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Higgs Sector in the Minimal Supersymmetric Standard Model (MSSM)
• Two Higgs Doublets → Five physical bosons: A (CP-odd), h, H (CP-even) and H±

• At tree-level, the masses of the 5 Higgs bosons are related:

• Branching ratios to down-type quarks and charged leptons are enhanced:

Large loop corrections to masses and couplings depend on SUSY parameters:
• Largely dependent on the top / stop sector
• Xt = 2 TeV, MSUSY= 1 TeV, M2 = 200 GeV, μ = 200 GeV and Mgluino = 800 GeV

Discovery Potential and Exclusion Bounds
• Scan the mA – tanβ plane  [CERN-OPEN-2008-020; arXiv:0901.0512]

Introduction
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Indirect Constraints from Experiment
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The Large Hadron Collider
Particle accelerator located at CERN (Geneva, Switzerland)

• Collide protons at a 14 TeV CME
• Housed in the former LEP tunnel
• Dipole field at 7 TeV is 8.33 T
• ~350 MJ per beam!
• Ultimately ~2800 bunches 
• Vacuum 10-13 atm (~6500 m3 pumped)
• 1232 Dipoles (operate at 1.9 K)
• 858 Quadrupoles
• Typical store lasts ~10 hours
• Can be used for ion collisions (Pb)
• Final price tag estimated at 4G EUR
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The ATLAS Experiment
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Neutral MSSM Higgs Discovery Potential
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Neutral MSSM Higgs
Direct and Associated Production of the h, H and A

Investigated the decay channels (14 TeV)
• h/A/H → tau tau → 2l 4nu
• h/A/H → mu mu
• Other final states (di-tau lepton-hadron and fully hadronic) are still under study
• Early running and low-luminosity scenarios for the above channels are also being 

considered (should have some preliminary results soon)

Neutral Higgs mass degeneracy
• For much of the parameter space the neutral Higgs masses are degenerate
• Cross-sections are summed  

tanβ

Enhanced for large tanβ
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MSSM Higgs Di-Tau Analysis
Branching-Ratio to taus is enhanced in the MSSM

• Investigated h/A/H → tau tau → 2l 4nu with associated b-jets
• High-pT electron or muon triggers
• Imposed lepton kinematic requirements
• Required at least one b-jet to be present in the event
• Expect a large amount of missing transverse energy 

Mass reconstruction is done via the collinear approximation

mττ =
mll√
x1x2 xi =

pT,li
pT,τi
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Backgrounds to the Di-Tau Analysis
For mA < 200 GeV, dominant background is Z + jets with Z → tau tau

• This is an irreducible background
• The shape and normalization can be taken from data-driven control samples
• Scale the energy of the Z → mu mu events collected in collision data to match that 

expected from Z → tau tau

For mA ≥ 200 GeV, ttbar events become a significant background
• Can get a handle on this by cutting on the jet multiplicity (Njets ≤ 2)
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Di-Tau Analysis Potential
The high tanβ, low mA region is well covered with 30 fb-1

• Counting experiment with multiple mass windows

Dominant systematic uncertainties
• Jet resolution and energy scale
• b-jet identification

5σ Discovery 95% C.L. Exclusion
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MSSM Higgs Di-Muon Analysis
Some advantages

• Cleaner signal than the di-tau analysis
• Excellent mass resolution (~3% versus ~20% for the di-tau)

Disadvantage
• h/A/H di-muon ranching ratio is ~300% smaller than that of the di-tau

MSSM h/A/H→tau tau mass (collinear) MSSM h/A/H→μμ mass
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MSSM Higgs Di-Muon Analysis
Divide the analysis into two uncorrelated channels

• 0 b-jets channel (to suppress the ttbar background)
• ≥1 b-jets channel (suppress the Z background; impose additional cuts to reduce 

ttbar)’’

Data-driven background estimation
• For higher masses the tail of the Z resonance provides a large irreducible 

background, sensitive to detector systematic effects
• BR(h/A/H→ee) ~0
• BR(Z→μμ) = BR(Z→ee), so use Z→ee events from data as a control sample



13

Di-Muon Analysis Potential
Less coverage than the di-tau analysis

• But the two analyses could be combined to increase the sensitivity

Systematic uncertainties
• Around 5 – 10% for the signal processes
• Predominantly from the jet energy scale and b-jet identification
• Systematic uncertainties degrade the signal significance by up to 20% at large 

values of tanβ

5σ Discovery 95% C.L. Exclusion
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Charged MSSM Higgs Discovery Potential
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Charged MSSM Higgs
Production mode greatly depends on mH±

Three different analyses for a low mass (mH± < mtop)
•
•
•

Two analyses considered for a high mass (mH± > mtop)
• Production via:                       and 
• Decay modes:

