Search for Invisible Decays of the Y(1S)

Yury Kolomensky UC Berkeley/LBNL

For the BABAR Collaboration

2009 Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009) 26-31 JULY 2009

Wayne State University, Detroit, MI

Motivation

Astrophysically-motivated models include light dark matter/invisible components

- Borodatchenkova et al, PRL96, 141802 (2006)
- G. Yeghiyan @ DPF09
- With apologies to others

07/30/2009

Invisible Upsilon Decays

- Upsilon system is a particularly nice place to look for the light dark matter component
 - Higgs-like sector couples preferentially to 3rd generation
 Rich spectroscopy tagging of invisible decays

Region of interest within experimental reach:

Standard Model Prediction: $BR(Y \rightarrow v \bar{v}) \approx 1 \times 10^{-5}$

Below current experimental sensitivity ...

Light Dark Matter:

(McElrath, arXiv:0712.0016 and Phys.Rev. D72 (2005) 103508) p-wave annihilation in early universe: $BR(Y \rightarrow invisible) < 2 \times 10^{-3}$ s-wave annihilation in early universe: $BR(Y \rightarrow invisible) < 5 \times 10^{-4}$

Best Experimental Constraint (Belle):

 $BR(Y \rightarrow \text{invisible}) < 2.5 \times 10^{-3}$

4

Upsilon Resonances

• Electron-Positron collider: $e^+e^- \rightarrow \gamma^* \rightarrow \Upsilon(nS)$

For any bottomonium process $BF_{nS}=\Gamma_{nS}/\Gamma_{tot} >> BF_{4S}$, n=1,2,3 Significantly better sensitivity to new physics @ narrow resonances

Yury Kolomensky, Invisible Upsilon Decays

BaBar Detector

BaBar 2008 Dataset

Yury Kolomensky, Invisible Upsilon Decays

Event Selection

- "Invisible sample":
 - Select events with two low-momentum charged tracks and little additional activity in the detector
 - ^C Di-pion kinematics specific to $\Upsilon(3S) \rightarrow \pi^+\pi^- \Upsilon(1S)$ transition (C.C.D. Cronin-Hennessy et al., PRD**76**, 072001 (2007))
 - Implement a MultiVariate Analyzer (MVA) as a random forest of boosted decision trees
 - Train on signal Monte Carlo and sideband data
 - Suppresses the non-peaking background by more than a factor of 1000
 - Signal efficiency: 18%

"Visible" Calibration Samples

- In addition, select events with 1 or 2 additional highmomentum tracks in the final state
 - □ Dominated by $\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S), \Upsilon(1S) \rightarrow l^+l^-$
 - Check di-pion selection, including MVA
 - Calibrate detection efficiency
 - ^G Calibrate BR for $\Upsilon(3S)$ →π⁺π⁻ $\Upsilon(1S)$
 - Calibrate recoil mass distribution

Signal Extraction

Fit Results: $N_{peak} = 2326 \pm 105$ (stat.) events Peaking background estimate, calibrated against control sample data: $N_{bkg} = 2444 \pm 123$ (syst.) events $Y(1S) \rightarrow invisible yield: -118 \pm 105$ (stat.) ± 124 (syst.)

Systematics

- Most systematic uncertainties are derived from comparison between the Monte Carlo simulation and the control samples
 - □ 3- and 4-track samples $\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S), \Upsilon(1S) \rightarrow l^+l^-$
 - Measure series of multiplicative corrections to MC
 - ^C Reconstruction efficiency times BR($\Upsilon(3S)$ →π⁺π⁻ $\Upsilon(1S)$): correction of 1.088±0.012
 - 𝔅 BR for $\Upsilon(1S) \rightarrow l^+l^-$ in calibration: ±2.5%
 - Software trigger efficiency: 0.997±0.009
 - F Hardware trigger efficiency: ±2.2%
 - \bigcirc MVA selection efficiency: ±4%
 - Additive peaking background uncertainty
 - Solution Non-leptonic peaking background: ±15 events (0.6%)
 - Total peaking background uncertainty is ±41 events
- Most of these apply to both signal efficiency and peaking background yield: correlated corrections

