Hints for New Physics in Flavor Physics and CP violation

Enrico Lunghi Indiana University

DPF 2009 - WSU

E.L. and A. Soni: 0707.02 I 2, 0803.4340, 0903.5059
J. Laiho, E.L., R. van de Water: in preparation

Outline

- A critical review of the UT fit:
- New formula for ε_{K}
${ }^{9}$ The role of V_{cb} and V_{ub}
- Updated inputs
- The UT fit and what it suggests about new physics:
- NP in B_{d} mixing and in $b \rightarrow s$ amplitudes
- NP in K mixing and in $b \rightarrow s$ amplitudes
- Operator Analysis of New Physics effects
- Conclusions

K mixing

$$
\begin{aligned}
\varepsilon_{K}= & \frac{A\left(K_{L} \rightarrow(\pi \pi)_{I=0}\right)}{A\left(K_{S} \rightarrow(\pi \pi)_{I=0}\right)} \\
= & e^{i \phi_{\varepsilon}} \sin \phi_{\varepsilon}\left(\frac{\operatorname{Im} M_{12}^{K}}{\Delta M_{K}}+\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right) \\
= & e^{i \phi_{\varepsilon}} \kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)\right. \\
& \left.+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)
\end{aligned}
$$

- Critical inputs:
- \hat{B}_{K} from lattice QCD
- $\left|V_{c b}\right|$ from inclusive and exclusive $b \rightarrow c \ell \nu$ decays
- κ_{ε} in the SM from $\left(\varepsilon_{K}^{\prime} / \varepsilon_{K}\right)_{\exp }$ and (quenched) lattice QCD

K mixing

$\left|\varepsilon_{K}\right|=\kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)$

- Experimentally one has: $\phi_{\varepsilon}=(43.51 \pm 0.05)^{o}$
- $\operatorname{Im} A_{0} / \operatorname{Re} A_{0}$ can be extracted from experimental data on ε '/ ε and theoretical calculation of isospin breaking corrections:
$\bullet \operatorname{Re}\left(\varepsilon_{K}^{\prime} / \varepsilon_{K}\right)_{\exp } \sim \frac{\omega}{\sqrt{2}\left|\varepsilon_{K}\right|}\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right)$
- $\operatorname{Im} A_{2}=(-9.6 \pm 9.6) \times 10^{-13} \mathrm{GeV}$
conservative error estimate
[RBC, CP-PACS, SPQcdR, Babich, Yamazaki]
- Combining everything:

$$
\kappa_{\varepsilon}=0.92 \pm 0.02
$$

[Andryiash,Ovanesyan,Vysotsky; Nierste; Buras,Jamin;
Bardeen,Buras, Gerard;
Buras,Guadagnoli;
Laiho,EL,van de Water]

K mixing

$\left|\varepsilon_{K}\right|=\kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)$

- Note the quartic dependence on $\mathrm{V}_{\mathrm{cb}}:\left|\mathrm{V}_{\mathrm{cb}}\right|^{4} \sim \mathrm{~A}^{4} \lambda^{8}$
- Critical input from lattice QCD
$\left\langle K^{0}\right| \mathcal{O}_{V V+A A}(\mu)\left|\bar{K}^{0}\right\rangle=\frac{8}{3} f_{K}^{2} M_{K}^{2} B_{K}(\mu)$
- RBC/UKQCD ($2+$ Idomain wall fermions): $\hat{B}_{K}=0.720 \pm 0.013 \pm 0.037$
- Aubin, Laiho, van de Water ($2+\mathrm{I}$ domain wall valence quarks + MILC staggered gauge configurations): $\hat{B}_{K}=0.724 \pm 0.008 \pm 0.028$
- The average reads ${ }^{\dagger}$:

$$
\hat{B}_{K}=0.725 \pm 0.026
$$

- † we include an older HPQCD/UKQCD determination and we take correlations into account [Laiho,EL,van de Water]

