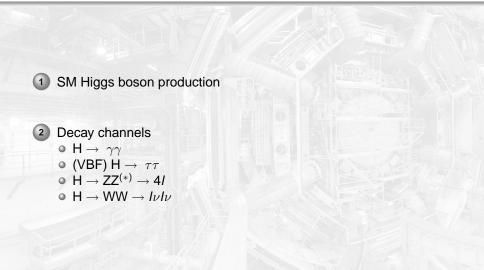
Prospects for Standard Model Higgs Physics with the ATLAS Detector at the LHC

German Carrillo-Montoya

University of Wisconsin


DPF 2009, Wayne State University Detroit, Michigan

July 30 - 2009

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

< □ ▶ < 部 ▶ < 差 ▶ < 差 ▶ 差 の Q (~ DPF 2009, WSU Detroit, Michigan 1/3)

Content

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

DQQ DPF 2009, WSU Detroit, Michigan 2/35

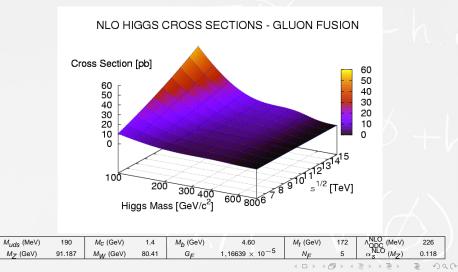
Introduction

- LHC is designed to run at a record center-of-mass energy of 14TeV
- But... First physics run will be at 10TeV (or less), with an expected integrated luminosity of about 200 pb⁻¹
- LHC detectors are getting ready to face any possible scenario:
- Higgs physics at the LHC with early data :
 - The WW channel is one of the most promising
 - Exclusion of $N \times$ the SM Cross Section for high masses can be achievable, using the 4I channel in the high mass range, and $\gamma\gamma$ for light masses
 - But the most important studies will be related with background normalizations and data driven extraction methods.
- [†] In this talk: We will show ATLAS studies done at 14TeV in the $\gamma\gamma$ and $\tau\tau$ decay channels. Also some **preliminary** estimations on the impact of running at 10 TeV in the ZZ and WW channels, where I have been involved.

+ E + < E + </p>

SM Higgs Production Processes

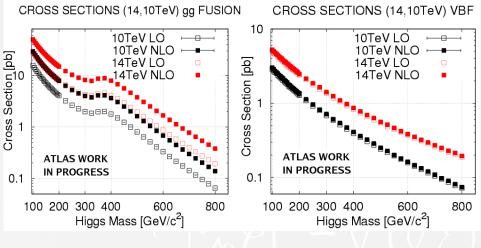
- gluon-gluon fusion is the dominant production process for a SM Higgs
- Vector Boson Fusion signatures can be relevant for some Higgs decay modes
- Associated productions become relevant in the case of a low m_H


- Cross-section estimates are being updated. Trying to converge using high order calculations (NNLO, NNLL), electroweak corrections, and the most recent PDFs

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

DPF 2009, WSU Detroit, Michigan 4/35

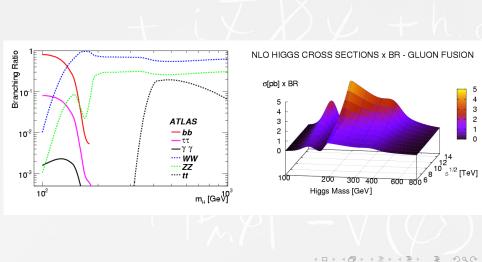
Image: A market and A market


Cross Sections (HIGLU @ NLO) — PDF:CTEQ6

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

DPF 2009, WSU Detroit, Michigan 5/35

Cross Sections - Gluon Gluon Fusion and VBF



Calculations done with HIGLU and VV2H - [Software \rightarrow Michael Spira (PSI)]

University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

DPF 2009, WSU Detroit, Michigan 6/35

Branching Ratios

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

DPF 2009, WSU Detroit, Michigan 7/35

 $H \rightarrow \gamma \gamma$ (VBF) $H \rightarrow \tau \tau$ $H \rightarrow ZZ^{(*)} \rightarrow 4/$ $H \rightarrow WW \rightarrow |\nu|\nu$

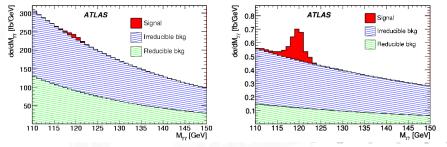
Content

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ 3 900 DPF 2009, WSU Detroit, Michigan 8/35

