Discovery Potential for MSSM Higgs Bosons with the ATLAS Experiment at the LHC Trevor Vickey

University of Wisconsin, Madison On behalf of the ATLAS Collaboration

July 30, 2009

2009 Meeting of the Division of Particles and Fields

Introduction

Higgs Sector in the Minimal Supersymmetric Standard Model (MSSM)

- Two Higgs Doublets \rightarrow Five physical bosons: A (CP-odd), h, H (CP-even) and H[±]
- At tree-level, the masses of the 5 Higgs bosons are related:

$$m_{H,h}^2 = \frac{1}{2} [m_A^2 + m_Z^2 \pm \sqrt{(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 \cos^2 2\beta}],$$

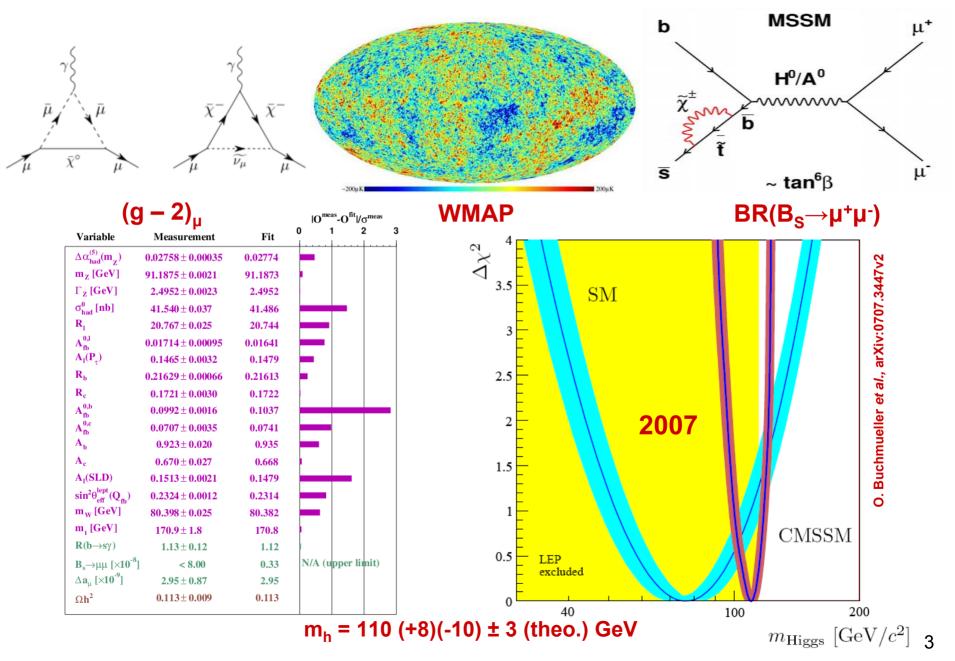
$$m_{H^{\pm}}^2 = m_W^2 + m_A^2$$

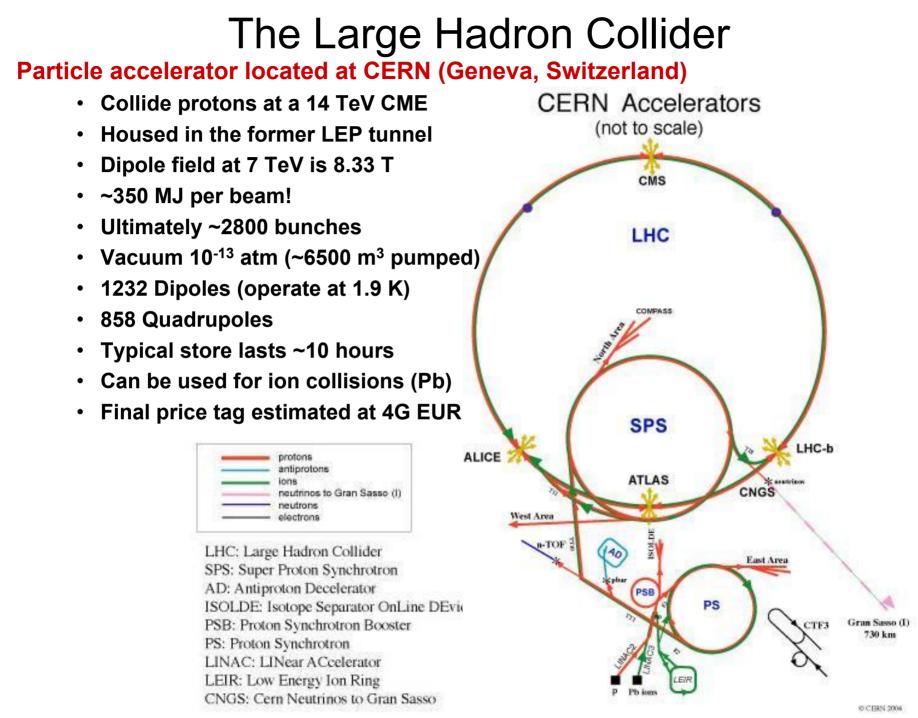
• Branching ratios to down-type quarks and charged leptons are enhanced:

Φ	$g_{\Phi \bar{u} u}$		$g_{\Phi \bar{d} d}$		$g_{\Phi VV}$	73v2
	Type I	Type II	Type I	Type II	Type I/II	
h	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\sin(\beta - \alpha)$	hen-nh/05031
Н	$\sin \alpha / \sin \beta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$= \cos \alpha / \cos \beta$	$\cos(\beta - \alpha)$	
A	Captu \coteta Re	gion \coteta	\coteta	\Box tan β	0	

Table 1.4: The neutral Higgs couplings to fermions and gauge bosons in 2HDMs of Type I and II compared to the SM Higgs couplings. The H^{\pm} couplings to fermions follow that of A.

$$\alpha = \frac{1}{2} \arctan\left(\tan 2\beta \frac{M_A^2 + M_Z^2}{M_A^2 - M_Z^2}\right), \quad -\frac{\pi}{2} \le \alpha \le 0 \qquad \qquad \tan \beta = \frac{v_2}{v_1} = \frac{(v \sin \beta)}{(v \cos \beta)}$$


Large loop corrections to masses and couplings depend on SUSY parameters:

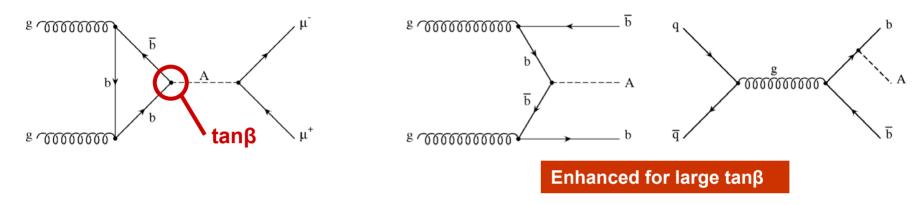

- Largely dependent on the top / stop sector "m_h-max" scenario
- + X_t = 2 TeV, M_{SUSY}= 1 TeV, M₂ = 200 GeV, μ = 200 GeV and M_{gluino} = 800 GeV

Discovery Potential and Exclusion Bounds

• Scan the $m_A - tan\beta$ plane [CERN-OPEN-2008-020; arXiv:0901.0512]

Indirect Constraints from Experiment

The ATLAS Experiment


Muon Detectors Tile Calorimeter Liquid Argon Calorimeter			
		ATLA	5
	Weight		7000 tons
	Diameter		22m
	Length		46m
	Peak	2T solenoid	
	B Field	3.9T (peak) BA	toroid
		4.1T (peak) EC t	oroids
Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker			

PERFORMANCE						
Tracker	Si pixels, strips + TRT (pid)	$\sigma/p_{T} \approx 5 \times 10^{-4} p_{T} \oplus 0.01$				
EM calorimeter	Pb + LAr	$\sigma/E \approx 10\%/\sqrt{E \oplus 0.007}$				
Hadronic calorimeter	Fe+scintillator / Cu + LAr	$\sigma/E \approx 50\%/\sqrt{E \oplus 0.03}$				
Combined Muons (ID+MS)	2%@50GeV to	10%@1TeV				

Neutral MSSM Higgs Discovery Potential

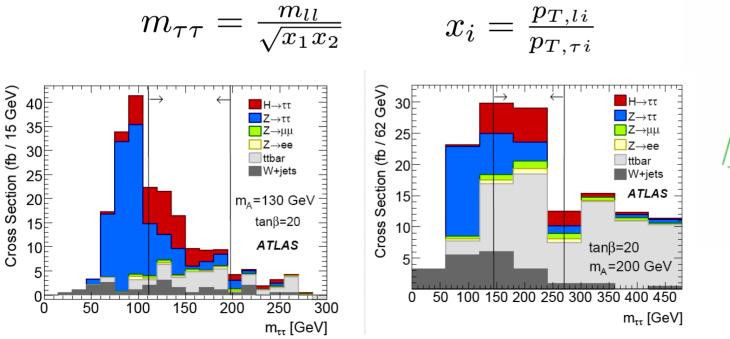
Neutral MSSM Higgs

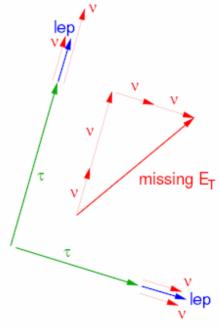
Direct and Associated Production of the h, H and A

Investigated the decay channels (14 TeV)