K mixing

$\left|\varepsilon_{K}\right|=\kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)$

- Error budget:
[Laiho,EL,van de Water]

All other uncertainties have negligible impact on the combined error

Central value of K_{ε} is important

Interplay between $\mathrm{b} \rightarrow \mathrm{s} \gamma, \mathrm{V}_{\mathrm{cb}}$ and V_{ub}

[Phillip Urquijo]

- Exclusive from $B \rightarrow D^{*} \mid V$. Using form factor from lattice QCD (2+I dynamical staggered fermions) one finds:
$\left|V_{c b}\right|=(38.6 \pm 1.2) \times 10^{-3}$
[FNAL/MILC]
[average:Laiho,EL,van de Water] [exp. error on $B \rightarrow D^{*}$ rescaled to account for the large $X^{2 /} /$ dof $=39 / 2$ I]
- Inclusive from global fit of $B \rightarrow X_{c} l V$ moments.
[Büchmuller,Flächer]

- Inclusion of $b \rightarrow s \gamma$ has strong impact on quark masses but not on V_{cb}
- NNLO in α_{s} and $O\left(1 / \mathrm{mb}^{4}\right)$ known
- Calculation of $O\left(\alpha_{s} / m_{b}{ }^{2}\right)$ under way
- Issue of m_{b} is relevant for $V_{u b}$
$\left|V_{c b}\right|=(41.48 \pm 0.75) \times 10^{-3}$
2σ discrepancy between inclusive and exclusive
- Exclusive from $B \rightarrow \pi l v$. Using form factor from lattice QCD ($2+1$ dynamical staggered fermions) one finds:

$$
\left|V_{u b}\right|=(3.42 \pm 0.37) \times 10^{-4}
$$

[HPQCD, FNAL/MILC]

- Inclusive from global fit of $B \rightarrow X_{u} I V$ moments.

$$
\begin{aligned}
& \left|V_{u b}\right|=\left(3.96 \pm 0.15_{\exp }^{-0.23 \mathrm{th}}+10^{-3}\right. \\
& \left|V_{u b}\right|=\left(4.26 \pm 0.14_{\exp }^{-0.13 \mathrm{th}}+10^{-3}\right. \\
& \left|V_{u b}\right|=\left(4.32 \pm 0.16_{\exp }^{-0.27 \mathrm{th}}+10^{-3}\right.
\end{aligned}
$$

[Gambino,Giordano,Ossola, Uraltsev (GGOU)]
[Andersen, Gardi (DGE)]
[Bosch,Lange,Neubert,Paz (BLNP)]
I. 2σ discrepancy between inclusive and exclusive

B_{q} mixing

- We consider the ratio of the B_{s} and B_{d} mass differences:

$$
\frac{\Delta M_{B_{s}}}{\Delta M_{B_{d}}}=\frac{m_{B_{s}}}{m_{B_{d}}} \frac{\hat{B}_{s} f_{B_{s}}^{2}}{\hat{B}_{d} f_{B_{d}}^{2}}\left|\frac{V_{t s}}{V_{t d}}\right|^{2}=\frac{m_{B_{s}}}{m_{B_{d}}} \xi^{2}\left|\frac{V_{t s}}{V_{t d}}\right|^{2}
$$

- No dependence on V_{cb}
- Two unquenched determinations:
- FNAL/MILC: $\xi=1.205 \pm 0.036 \pm 0.037$
- HPQCD: $\quad \xi=1.258 \pm 0.025 \pm 0.021$
- Average: $\xi=1.243 \pm 0.028$

- We will consider the asymmetries in the $J / \psi, \phi, \eta^{\prime}$ modes
- A case can be made for the $K_{s} K_{s} K_{s}$ final state
[Cheng,Chua,Soni]