 $\begin{array}{l} \mathsf{H} \to & \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \to & \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}^{(*)} \to \mathsf{4} \\ \mathsf{H} \to & \mathsf{WW} \to |\nu|\nu \end{array}$

 $H \rightarrow \gamma \gamma (\sqrt{s} = 14 \text{TeV})$


- Inclusive diphoton (gluon-gluon and VBF): zero, one and 2 jets
- Also:

 $\gamma\gamma$ plus E_T^{miss} and an isolated lepton (WH and $t\bar{t}$ H production) "Good" leptons coming from W decays $\gamma\gamma$ plus E_T^{miss} and no leptons (ZH $\rightarrow \nu\nu\gamma\gamma$)

Large Missing energy, no converted photons (80GeV)

Inclusive

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

DPF 2009, WSU Detroit, Michigan 9/35

 $\begin{array}{l} \mathsf{H} \rightarrow \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \rightarrow \tau \tau \\ \mathsf{H} \rightarrow \mathsf{ZZ}^{(*)} \rightarrow \mathsf{4} \\ \mathsf{H} \rightarrow \mathsf{WW} \rightarrow l \nu l \nu \end{array}$

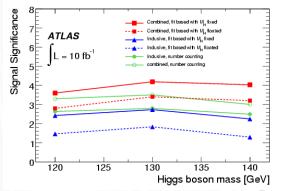
Regions \rightarrow Different photon Resolution, H $\rightarrow \gamma \gamma$

Regions of photon pseudo-rapidities unconverted atleast one converted photon <u>_</u> 2.5 μ 2.5 (8) [7.0%] (8) [2.8%] 2.00 GeV 1.38 GeV 3.46 GeV 1.5 1.5 (4) [8.7%] 1.92 GeV 2.19 GeV 2.06 GeV 0.5 92 GeV 0.5 (4) [8. 2 10 0 0 0 0.5 1.5 2 2.5 0.5 1.5 2 2.5 1 1 |η.| η.

To simplify the likelihood model: 3 categories are defined: "good":(1) and (8) "medium": (2)(3)(4) and (6) "bad" (5) and (7)

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

DPF 2009, WSU Detroit, Michigan 10/35


900

SM Higgs boson production Decay channels $\begin{array}{l}
\mathbf{H} \rightarrow \gamma\gamma \\
(VBF) \mathbf{H} \rightarrow \tau\tau \\
\mathbf{H} \rightarrow ZZ^{(*)} \rightarrow 4/ \\
\mathbf{H} \rightarrow WW \rightarrow |\nu|\nu
\end{array}$

Expected cross sections and significance, H $\rightarrow \gamma \gamma$

Cross Sections in fb

	Inclusive		H+1jet		H+2 jets		$H+E_{\rm T}^{\rm miss}$ + ℓ		$H+E_{T}^{miss}$	
m_H	S	В	S	В	S	В	S	В	S	В
120	25.4	947	4.0	49	0.97	1.95	0.134	0.077	0.075	0.037
130	24.1	755	4.3	47	0.96	1.72	0.112	0.076	0.063	0.037
140	19.3	610	3.9	46	0.81	1.72	0.079	0.076	0.045	0.036

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

DPF 2009, WSU Detroit, Michigan 11/35

QQ

 $H \rightarrow \gamma \gamma$ (VBF) $H \rightarrow \tau \tau$ $H \rightarrow ZZ^{(*)} \rightarrow 4/$ $H \rightarrow WW \rightarrow |\nu|\nu$

Content

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

< □ > < □ > < □ > . 3 900 DPF 2009, WSU Detroit, Michigan 12/35

 $\begin{array}{l} \mathsf{H} \to \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \to \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}^{(*)} \to \mathsf{4} \\ \mathsf{H} \to \mathsf{WW} \to |\nu|\nu \end{array}$

VBF H $\rightarrow \tau \tau$ ($\sqrt{s} = 14$ TeV), Selection:

Complete studies on leptonic and semi-leptonic tau decays. (Full hadronic channel: effort ongoing)

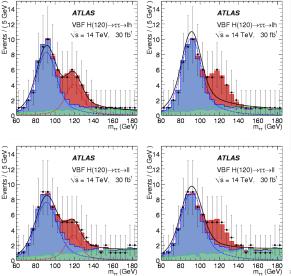
EVENT SELECTION for *II* :