- h/A/H \rightarrow tau tau \rightarrow 2l 4nu
- $h/A/H \rightarrow mu mu$
- Other final states (di-tau lepton-hadron and fully hadronic) are still under study
- Early running and low-luminosity scenarios for the above channels are also being considered (should have some preliminary results soon)

Neutral Higgs mass degeneracy

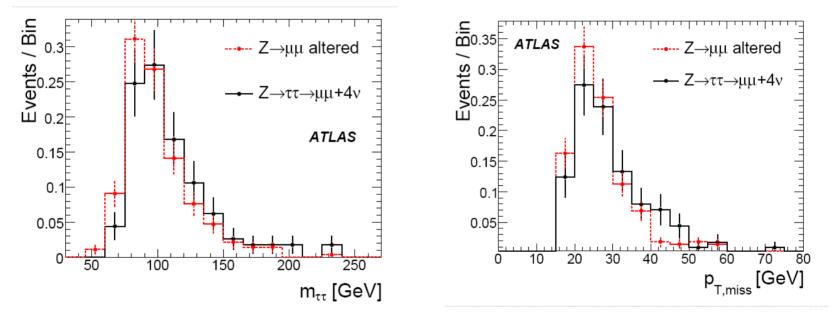

- For much of the parameter space the neutral Higgs masses are degenerate
- Cross-sections are summed


MSSM Higgs Di-Tau Analysis

Branching-Ratio to taus is enhanced in the MSSM

- Investigated h/A/H \rightarrow tau tau \rightarrow 2I 4nu with associated b-jets
- High-pT electron or muon triggers
- Imposed lepton kinematic requirements
- Required at least one b-jet to be present in the event
- Expect a large amount of missing transverse energy

Mass reconstruction is done via the collinear approximation



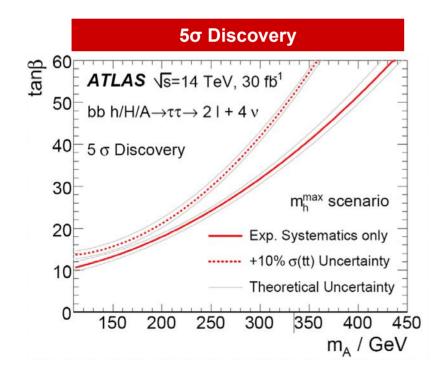
Backgrounds to the Di-Tau Analysis

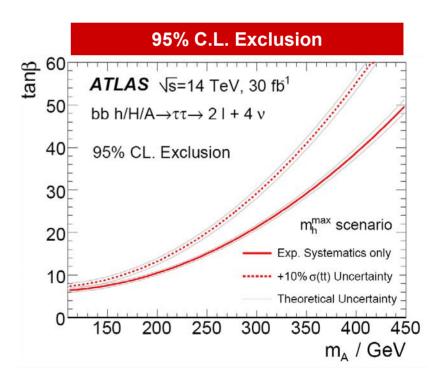
For mA < 200 GeV, dominant background is Z + jets with Z \rightarrow tau tau

- This is an irreducible background
- The shape and normalization can be taken from data-driven control samples
- Scale the energy of the Z \rightarrow mu mu events collected in collision data to match that expected from Z \rightarrow tau tau

For mA ≥ 200 GeV, ttbar events become a significant background

• Can get a handle on this by cutting on the jet multiplicity ($N_{iets} \le 2$)

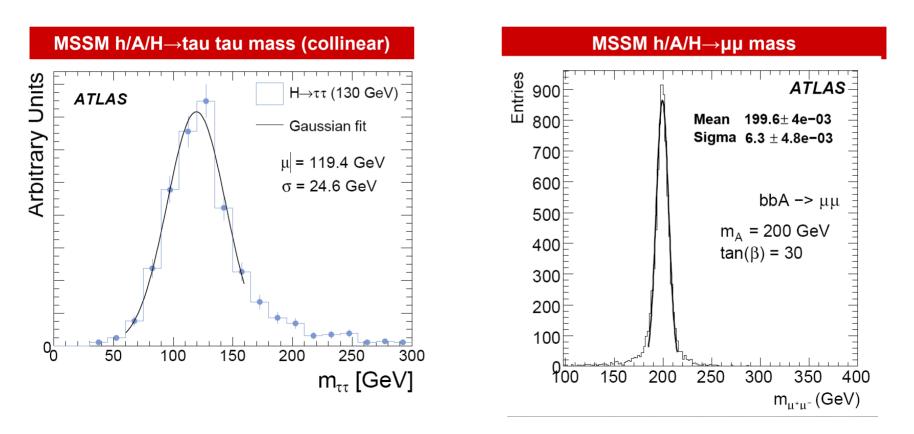

Di-Tau Analysis Potential


The high tan β , low m_A region is well covered with 30 fb⁻¹

Counting experiment with multiple mass windows

Dominant systematic uncertainties

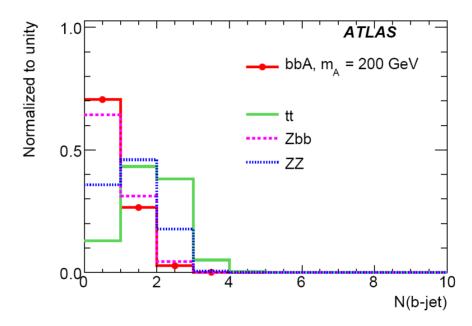
- Jet resolution and energy scale
- b-jet identification