Current fit to the unitarity triangle

Heart of the problem

- Exclusive V_{cb} triggers a very serious tension in the fit
- No preference between scenarios with new physics in K or B_{d} mixing
- The tie is broken by the inclusion of additional constraints $\left(\alpha, \gamma, V_{u b}\right)$

Heart of the problem

Model Independent Interpretation

- The tension in the UT fit can be interpreted as evidence for new physics contributions to ε_{K} and to the phases of B_{d} mixing and of $b \rightarrow s$ amplitudes:

$$
\begin{aligned}
\varepsilon_{K} & =\varepsilon_{K}^{\mathrm{SM}} C_{\varepsilon} \\
M_{12} & =M_{12}^{\mathrm{SM}} e^{2 i \phi_{d}} r_{d}^{2} \\
A(b \rightarrow s \bar{s} s) & =[A(b \rightarrow s \bar{s} s)]_{\mathrm{SM}} e^{i \theta_{A}}
\end{aligned}
$$

- This implies: $a_{\psi_{K_{s}}}=\sin 2\left(\beta+\phi_{d}\right)$

$$
\begin{aligned}
\sin 2 \alpha_{\mathrm{eff}} & =\sin 2\left(\alpha-\phi_{d}\right) \\
\Delta M_{B_{d}} & =\left(\Delta M_{B_{d}}\right)^{\mathrm{SM}} r_{d}^{2} \\
a_{\left(\phi, \eta^{\prime}\right) K_{s}} & =\sin 2\left(\beta+\phi_{d}+\theta_{A}\right)
\end{aligned}
$$

- In general NP will affect in different ways the various $b \rightarrow s$ channels [I will discuss this possibility in the operator level analysis]

Model Independent Analysis: B_{d}

- $C_{\varepsilon}=1$:

- Comparison: $\phi_{d}= \begin{cases}(-7.3 \pm 4.3)^{\circ} & \text { without } V_{u b} \\ (-2.8 \pm 2.1)^{\circ} & \text { with } V_{u b}\end{cases}$

$$
\theta_{A}=(-3.6 \pm 2.5)^{\circ}
$$

Model Independent Analysis: K

- Alternative solution to the stress in the UT fit is NP in ε_{k} [Buras,Guadagnoli]
- A new phase in penguin amplitudes $\left(\theta_{\mathrm{A}}\right)$ is still required
- Assuming $\phi_{d}=0$ we find:

$$
\begin{aligned}
C_{\varepsilon} & =1.28 \pm 0.15 \\
\theta_{A} & =(-3.9 \pm 2.4)^{\circ}
\end{aligned}
$$

Correlation with other observables

- Proper treatment of new physics effects in penguin amplitudes is better implemented with NP contributions to the QCD and EW penguin operators
- Correlation between the $b \rightarrow s \bar{s} s$ and $\mathrm{K} \pi$ asymmetries:

$$
A_{C P}\left(B^{-} \rightarrow K^{-} \pi^{0}\right)-A_{C P}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)= \begin{cases}(14.8 \pm 2.8) \% & \exp \\ (2.2 \pm 2.4) \% & \text { QCDF }\end{cases}
$$

- QCDF result very stable under variation of all the inputs
- Possible issue with large color suppressed contributions to the $K^{-} \pi^{0}$ final state

CP asymmetries in $\mathrm{B} \rightarrow \mathrm{K} \pi$

- Amplitudes in QCD factorization:

$$
\begin{aligned}
& \mathcal{A}_{\bar{B}^{0} \rightarrow \pi^{+} K^{-}}=A_{\pi \bar{K}} \sum_{p=u, c} \lambda_{p}^{(s)}\left[\delta_{p u} \alpha_{1}+\hat{\alpha}_{4]}^{p .}\right.
\end{aligned}
$$

- We get: $\frac{P}{T} \simeq 0.20, \frac{C}{T} \simeq 0.16, \frac{P_{\text {EW }}}{T} \simeq 0.47$
fits yield C/T ~0.6