- Exacly two leptons with opposite charge
- $E_T^{miss} > 40 \text{GeV}$
- Collinear approximation
- b-jet veto
- Taging of VBF jets ($\Delta \eta_{jj} >$ 4.4 and $m_{jj} >$ 700 GeV)
- Central jet veto (p_T > 20 GeV)
- Mass window

EVENT SELECTION for Ih :

- † Similar as *II* but:
- 2 or more lepton veto
- At least one identified hadronic τ
- $E_T^{miss} > 30 \text{GeV}$
- Collinear approximation (with asymmetric upper bounds)
- Transverse mass < 30 GeV
- No b-jet veto

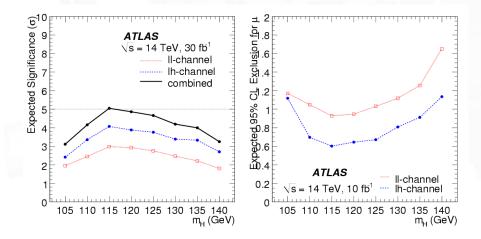
SM Higgs boson production Decay channels $\begin{array}{l} \mathsf{H} \to \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \to \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}^{(*)} \to 4l \\ \mathsf{H} \to \mathsf{WW} \to |\nu|\nu \\ \end{array}$


Ih and II, Signal+Background and Background only

 Stacked Histograms *Ih* and *II* channels for S+B and B only Signal, Reducible and Irreducible

Backgrounds

- *m_H* = 120 GeV
- Luminosity 30 fb⁻¹
- Control samples are fit simultaneously in order to constraint background shapes



DPF 2009, WSU Detroit, Michigan 14/3

SM Higgs boson production Decay channels $\begin{array}{l}
H \rightarrow \gamma\gamma \\
(VBF) H \rightarrow \tau\tau \\
H \rightarrow ZZ^{(*)} \rightarrow 4I \\
H \rightarrow WW \rightarrow |z|z
\end{array}$

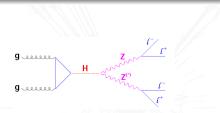
Significance and Exclusion, VBF H $\rightarrow~\tau\tau$

Signal significance and exclusion limit (95 %CL). Background uncertainties are incorporated by utilizing the profile likelihood ratio, these results do not include the impact of pileup

DPF 2009, WSU Detroit, Michigan 15/35

 $\begin{array}{ll} \mathsf{H} \to & \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \to & \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}(*) \to \mathsf{4} \\ \mathsf{H} \to \mathsf{WW} \to |\nu|\nu \end{array}$

Content

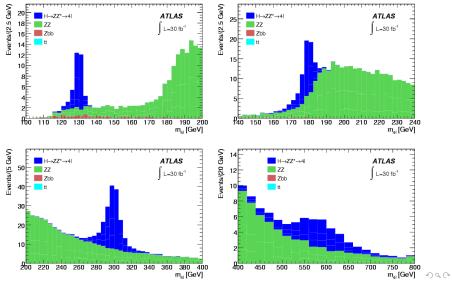


- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

<ロ ▶ < (日 ▶ < 日 ▶ < 王 ▶ < 王 ♥ ○へ(や DPF 2009, WSU Detroit, Michigan 16/35

 $\begin{array}{l} \mathsf{H} \to & \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \to & \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}(*) \to \mathsf{4} \\ \mathsf{H} \to & \mathsf{WW} \to |\nu|\nu \end{array}$

The "Golden" Channel



- It is one of the cleanest signatures
- 4 Isolated leptons (μ ,e) coming from Z decays (on shell or off shell in the case of low m_H)
- Main discriminators: track and calorimeter isolation, impact parameter significance.

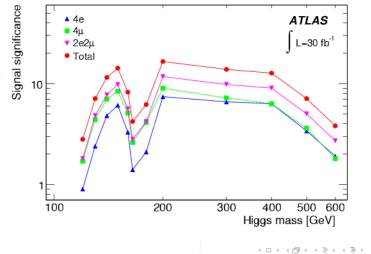
†Irreducible background: direct production of ZZ †Reducible backgrounds: $t\bar{t}$, $Zb\bar{b}$, Z/γ +jets

 $\begin{array}{ll} \mathsf{H} \to & \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \to & \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}(*) \to \mathsf{4} \\ \mathsf{H} \to \mathsf{WW} \to |\nu|\nu \end{array}$