MSSM Higgs Di-Muon Analysis

Some advantages

- Cleaner signal than the di-tau analysis
- Excellent mass resolution (~3% versus ~20% for the di-tau)

Disadvantage


h/A/H di-muon ranching ratio is ~300% smaller than that of the di-tau

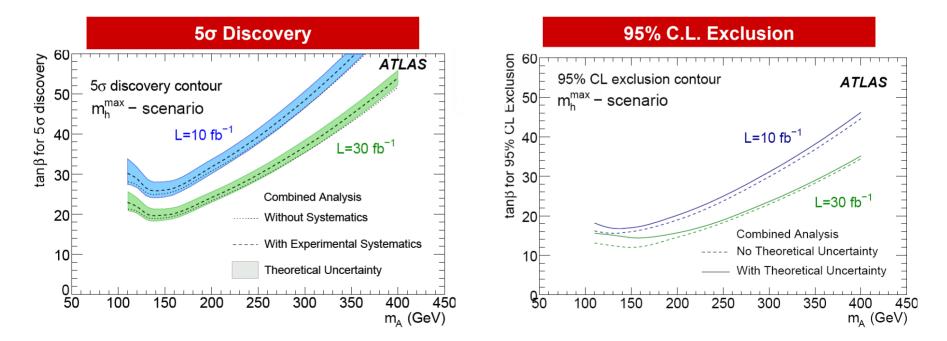
MSSM Higgs Di-Muon Analysis

Divide the analysis into two uncorrelated channels

- 0 b-jets channel (to suppress the ttbar background)
- ≥1 b-jets channel (suppress the Z background; impose additional cuts to reduce ttbar)"

Data-driven background estimation

- For higher masses the tail of the Z resonance provides a large irreducible background, sensitive to detector systematic effects
- BR(h/A/H→ee) ~0
- BR($Z \rightarrow \mu \mu$) = BR($Z \rightarrow ee$), so use $Z \rightarrow ee$ events from data as a control sample


Di-Muon Analysis Potential

Less coverage than the di-tau analysis

But the two analyses could be combined to increase the sensitivity

Systematic uncertainties

- Around 5 10% for the signal processes
- Predominantly from the jet energy scale and b-jet identification
- Systematic uncertainties degrade the signal significance by up to 20% at large values of $tan\beta$

Charged MSSM Higgs Discovery Potential

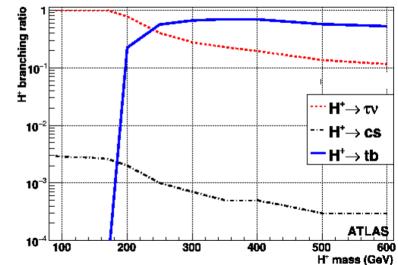
Charged MSSM Higgs

Production mode greatly depends on $m_{H\pm}$

Three different analyses for a low mass ($m_{H^{\pm}} < m_{top}$)

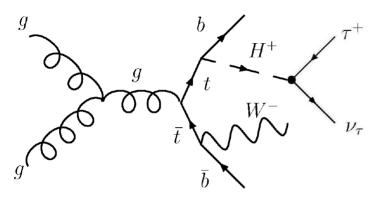
- $t\bar{t} \rightarrow bH^{\pm}bW \rightarrow b\tau_H \nu bqq$
- $t\bar{t} \rightarrow bH^{\pm}bW \rightarrow b\tau_L \nu bqq$
- $t\bar{t} \rightarrow bH^{\pm}bW \rightarrow b\tau_H \nu bl\nu$

Two analyses considered for a high mass ($m_{H^{\pm}} > m_{top}$)


- Production via: $gg \to H^\pm t b \, \text{ and } \, gb \to H^\pm t$
- Decay modes:

 $\begin{array}{l} H^{\pm}t \rightarrow \nu \tau_{H} bqq \\ H^{\pm}t \rightarrow tbt \rightarrow bW bbW \rightarrow bqqbbl\nu \end{array}$