Dominant Backgrounds
• ttbar (primary)
• QCD di-jets
• W+jets
• Single top

tt̄→ bH±bW → bτHνbqq

tt̄→ bH±bW → bτLνbqq

tt̄→ bH±bW → bτHνblν

gg→H±tb gb→H±t

H±t→ ντHbqq

H±t→ tbt→ bWbbW → bqqbblν

“mh-max” scenario with tanβ = 35
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Data-driven Background Estimation
Signal Final State Dominant Background

Do not trust Tevatron extrapolations

Unknowns related to analysis-specific variables exist
Difficult to obtain clean samples from data

H+ → τHν; W → qq

H+ → τLν; W → qq

H+ → τHν; W → lν

W → τHν; W → qq

W → τLν; W → qq

W → τHν; W → lν
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Data-driven Background Estimation
Signal Final State Background Control Sample

Does not rely on the Tevatron

Unknowns related to analysis-specific variables included
Clean samples can be obtained from data

Change muons into taus
using the TAUOLA package

Leptonically- and 
hadronically-decaying
taus can be emulated

H+ → τHν; W → qq

H+ → τLν; W → qq

H+ → τHν; W → lν
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W Transverse Mass (complex quantity; relevant correlations preserved)
• Leptonically decaying tau (                            )

Top Quark Transverse Momentum (complex quantity)
• Hadronically decaying tau (                            )

ATLAS

ATLAS

tt̄→ bτHνbqq

tt̄→ bτLνbqq

Data-Driven Background Estimation

ATLAS

ATLAS

mT =
q
2plTp

miss
T (1− cos(∆φ))
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Light H± Discovery Potential
Individual analysis cuts vary depending on the final state

• Most promising is                                               due to the large branching fractions 
into this final state; also challenging due to the high hadronic activity and lack of 
leptons

• The other final states contain one charged lepton; exploit signal and background 
kinematics to get the upper hand on the backgrounds

tt̄→ bH±bW → bτHνbqq

5σ Discovery 95% C.L. Exclusion
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Heavy H± Discovery Potential
Individual analysis cuts vary depending on the decay of top and H±

• For                              cut on the quality of the reconstructed top and W boson; use 
likelihood background discrimination based on the hadronic tau and MET

• For                                                           jet assignment combinatorics make this 
channel difficult; reduce the background by reconstructing the W and top quark; a 
combinatorial likelihood analysis is used

H±t→ ντHbqq

H±t→ tbt→ bWbbW → bqqbblν

5σ Discovery 95% C.L. Exclusion
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Combined H± Discovery Potential
Good sensitivity for high tanβ and low mH± even with 1 fb-1 of data

H± is invisible in the so-called “wedge region” of intermediate tanβ where the 
charged Higgs cross-section is at a minimum

5σ Discovery 95% C.L. Exclusion
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Conclusions
Neutral Higgs discovery potential

• With 10 - 30 fb-1 we have good discovery potential for high tanβ and low mA

• Of the results shown here, the di-tau analysis has the best sensitivity
• Discovery potential in other final states are currently being investigated

Charged Higgs discovery potential
• Decays of the H± to a tau an a neutrino offer the best sensitivity for light and heavy 

charged Higgs bosons in ATLAS; good discovery potential for 1 – 30 fb-1

• Other final states are being investigated here as well (e.g., via decay to a chargino
and neutralino)

Data-driven background estimation
• Each analysis shown here contains data-driven methods for estimating dominant 

and irreducible backgrounds
• Further refinements of these studies are currently underway

Results shown here are for 14 TeV with 1 – 30 fb-1 of data
• Studies currently underway in ATLAS to evaluate non-Standard Model Higgs boson 

exclusion and discovery with both a reduced center-of-mass energy and less 
integrated luminosity 
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Backup Slides
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Data-driven Background Method
Based on a method used in ATLAS for SM and MSSM neutral Higgs searches 

• Generate control samples for the Z+jets backgrounds
Original implementation (ATLAS CSC studies) 

• Done at the ntuple-level and used the full ATLAS detector simulation
• Applicable to many different final states

ttbar (with μ) 
Event (data)

Scale back lepton p Custom HEPEVT Record 
with τ 4-vectors

Event after
μ removed Tauola 

τ decay 
Merged EventAnalysis

(Monte Carlo in lieu of data)

(Digitization, Sim., Reco.)

ξ2 =
E2
μ−m2

τ

p2μ

Data-MC
“Hybrid”

ATLAS Offline Software Framework (ATHENA)
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“Best-fit” Supersymmetric Spectra
The Constrained MSSM (CMSSM) predicts A/H masses ~425 GeV
In the single-parameter Non-Universal Higgs Model (NUHM1) A/H ~300 GeV

Figure taken from O. Buchmueller et al., arXiv:0707.3447v2 [hep-ph]

http://arxiv.org/abs/0707.3447v2
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mh-max Scenario
Evolved out of the LEP2 era

• Extremely common in the literature (e.g., PDG review)
• Using this scenario will allow for easy / direct comparison with previously published results
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No-Mixing Scenario
Evolved out of the LEP2 era
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Gluophobic Higgs
Hadron collider
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Small αeff
Hadron collider
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