The "Golden" Channel ($\sqrt{s} = 14$ TeV)

- University of Wisconsin, EPFL, German Carrillo-Montoya:

SM Higgs@ATLAS Detector


DPF 2009, WSU Detroit, Michigan 18/35

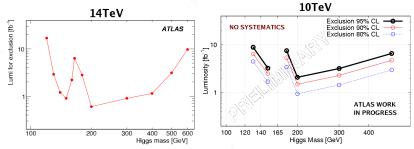
SM Higgs boson production

Decay channels

 $H \rightarrow \gamma \gamma$ (VBF) $H \rightarrow \tau \tau$ $H \rightarrow ZZ^{(*)} \rightarrow 4/$ $H \rightarrow WW \rightarrow |\nu|\nu$

$H \rightarrow ZZ^{(*)} \rightarrow 4I \ (\sqrt{s} = 14 \text{TeV})$

University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector


900 DPF 2009, WSU Detroit, Michigan 19/35

3

SM Higgs boson production Decay channels $H \rightarrow \gamma \gamma$ $(VBF) H \rightarrow \tau \tau$ $H \rightarrow ZZ^{(*)} \rightarrow 4I$ $H \rightarrow WW \rightarrow |\nu|\nu$

$H \rightarrow ZZ^{(*)} \rightarrow 4I$, going from 14 to 10 TeV

10TeV estimations are based on an event-by-event re-weight procedure using 14TeV MC samples

This comparison is only for raw illustrative purposes, in **this** 10TeV study no systematic uncertainties were taken into account. For 10TeV, the Collaboration has many studies ongoing on background normalizations (reducible and irreducible), as well as on selection optimization

 $H \rightarrow \gamma \gamma$ (VBF) $H \rightarrow \tau \tau$ $H \rightarrow ZZ^{(*)} \rightarrow 4/$ $H \rightarrow WW \rightarrow l\nu l\nu$

Content

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

(日) (四) (日) (日) = DQC DPF 2009, WSU Detroit, Michigan 21/35 SM Higgs boson production Decay channels $\begin{array}{l} \mathsf{H} \to \gamma \gamma \\ (\mathsf{VBF}) \mathsf{H} \to \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}^{(*)} \to 4/ \\ \mathsf{H} \to \mathsf{WW} \to |\nu|\nu \\ \end{array}$

Higgs to WW

Haijun Yang covered this channel in Today's session, here we point out some highlights of the strategy with early data

• This analysis is usually divided in different analysis for different jet multiplicity:

- Then systematic uncertainties can be treated differently
- Some of the features of this channel:
 - Missing energy as part of the signature.
 - Jet discriminators are needed
 - Backgrounds with cross sections many orders of magnitude bigger than signal need to be reduced.
 - Will be affected by large theoretical and detector uncertainties.
 - Systematics MUST be under control

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

 $\begin{array}{l} \mathsf{H} \to & \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \to & \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}^{(*)} \to \mathsf{4} \\ \mathsf{H} \to \mathsf{WW} \to |\nu|\nu \end{array}$

$H{\rightarrow}$ WW, and strategy for early data

• A cut-based analysis was proposed for the early data Have in mind that **statistical uncertainties** are going to be dominant.

The relevant backgrounds for this analysis:

- QCD WW (dominant in 0 and 1 jet)
- ttbar and single top (dominant in 2 jets)
- WZ
- Z + jets (same flavor channels)
- W + jets

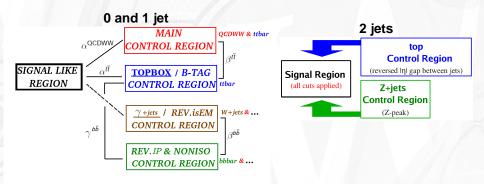
(cross sections many orders of magnitude bigger than Higgs production)

- QCD Dijets
- bbbar (some predictions of underestimation and an enormous cross section)
- For different jet multiplicities the impact of the different backgrounds is different

 $\begin{array}{ll} \mathsf{H} \to & \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \to & \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}^{(*)} \to \mathsf{4/} \\ \mathsf{H} \to \mathsf{WW} \to |\nu|\nu \end{array}$

$H{\rightarrow}$ WW, Selection

The two Leptons, coming from W decays:


- Pt > 15GeV
- Electrons should pass all the quality criteria based on shower shape identification
- Muons should leave traces in both: the inner detectors and in the muon spectrometers
- Well isolated ("track" and caloremeter)
- Small Impact Parameter The aim is to reduce the impact of fake lepton reconstruction
- Missing Energy signature left by the neutrinos can be used as discriminator
- Successive requirements in the jet selection and topological selections help us to reduce backgrounds like ttbar or QCDWW

SM Higgs boson production Decay channels $H \rightarrow \gamma \gamma$ $(VBF) H \rightarrow \tau \tau$ $H \rightarrow ZZ^{(*)} \rightarrow 4/$ $H \rightarrow WW \rightarrow |\nu|\nu$

$H{\rightarrow}$ WW, Control Regions

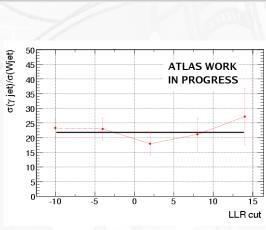
In order to estimate the impact of the main backgrounds, different control regions can be defined reversing or changing some cuts from the signal-like region.

$$\sigma_{CR}^{\textit{data}}
ightarrow \sigma_{SR}^{\textit{bkgr}} = \sigma_{CR}^{\textit{data}} \cdot \alpha_{SR/CR}^{\textit{MC}}$$

Different jet multiplicity \rightarrow different systematic errors on the extrapolation ratios

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ <


 $\begin{array}{l} \mathsf{H} \to & \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \to & \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}^{(*)} \to \mathsf{4} \\ \mathsf{H} \to \mathsf{WW} \to l \nu l \nu \end{array}$

W+jets Normalization

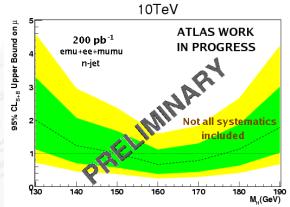
Among different methods to estimate the contribution of W+jets, here:

- Based on a control sample with a very tight photon and an electron candidate
- Ratio of γ+jets to W+jets is approximately constant w.r.t. electron cuts Deviation from constant is taken as systematic → 20 %

Error from MC statistics is not trivial

 Some other approches that might apply for higher luminosities have also been studied ¹

¹Y. Fang: \rightarrow subtraction (using different electron ID)


- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪

 $H \rightarrow \gamma \gamma$ (VBF) $H \rightarrow \tau \tau$ $H \rightarrow 77^{(*)} \rightarrow 4/$ $H \rightarrow WW \rightarrow l\nu l\nu$

$H \rightarrow WW$, 95 % CL Exclusion @ 200 pb^{-1}

Combination for the three different flavor channels: $e\mu$, ee and $\mu\mu$, for 0,1 and 2 jet bins. The frequentist approach, (profile likelihood ratio) is used to obtain this limit

This is a preliminary result, studies are on going to make sure all the systematics under control

 No uncertainties on signal normalization are considered!

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

Image: A marked and A marked < E > DPF 2009, WSU Detroit, Michigan 27/35

 $\begin{array}{l} \mathsf{H} \to & \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \to & \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}^{(*)} \to \mathsf{4} \\ \mathsf{H} \to \mathsf{WW} \to l \nu l \nu \end{array}$

Summary

- Some estimate of the cross sections for different center-of-mass energies were presented
- A brief description of the studies done by the ATLAS Collaboration on different decay channels of the SM Higgs was shown
- Some emphasis was placed on various efforts to estimate the impact of running at 10TeV instead of 14TeV:
 - For the 4l channel, a simple study for comparison was shown, where a reweighting (event-by-event) is implemented, and uncertainties are not considered
 - In the case of WW→ lνlν, a cut-based analysis aimed for early-data was performed, background extraction using control samples is crucial to understand the impact of systematics.

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

DPF 2009, WSU Detroit, Michigan 28/35

B & 4 B &

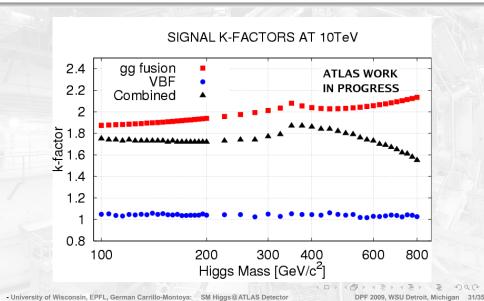
 $H \rightarrow \gamma \gamma$ (VBF) $H \rightarrow \tau \tau$ $H \rightarrow ZZ^{(*)} \rightarrow 4/$ $H \rightarrow WW \rightarrow l\nu l\nu$

THANKS !!!

