^0$ final state

CP asymmetries in $B \rightarrow K\pi$

• Amplitudes in QCD factorization:

$$\mathcal{A}_{\bar{B}^{0} \to \pi^{+}K^{-}} = A_{\pi\bar{K}} \sum_{p=u,c} \lambda_{p}^{(s)} [\delta_{pu}\alpha_{1} + \hat{\alpha}_{4}^{p}] \xrightarrow{\mathbf{B}^{0}} \mathbf{A}_{p}^{\mathbf{b}} \underbrace{\delta_{pu}\alpha_{2}}_{\mathbf{b}^{-} \to \pi^{0}K^{-}} = \mathcal{A}_{\bar{B}^{0} \to \pi^{+}K^{-}} + A_{\bar{K}\pi} \sum_{p=u,c} \lambda_{p}^{(s)} \left[\delta_{pu}\alpha_{2} + \delta_{pc}\frac{3}{2}\alpha_{3,EW}^{c}\right] \xrightarrow{\mathbf{c}} \mathbf{C}_{\mathbf{c}}^{\mathbf{c}} \mathbf{C}} \mathbf{C}_{\mathbf{c}}^{\mathbf{c}} \mathbf{C}_{\mathbf{c}} \mathbf{$$

Enrico Lunghi

CP asymmetries in $B \rightarrow K\pi$

- In QCDF: $A_{CP}(B^- \to K^- \pi^0) A_{CP}(\bar{B}^0 \to K^- \pi^+) = (2.2 \pm 2.4) \%$
- Dominant sources of uncertainties
 - light-cone wave function parameters: α_1^K , α_2^K , α_2^{π} , λ_B
 - end-point singularities: ρ_H , φ_H , ρ_A , φ_A

NP contributions to the QCD and EW penguin

Operator Level Analysis: $b \rightarrow s$ **amplitudes**

• Effective Hamiltonian:

Ы

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{cb} V_{cs}^* \left(\sum_{i=1}^6 C_i(\mu) O_i(\mu) + \sum_{i=3}^6 C_{iQ}(\mu) O_i(\mu) \right)$$
$$Q_4 = (\bar{s}_L \gamma^\mu T^a b_L) \sum_q (\bar{q} \gamma_\mu T^a q) \qquad Q_{3Q} = (\bar{s}_L \gamma^\mu b_L) \sum_q Q_q (\bar{q} \gamma_\mu q)$$

likely to receive NP corrections

• Assume the following parametrization of NP effects:

$$\delta C_{4,3Q}(\mu_0) = \frac{\alpha_{s,e}}{4\pi} \frac{e^{i\varphi}}{\Lambda^2} \begin{bmatrix} 4G_F \\ \sqrt{2} \\ V_{cb} \\ V_{cs} \end{bmatrix}^{-1}$$
Ioop suppression + QED/QCD Effective mass scale that absorbs penguin g_s,e dependence NP couplings

Operator Level Analysis: $b \rightarrow s$ **amplitudes**

 $\Lambda \sim [350 \div 420] \text{ GeV}$

 $\Lambda \sim [140 \div 190] \text{ GeV}$

Operator Level Analysis: *Mixing*

• Effective Hamiltonian for B_d mixing:

$$\mathcal{H}_{eff} = \frac{G_F^2 m_W^2}{16\pi^2} \left(V_{tb} V_{td}^* \right)^2 \left(\sum_{i=1}^5 C_i O_i + \sum_{i=1}^3 \tilde{C}_i \tilde{O}_i \right)$$

$$\mathcal{O}_1 = \left(\bar{d}_L \gamma_\mu b_L \right) \left(\bar{d}_L \gamma_\mu b_L \right) \qquad \tilde{O}_1 = \left(\bar{d}_R \gamma_\mu b_R \right) \left(\bar{d}_R \gamma_\mu b_R \right)$$

$$\mathcal{O}_2 = \left(\bar{d}_R b_L \right) \left(\bar{d}_R b_L \right) \qquad \tilde{O}_2 = \left(\bar{d}_L b_R \right) \left(\bar{d}_L b_R \right)$$

$$\mathcal{O}_3 = \left(\bar{d}_R^\alpha b_L^\beta \right) \left(\bar{d}_R^\beta b_L^\alpha \right) \qquad \tilde{O}_3 = \left(\bar{d}_L^\alpha b_R^\beta \right) \left(\bar{d}_L^\beta b_R^\alpha \right)$$

$$\mathcal{O}_4 = \left(\bar{d}_R b_L \right) \left(\bar{d}_L b_R \right) \qquad \mathcal{O}_5 = \left(\bar{d}_R^\alpha b_L^\beta \right) \left(\bar{d}_L^\beta b_R^\alpha \right).$$

- B_s mixing $(d \rightarrow s)$, K mixing $(b \rightarrow s \& s \rightarrow d)$
- Parametrization of New Physics effects:

$$\delta C_{1,4}^{B_q,K}(\mu_0) = -\frac{1}{G_F^2 m_W^2} \frac{e^{i\varphi}}{\Lambda^2}$$

Retain loop and CKM suppression

Operator Level Analysis: *Mixing*

• The contribution of the LR operator O₄ to K mixing is strongly enhanced ($\mu_L \sim 2 \text{ GeV}, \mu_H \sim m_t$):