CP asymmetries in $\mathrm{B} \rightarrow \mathrm{K} \pi$

- In QCDF: $A_{C P}\left(B^{-} \rightarrow K^{-} \pi^{0}\right)-A_{C P}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)=(2.2 \pm 2.4) \%$
- Dominant sources of uncertainties
- light-cone wave function parameters: $\alpha_{1}^{K}, \alpha_{2}^{K}, \alpha_{2}^{\pi}, \lambda_{B}$
e end-point singularities: $\rho_{H}, \varphi_{H}, \rho_{A}, \varphi_{A}$

$$
X_{H}=\left(1+\rho_{H} e^{i \varphi_{H}}\right) \log \frac{m_{B}}{\Lambda}
$$ hard scattering

$X_{A}=\left(1+\rho_{A} e^{i \varphi_{A}}\right) \log \frac{m_{B}}{\Lambda}$
weak annihilation

- NP contributions to the QCD and EW penguin

Operator Level Analysis: $b \rightarrow s$ amplitudes

- Effective Hamiltonian:

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{eff}}=\frac{4 G_{F}}{\sqrt{2}} V_{c b} V_{c s}^{*}\left(\sum_{i=1}^{6} C_{i}(\mu) O_{i}(\mu)+\sum_{i=3}^{6} C_{i Q}(\mu) O_{i}(\mu)\right) \\
& Q_{4}=\left(\bar{s}_{L} \gamma^{\mu} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma_{\mu} T^{a} q\right) \quad Q_{3 Q}=\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right) \sum_{q} Q_{q}\left(\bar{q} \gamma_{\mu} q\right)
\end{aligned}
$$

likely to receive NP corrections

- Assume the following parametrization of NP effects:
loop suppression + QED/QCD penguin g_{s}, e dependence

$$
\delta C_{4,3 Q}\left(\mu_{0}\right)=\frac{\alpha_{s, e}}{4 \pi} \frac{e^{i \varphi}}{\Lambda^{2}}\left[\frac{4 G_{F}}{\sqrt{2}} V_{c b} V_{c s}^{*}\right]^{-1}
$$

Operator Level Analysis: $b \rightarrow s$ amplitudes

$\Lambda \sim[350 \div 420] \mathrm{GeV}$
$\Lambda \sim[140 \div 190] \mathrm{GeV}$

Operator Level Analysis: Mixing

- Effective Hamiltonian for B_{d} mixing:

$$
\begin{array}{ll}
\quad \mathcal{H}_{\mathrm{eff}}=\frac{G_{F}^{2} m_{W}^{2}}{16 \pi^{2}}\left(V_{t b} V_{t d}^{*}\right)^{2}\left(\sum_{i=1}^{5} C_{i} O_{i}+\sum_{i=1}^{3} \tilde{C}_{i} \tilde{O}_{i}\right) \\
O_{1}=\left(\bar{d}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{d}_{L} \gamma_{\mu} b_{L}\right) & \tilde{O}_{1}=\left(\bar{d}_{R} \gamma_{\mu} b_{R}\right)\left(\bar{d}_{R} \gamma_{\mu} b_{R}\right) \\
O_{2}=\left(\bar{d}_{R} b_{L}\right)\left(\bar{d}_{R} b_{L}\right) & \tilde{O}_{2}=\left(\bar{d}_{L} b_{R}\right)\left(\bar{d}_{L} b_{R}\right) \\
O_{3}=\left(\bar{d}_{R}^{\alpha} b_{L}^{\beta}\right)\left(\bar{d}_{R}^{\beta} b_{L}^{\alpha}\right) & \tilde{O}_{3}=\left(\bar{d}_{L}^{\alpha} b_{R}^{\beta}\right)\left(\bar{d}_{L}^{\beta} b_{R}^{\alpha}\right) \\
O_{4}=\left(\bar{d}_{R} b_{L}\right)\left(\bar{d}_{L} b_{R}\right) & O_{5}=\left(\bar{d}_{R}^{\alpha} b_{L}^{\beta}\right)\left(\bar{d}_{L}^{\beta} b_{R}^{\alpha}\right) .
\end{array}
$$