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

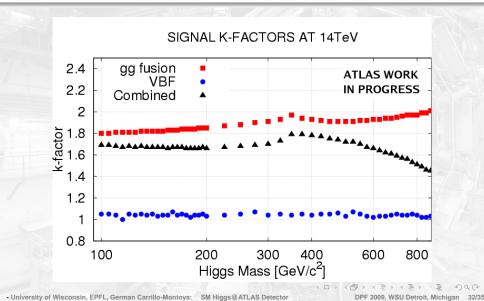
(口) DQC DPF 2009, WSU Detroit, Michigan 29/35

 $H \rightarrow \gamma \gamma$ (VBF) $H \rightarrow \tau \tau$ $H \rightarrow ZZ^{(*)} \rightarrow 4/$ $H \rightarrow WW \rightarrow l\nu l\nu$

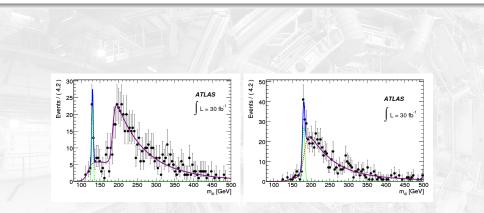

BACK UP SLIDES !!!

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

シック ヨン イヨト イヨト 人口 > DPF 2009, WSU Detroit, Michigan 30/35


 $\begin{array}{l} \mathsf{H} \to & \gamma \gamma \\ (\mathsf{VBF}) \ \mathsf{H} \to & \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}^{(*)} \to \mathsf{4} \\ \mathsf{H} \to \mathsf{WW} \to l \nu l \nu \end{array}$

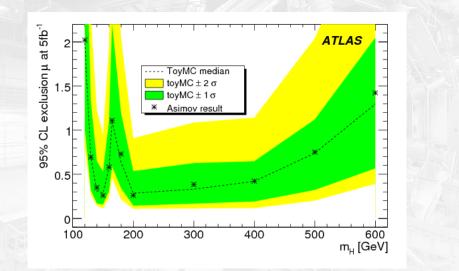
k-factors


 $\begin{array}{l} \mathsf{H} \to & \gamma \gamma \\ (\mathsf{VBF}) \ \mathsf{H} \to & \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}^{(*)} \to \mathsf{4} \\ \mathsf{H} \to \mathsf{WW} \to l \nu l \nu \end{array}$

k-factors

 $\begin{array}{l} \mathsf{H} \to & \gamma \gamma \\ (\mathsf{VBF}) \, \mathsf{H} \to & \tau \tau \\ \mathsf{H} \to \mathsf{ZZ}^{(*)} \to \mathsf{4} \\ \mathsf{H} \to \mathsf{WW} \to l \nu l \nu \end{array}$

$H \to ZZ \to 4I$



- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

<日 > < 三 > < 三 > < 三 > 、 三 の へ (~ DPF 2009, WSU Detroit, Michigan 33/35

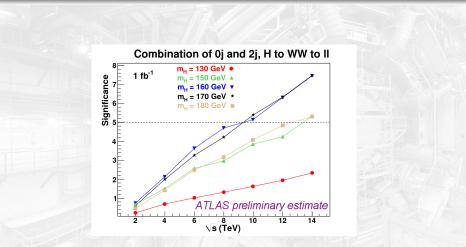
 $\begin{array}{l} \mathbf{H} \to & \gamma \gamma \\ (\text{VBF}) \ \mathbf{H} \to & \tau \tau \\ \mathbf{H} \to \mathbf{ZZ}^{(*)} \to 4 l \\ \mathbf{H} \to \mathbf{WW} \to l \nu l \nu \end{array}$

$H \to ZZ \to 4I$

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

DPF 2009, WSU Detroit, Michigan 34/35

3


DQC

ヨナメヨト

< □>

 $\begin{array}{ll} \mathbf{H} \to & \gamma \, \gamma \\ (\mathsf{VBF}) \, \mathbf{H} \to & \tau \, \tau \\ \mathbf{H} \to \mathsf{ZZ}^{(*)} \to \mathsf{4/} \\ \mathbf{H} \to \mathbf{WW} \to l \nu l \nu \end{array}$

$H \rightarrow WW$ discovery potential

- University of Wisconsin, EPFL, German Carrillo-Montoya: SM Higgs@ATLAS Detector

DPF 2009, WSU Detroit, Michigan 35/35