 Λ

DPF 2008

$$C_{1}(\mu_{L})\langle K|O_{1}(\mu_{L})|K\rangle \simeq \begin{pmatrix} 0.8 \\ 0.8 \\ C_{1}(\mu_{H}) \\ \frac{1}{3}f_{K}^{2}m_{K}B_{1}(\mu_{L}) \\ 3.7 \\ C_{4}(\mu_{H}) \\ \frac{1}{4} \left(\frac{m_{K}}{m_{s}(\mu_{L}) + m_{d}(\mu_{L})}\right)^{2} f_{K}^{2}m_{K}B_{4}(\mu_{L})$$

running from μ_{H} to μ_{L} chiral enhancement
$$\underbrace{C_{4}(\mu_{L})\langle K|O_{4}(\mu_{L})|K\rangle}{C_{1}(\mu_{L})\langle K|O_{1}(\mu_{L})|K\rangle} \simeq (65 \pm 14) \\ \frac{B_{4}(\mu_{L})}{B_{1}(\mu_{L})} \\ \frac{C_{4}(\mu_{H})}{C_{1}(\mu_{H})}$$

• No analogous enhancement in B_q mixing

Operator Level Analysis: Bd Mixing

- New Physics in B_d mixing only: $\delta C_1^{B_s} = \delta C_1^K = 0$
- Effects on $a_{\psi K}$ and $\Delta M_{B_s}/\Delta M_{B_d}$

• Lower limit on Λ induced by $\Delta M_{B_s}/\Delta M_{B_d}$

Enrico Lunghi

 $\Lambda \sim [1.1 \div 2.3] \text{ TeV}$

Operator Level Analysis: *K Mixing*

• New Physics in K mixing only: $\delta C_1^{B_s} = \delta C_1^{B_d} = 0$

 $\Lambda \sim [1.1 \div 1.9] \text{ TeV}$

 $\Lambda \sim [14 \div 24] \text{ TeV}$

Operator Level Analysis: Bd and Bs Mixing

- Interesting possibility: New Physics contributions to Bd and Bs mixing identical up to CKM factors
- In our notation: $\delta C_1^K = 0$ and $\delta C_1^{B_s} = \delta C_1^{B_d}$
- New Physics in $a_{\psi K}$ and $a_{\psi \phi}$ ($\Delta M_{B_s} / \Delta M_{B_d}$ unaffected)

Operator Level Analysis: B_d and B_s Mixing

- In our notation: $\delta C_1^K = 0$ and $\delta C_1^{B_s} = \delta C_1^{B_d}$
- New Physics in $a_{\psi K}$ and $a_{\psi \phi}$ ($\Delta M_{B_s}/\Delta M_{B_d}$ unaffected)

Conclusions

- Recent lattice QCD $(B_K, V_{cb}, V_{ub}, \xi) \rightarrow \text{possible NP}$ in the UT fit
- We need better understanding of inclusive V_{ub} and V_{cb}
- This "tension" in the UT fit can be explained by:
 - new phase in penguin $b \rightarrow s$ amplitudes and in B_d/K mixing
- Correlation with NP signals in B_s mixing and in the $K\pi$ system
- Typical upper bounds on NP scales are in the TeV range:

	\wedge	φ(°)
A(b→s)	O ₄ : [250÷430] GeV O _{3Q} : [90÷200] GeV	O ₄ : [0,70] O _{3Q} : [0,30]
B _d mixing	[1.1÷2.3] TeV	10÷90
K mixing	LL: [1.1÷1.9] TeV LR: [14÷24] TeV	I 30÷320
B _d =B _s mixing	[I÷2]TeV	10÷70

Enrico Lunghi

Lattice average: B_K

		[Laiho,EL,van de Water]	
		\widehat{B}_K	
Ref.	mean	stat.	sys.
HPQCD/UKQCD '06 $[3]$	0.83	0.02	0.18
RBC/UKQCD'07 [4]	0.720	0.013	0.037
Aubin, Laiho & Van de Water '09 [5]	0.724	0.008	0.028
Average	0.725 ± 0.026		

- RBC/UKQCD (domain wall) and AVL (valence: domain wall; gauge: staggered) dominate the average
- We assume independent stat errors
- both use the same I-loop perturbation theory to convert from RI-MOM to MSbar → truncation error is assumed 100% correlated

[Laiho, EL, van de Water]

	ξ		
Ref.	mean	stat.	sys.
FNAL/MILC '08 [11]	1.205	0.036	0.037
HPQCD '09 [12]	1.258	0.025	0.021
Average	1.243 ± 0.028		

- Both use staggered fermions and the same MILC configs
- We assume 100% correlation between the stat errors

Lattice average: V_{cb}

[Laiho, EL, van de Water]

	$ V_{cb} \times 10^3$		
Ref.	mean	exp.	theo.
$B \rightarrow D\ell\nu$: FNAL/MILC '04 [19] + HFAG ICHEP '08 [16]	39.1	1.4	0.9
$B \to D^* \ell \nu :$ FNAL/MILC '08 [20] + HFAG ICHEP '08 [16]	38.3	0.5	1.0
Average	38.6 ± 1.2		

- In the average, the exp uncertainty on $B \rightarrow D_*$ is rescaled by $\sqrt{\chi^2/dof} = \sqrt{39/21} = 1.4$
- We assume 100% correlation between the theory errors (same ensembles, same lattice actions, same methods)

Lattice average: Vub

[Laiho, EL, van de Water]

	$ V_{ub} \times 10^3$		
Ref.	mean	exp.	theo.
HPQCD '06 $[15] + HFAG$ ICHEP '08 $[16]$	3.40	0.20	$+0.59 \\ -0.39$
FNAL/MILC '08 [17] + BABAR '06 [18]	3.38	~ 0.20	~ 0.29
Average	3.42 ± 0.37		

- Both use staggered fermions and the same MILC configs
- We assume 100% correlation between the stat errors
- We also assume 100% correlation between exp errors (conservative assumption)

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Enrico Lunghi

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

36

Enrico Lunghi

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

37

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