Corrections and Systematics

Geometric acceptance and efficiency for visible events

3-track sample: one track missing 4-track sample in forward direction MC Simulation 600 MC Simulation (a) (b) 1500 Data Data 400 1000 **BABAR** Preliminary **BABAR** Preliminary 200 500 0 -0.5 0 05 -0.9 -0.8 -0.7 -0.6 -0.5 $\cos(\theta)$ $\cos(\theta)$

Use data distributions in the polar angle to re-weight the simulated events, recompute efficiency. Plots shown after re-weighting. Correction of 1.088±0.012 (applies to the product of efficiency and BR($\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S)$)

Systematic Checks

MVA selection efficiency

4% systematic uncertainty

Computing the Branching Ratio

 $BR(Y \rightarrow invisible) = -$

 $\frac{N_{\text{fit}} - N_{\text{peaking bkg.}}}{N_{\Upsilon(3S)} \times BF(\Upsilon(3S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S)) \times \varepsilon_{\text{sig}}}$

 $N_{\gamma(3S)} = 91.4M$ $BR(\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S)) = 4.48\%$ Signal efficiency $\varepsilon = 17.8\%$

Most control sample corrections appear twice (marked with *): in the signal efficiency and peaking background yield Assume 100% correlated

Source	Correction	Uncertainty
Background Estimate		
1-lepton correction	N/A	38.3 out of 2448.0 events (1.6%)
hadronic peaking backgrounds	N/A	15.7 out of 2451.4 events (0.6%)
2-lepton scaling correction [*]	1.088	1.1%
L1 Trigger [*]	1.000	2.1%
L3 Trigger [*]	0.997	0.9%
MVA [*]	1.000	4.0%
Total (uncorrelated	41.4 events out of 2444.0 (1.7%)	
with Signal efficiency)		
Total (correlated	116.2 events out of 2444.0 (4.8%)	
with Signal efficiency) [*]		
Signal Efficiency		
L1 Trigger [*]	1.000	2.1%
L3 Trigger [*]	0.997	0.9%
MVA [*]	1.000	4.0%
Total (uncorrelated	0.0%	
with Peaking Bkg.)		
Total (correlated	4.6%	
with Peaking Bkg.) [*]		
$N_{\Upsilon(3S)} \cdot \mathcal{B}(\Upsilon(3S) \to \pi^+ \pi^- \Upsilon(1S)) \cdot \varepsilon_{sig}$		
2-lepton scaling correction	1.088	$1.1\%[*] \pm 2.5\%$
Total (uncorrelated	2.5%	
with Peaking Bkg.)		
Total (correlated	1.1%	
with Peaking Bkg.) [*]		
Additive Uncertainties		
Signal Shape Parameters	N/A	17.7 events out of 2325.8 (0.8%)

BR($\Upsilon(1S)$ →invisible) = [-1.6 ± 1.4 (stat.) ± 1.6 (syst.)]×10⁻⁴

BR($\Upsilon(1S)$ →invisible) < 3.0×10⁻⁴ @ 90% C.L.

Brand-new result, submitted to PRL

Conclusions

- No evidence for invisible decays of $\Upsilon(1S)$
 - Set an upper limit
 - ^{SP} BR($\Upsilon(1S)$ →invisible) < 3.0×10⁻⁴ @ 90% C.L.
 - Improvement by a factor of 8 over the previous best measurement (Belle)
 - Significant constraints on the models of light dark matter
 Predicted range 5×10⁻⁴-3×10⁻³ for one typical model
- Analysis systematics-dominated
 - Difficult to expect significant improvements from the current generation of experiments
 - SuperB and/or SuperBelle: will require improvements in hermeticity and understanding of the peaking backgrounds

Related Talks at DPF2009

- Searches for Light Higgs in BaBar
 Searches for Light Higgs in BaBar
 YGK, Higgs Session (Tue, 7/28)
- Lepton Universality in Upsilon Decays
 ^{CP} Elisa Guido, LE-BSM Session (Thu, 7/30)
- Lepton Flavor Violation Searches in Tau and Upsilon Decays

Swagato Banerjee, LE-BSM Session (Fri, 7/31)