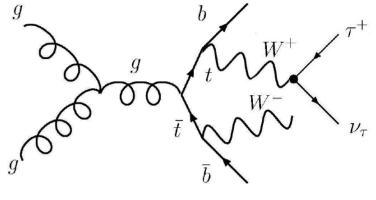
Dominant Backgrounds


- ttbar (primary)
- QCD di-jets
- W+jets
- Single top

" m_h -max" scenario with tan β = 35

Data-driven Background Estimation

Signal Final State



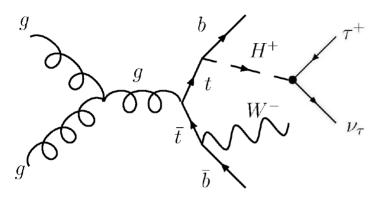
 $H^+ \to \tau_H \nu; W \to qq$

 $H^+ \to \tau_L \nu; W \to qq$

 $H^+ \to \tau_H \nu; W \to l \nu$

Dominant Background

 $W \to \tau_H \nu; W \to qq$

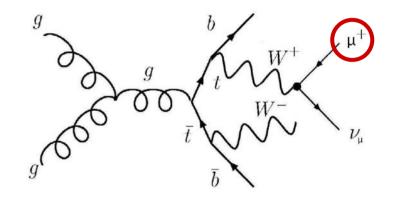

 $W \to \tau_L \nu; W \to qq$

 $W \to \tau_H \nu; W \to l \nu$

Do not trust Tevatron extrapolations Difficult to obtain clean samples from data Unknowns related to analysis-specific variables exist

Data-driven Background Estimation

Signal Final State

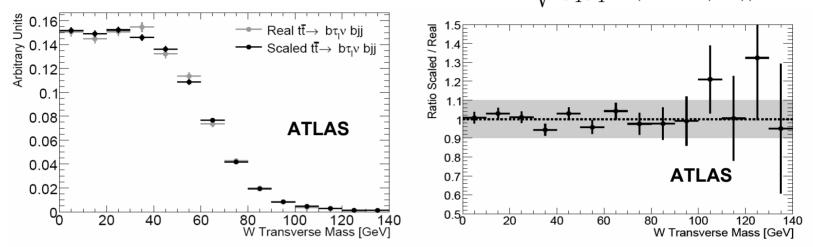

 $H^+ \to \tau_H \nu; W \to qq$

 $H^+ \to \tau_L \nu; W \to qq$

 $H^+ \to \tau_H \nu; W \to l \nu$

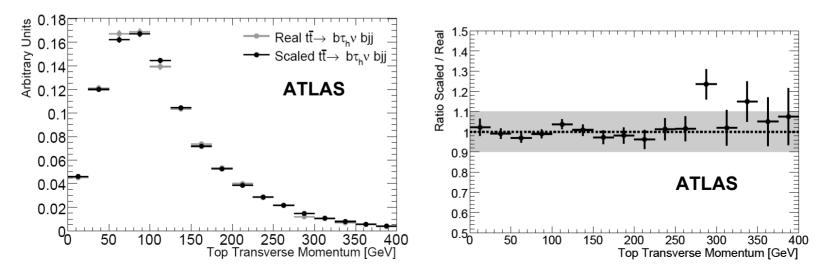
Background Control Sample

Change muons into taus using the TAUOLA package


Leptonically- and hadronically-decaying taus can be emulated

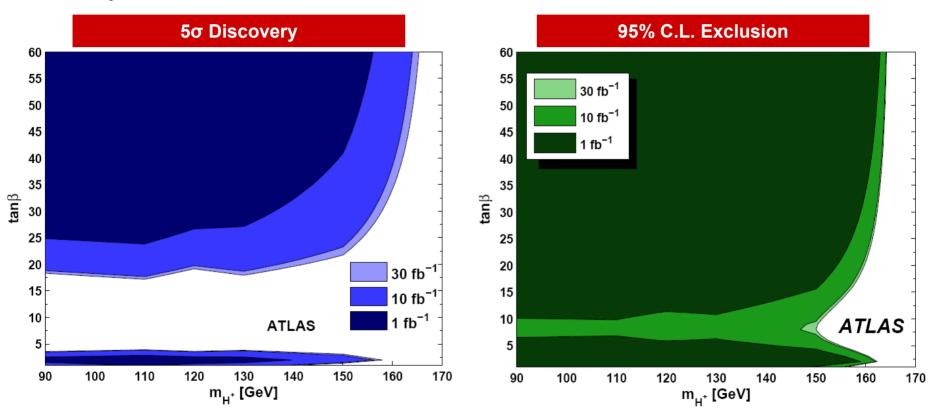
Does not rely on the Tevatron Clean samples can be obtained from data Unknowns related to analysis-specific variables included

Data-Driven Background Estimation


W Transverse Mass (complex quantity; relevant correlations preserved)

Leptonically decaying tau ($tar{t} o b au_L
u bqq$) $m_T=\sqrt{2p_T^lp_T^{miss}(1-\cos(\Delta\phi))}$