- B_{s} mixing $(d \rightarrow s)$, K mixing $(b \rightarrow s \& s \rightarrow d)$
- Parametrization of New Physics effects:

$$
\delta C_{1,4}^{B_{q}, K}\left(\mu_{0}\right)=-\frac{1}{G_{F}^{2} m_{W}^{2}} \frac{e^{i \varphi}}{\Lambda^{2}}
$$

- Retain loop and CKM suppression

Operator Level Analysis: Mixing

- The contribution of the LR operator O_{4} to K mixing is strongly enhanced ($\mu_{L} \sim 2 \mathrm{GeV}, \mu_{H} \sim m_{t}$):

$$
\square \frac{C_{4}\left(\mu_{L}\right)\langle K| O_{4}\left(\mu_{L}\right)|K\rangle}{C_{1}\left(\mu_{L}\right)\langle K| O_{1}\left(\mu_{L}\right)|K\rangle} \simeq(65 \pm 14) \frac{B_{4}\left(\mu_{L}\right)}{B_{1}\left(\mu_{L}\right)} \frac{C_{4}\left(\mu_{H}\right)}{C_{1}\left(\mu_{H}\right)}
$$

- No analogous enhancement in B_{q} mixing

Operator Level Analysis: B_{d} Mixing

- New Physics in B_{d} mixing only: $\delta C_{1}^{B_{s}}=\delta C_{1}^{K}=0$
- Effects on $a_{\psi K}$ and $\Delta M_{B_{s}} / \Delta M_{B_{d}}$

$$
\Lambda \sim[1.1 \div 2.3] \mathrm{TeV}
$$

- Lower limit on Λ induced by $\Delta M_{B_{s}} / \Delta M_{B_{d}}$

Operator Level Analysis: K Mixing

- New Physics in K mixing only: $\delta C_{1}^{B_{s}}=\delta C_{1}^{B_{d}}=0$

$\Lambda \sim[1.1 \div 1.9] \mathrm{TeV}$
$\Lambda \sim[14 \div 24] \mathrm{TeV}$

Operator Level Analysis: B_{d} and B_{s} Mixing

- Interesting possibility: New Physics contributions to Bd and Bs mixing identical up to CKM factors
- In our notation: $\delta C_{1}^{K}=0$ and $\delta C_{1}^{B_{s}}=\delta C_{1}^{B_{d}}$
- New Physics in $a_{\psi K}$ and $a_{\psi \phi}$ ($\Delta M_{B_{s}} / \Delta M_{B_{d}}$ unaffected)

- HFAG: $\phi_{s}=-(22 \pm 10)^{\mathrm{o}} \cup-(68 \pm 10)^{\mathrm{o}}$

Operator Level Analysis: B_{d} and B_{s} Mixing

- In our notation: $\delta C_{1}^{K}=0$ and $\delta C_{1}^{B_{s}}=\delta C_{1}^{B_{d}}$
- New Physics in $a_{\psi K}$ and $a_{\psi \phi}\left(\Delta M_{B_{s}} / \Delta M_{B_{d}}\right.$ unaffected)

Conclusions

- Recent lattice QCD ($\left.\mathrm{B}_{\mathrm{k}}, \mathrm{V}_{\mathrm{cb}}, \mathrm{V}_{\mathrm{ub}}, \xi\right) \rightarrow$ possible NP in the UT fit
- We need better understanding of inclusive V_{ub} and V_{cb}
- This "tension" in the UT fit can be explained by:
${ }^{9}$ new phase in penguin $b \rightarrow s$ amplitudes and in B_{d} / K mixing
- Correlation with NP signals in B_{s} mixing and in the $K \pi$ system
- Typical upper bounds on NP scales are in the TeV range:

	Λ	$\varphi\left({ }^{\circ}\right)$
$\mathrm{A}(\mathrm{b} \rightarrow \mathrm{s})$	$\mathrm{O}_{4}:[250 \div 430] \mathrm{GeV} \quad \mathrm{O}_{3 \mathrm{Q}}:[90 \div 200] \mathrm{GeV}$	$\mathrm{O}_{4}:[0,70] \quad \mathrm{O}_{3 \mathrm{Q}}:[0,30]$
B_{d} mixing	$[1.1 \div 2.3] \mathrm{TeV}$	$10 \div 90$
K mixing	$\mathrm{LL}:[1.1 \div 1.9] \mathrm{TeV} \quad \mathrm{LR}:[14 \div 24] \mathrm{TeV}$	$130 \div 320$
$\mathrm{~B}_{\mathrm{d}}=\mathrm{B}_{\mathrm{s}}$ mixing	$[1 \div 2] \mathrm{TeV}$	$10 \div 70$

Backup Slides

Lattice average: B_{K}

[Laiho,EL,van de Water]

	\widehat{B}_{K}		
Ref.	mean	stat.	sys.
HPQCD/UKQCD '06 [3]	0.83	0.02	0.18
RBC/UKQCD '07 [4]	0.720	0.013	0.037
Aubin, Laiho \& Van de Water '09 [5]	0.724	0.008	0.028

Average

- RBC/UKQCD (domain wall) and AVL (valence: domain wall; gauge: staggered) dominate the average
- We assume independent stat errors
- both use the same I-loop perturbation theory to convert from RI-MOM to MSbar \rightarrow truncation error is assumed 100\% correlated

Lattice average: ξ

[Laiho,EL,van de Water]

Ref.	mean	stat.	sys.
FNAL/MILC '08 [11]	1.205	0.036	0.037
HPQCD '09 [12]	1.258	0.025	0.021
Average	1.243 ± 0.028		

${ }^{-}$Both use staggered fermions and the same MILC configs

- We assume 100% correlation between the stat errors

Lattice average: V_{cb}

[Laiho,EL,van de Water]

	$\left\|V_{c b}\right\| \times 10^{3}$		
Ref.	mean	exp.	theo.
	39.1	1.4	0.9
$B \rightarrow D^{*} \ell \nu:$ FNAL/MILC '08 [20] + HFAG ICHEP '08 [16]	38.3	0.5	1.0
Average	38.6 ± 1.2		

- In the average, the \exp uncertainty on $\mathrm{B} \rightarrow \mathrm{D} *$ is rescaled by $\sqrt{ } \mathrm{X}^{2} /$ dof $=\sqrt{ } 39 / 21=1.4$
- We assume 100\% correlation between the theory errors (same ensembles, same lattice actions, same methods)

Lattice average: V_{ub}

[Laiho,EL,van de Water]

	$\left\|V_{u b}\right\| \times 10^{3}$		
Ref.	mean	exp.	theo.
HPQCD '06 [15] + HFAG ICHEP '08 [16]	3.40	0.20	${ }_{-0.39}^{+0.59}$
FNAL/MILC '08 [17] + BABAR '06 [18]	3.38	~ 0.20	~ 0.29
Average	3.42 ± 0.37		

${ }^{\text {a }}$ Both use staggered fermions and the same MILC configs

- We assume 100% correlation between the stat errors
- We also assume 100\% correlation between exp errors (conservative assumption)

Comments on systematic uncertainties

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD $\left(\mathrm{B}_{\kappa}, \xi\right)$ and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Comments on systematic uncertainties

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD $\left(B_{k}, \xi\right)$ and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Comments on systematic uncertainties

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD $\left(B_{k}, \xi\right)$ and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Comments on systematic uncertainties

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD $\left(B_{k}, \xi\right)$ and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