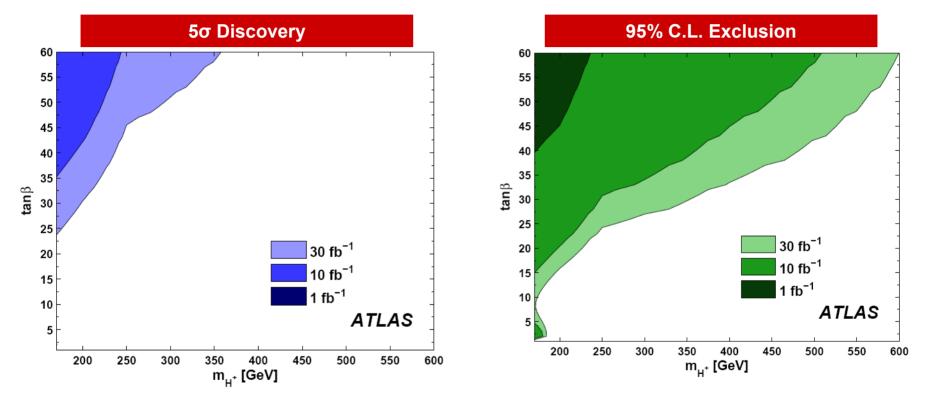
Top Quark Transverse Momentum (complex quantity)


- Hadronically decaying tau ($tar{t} o b au_H
u bqq$)

Light H[±] Discovery Potential

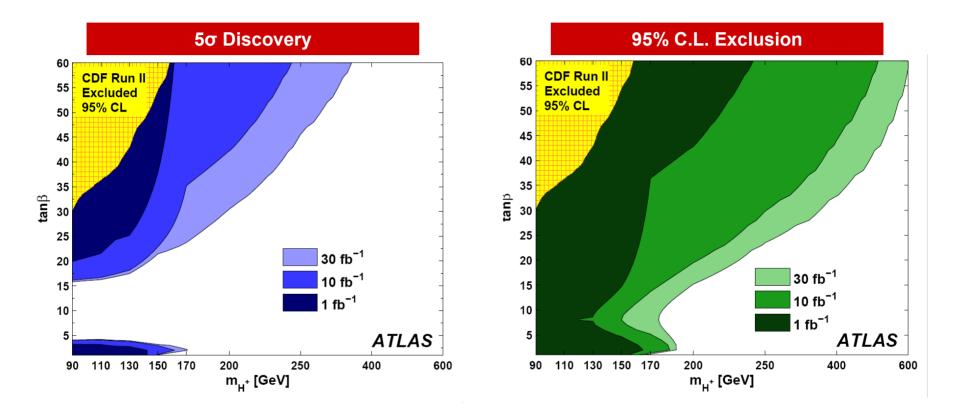
Individual analysis cuts vary depending on the final state

• Most promising is $t\bar{t} \rightarrow bH^{\pm}bW \rightarrow b\tau_H \nu bqq$ due to the large branching fractions into this final state; also challenging due to the high hadronic activity and lack of leptons



 The other final states contain one charged lepton; exploit signal and background kinematics to get the upper hand on the backgrounds

Heavy H[±] Discovery Potential


Individual analysis cuts vary depending on the decay of top and H[±]

• For $H^{\pm}t \rightarrow \nu \tau_H bqq$ cut on the quality of the reconstructed top and W boson; use likelihood background discrimination based on the hadronic tau and MET

• For $H^{\pm}t \rightarrow tbt \rightarrow bWbbW \rightarrow bqqbbl\nu$ jet assignment combinatorics make this channel difficult; reduce the background by reconstructing the W and top quark; a combinatorial likelihood analysis is used

Combined H[±] Discovery Potential Good sensitivity for high tanβ and low m_{H+} even with 1 fb⁻¹ of data

 H^{\pm} is invisible in the so-called "wedge region" of intermediate tan β where the charged Higgs cross-section is at a minimum

Conclusions

Neutral Higgs discovery potential

- With 10 30 fb⁻¹ we have good discovery potential for high tan β and low m_A
- Of the results shown here, the di-tau analysis has the best sensitivity
- Discovery potential in other final states are currently being investigated

Charged Higgs discovery potential

- Decays of the H[±] to a tau an a neutrino offer the best sensitivity for light and heavy charged Higgs bosons in ATLAS; good discovery potential for 1 – 30 fb⁻¹
- Other final states are being investigated here as well (e.g., via decay to a chargino and neutralino)

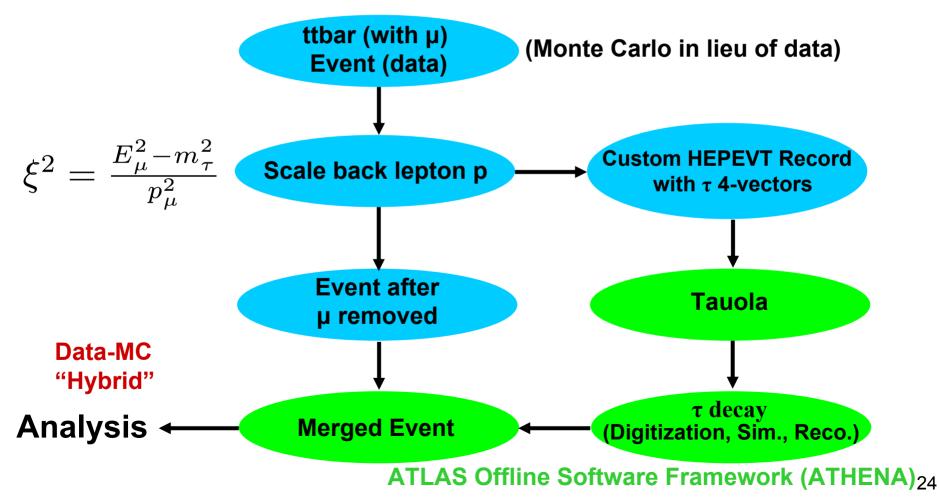
Data-driven background estimation

- Each analysis shown here contains data-driven methods for estimating dominant and irreducible backgrounds
- Further refinements of these studies are currently underway

Results shown here are for 14 TeV with 1 – 30 fb⁻¹ of data

 Studies currently underway in ATLAS to evaluate non-Standard Model Higgs boson exclusion and discovery with both a reduced center-of-mass energy and less integrated luminosity

Backup Slides


Data-driven Background Method

Based on a method used in ATLAS for SM and MSSM neutral Higgs searches

Generate control samples for the Z+jets backgrounds

Original implementation (ATLAS CSC studies)

- Done at the ntuple-level and used the full ATLAS detector simulation
- Applicable to many different final states

"Best-fit" Supersymmetric Spectra The Constrained MSSM (CMSSM) predicts A/H masses ~425 GeV In the single-parameter Non-Universal Higgs Model (NUHM1) A/H ~300 GeV

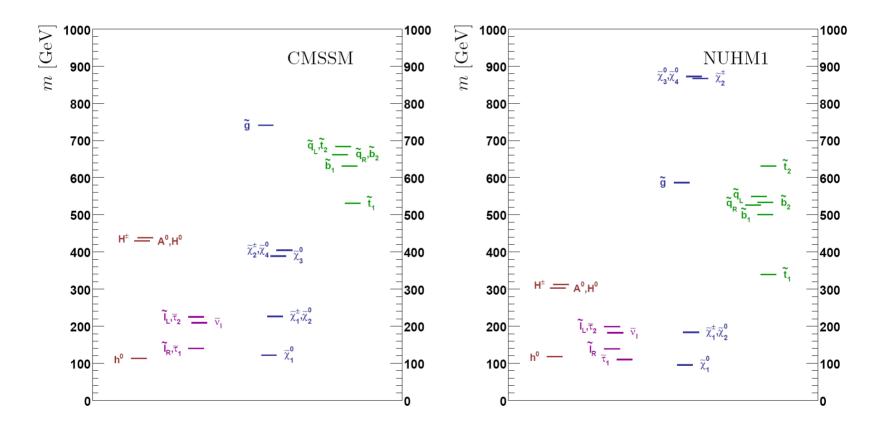


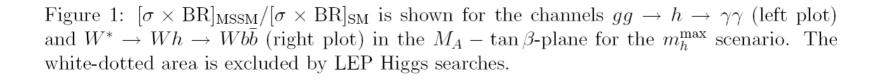
Figure 2. The spectra at the best-fit points: left — in the CMSSM with $m_0 = 60$ GeV, $m_{1/2} = 310$ GeV, $A_0 = 240$ GeV, $\tan \beta = 11$, and right — in the NUHM1 with $m_0 = 100$ GeV, $m_{1/2} = 240$ GeV, $A_0 = -930$ GeV, $\tan \beta = 7$, $m_H^2 = -6.9 \times 10^5$ GeV² and $\mu = 870$ GeV.

Figure taken from O. Buchmueller et al., arXiv:0707.3447v2 [hep-ph]

mh-max Scenario

Evolved out of the LEP2 era

• Extremely common in the literature (e.g., PDG review)


M₆[GeV]

• Using this scenario will allow for easy / direct comparison with previously published results

$$m_{t} = 174.3 \text{ GeV}, \quad M_{SUSY} = 1 \text{ TeV}, \quad \mu = 200 \text{ GeV}, \quad M_{2} = 200 \text{ GeV}, \\ X_{t}^{OS} = 2 M_{SUSY} \text{ (FD calculation)}, \quad X_{t}^{\overline{MS}} = \sqrt{6} M_{SUSY} \text{ (RG calculation)} \\ A_{b} = A_{t}, \quad m_{\tilde{g}} = 0.8 M_{SUSY} \text{ .} \\ (gg ->h) \times BR(h -> y) \qquad (gg ->h) \times BR(h ->h) \times BR(h ->h) \qquad (gg ->h) \times BR(h ->h) \times BR(h ->h) \qquad (gg ->h) \times BR(h ->h) \qquad (gg ->h) \times BR(h ->h) \qquad (gg ->h$$

٥ċ

M_a[GeV]

No-Mixing Scenario

Evolved out of the LEP2 era

$$\begin{split} m_t &= 174.3 \; {\rm GeV}, \quad M_{SUSY} = 2 \; {\rm TeV}, \quad \mu = 200 \; {\rm GeV}, \quad M_2 = 200 \; {\rm GeV}, \\ X_t &= 0 \; ({\rm FD}/{\rm RG} \; {\rm calculation}), \quad A_b = A_t, \quad m_{\tilde{g}} = 0.8 \; M_{SUSY} \; . \end{split}$$

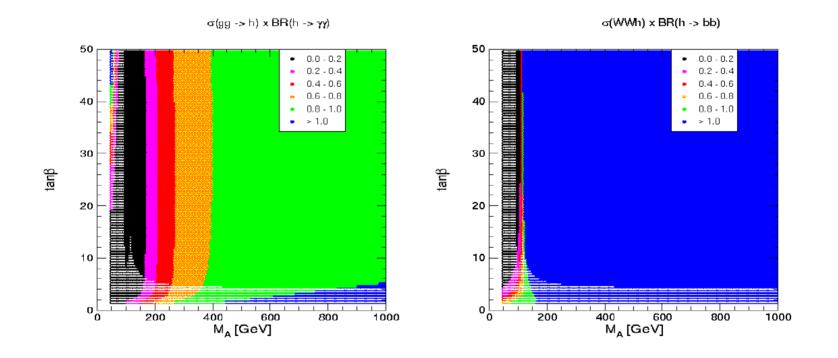


Figure 2: $[\sigma \times BR]_{MSSM}/[\sigma \times BR]_{SM}$ is shown for the channels $gg \to h \to \gamma\gamma$ (left plot) and $W^* \to Wh \to Wb\bar{b}$ (right plot) in the $M_A - \tan\beta$ -plane for the no-mixing scenario. The white-dotted area is excluded by LEP Higgs searches.

Gluophobic Higgs

Hadron collider

 $m_t = 174.3 \text{ GeV}, \quad M_{SUSY} = 350 \text{ GeV}, \quad \mu = 300 \text{ GeV}, \quad M_2 = 300 \text{ GeV},$ $X_t^{OS} = -750 \text{ GeV} \text{ (FD calculation)}, \quad X_t^{\overline{\text{MS}}} = -770 \text{ GeV} \text{ (RG calculation)}$ $A_b = A_t, \quad m_{\tilde{g}} = 500 \text{ GeV}.$

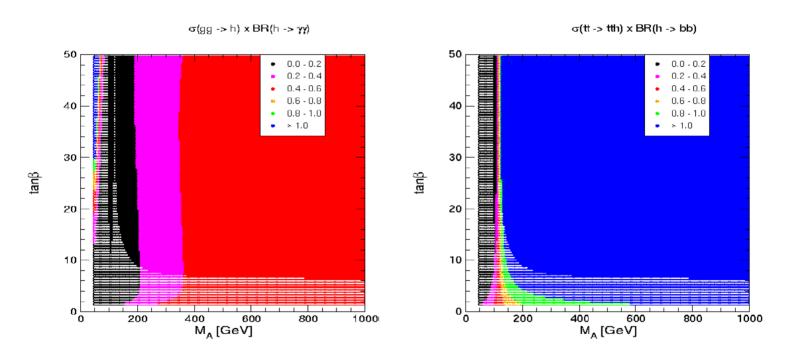


Figure 3: $[\sigma \times BR]_{MSSM}/[\sigma \times BR]_{SM}$ is shown for the channels $gg \to h \to \gamma\gamma$ (left plot) and $t\bar{t} \to t\bar{t}h \to t\bar{t}b\bar{b}$ (right plot) in the $M_A - \tan\beta$ -plane for the gluophobic Higgs scenario. The white-dotted area is excluded by LEP Higgs searches.

Small α_{eff}

Hadron collider

$$\begin{split} m_t &= 174.3 \; {\rm GeV}, \quad M_{SUSY} = 800 \; {\rm GeV}, \quad \mu = 2.5 \; M_{SUSY}, \quad M_2 = 500 \; {\rm GeV}, \\ X_t^{\rm OS} &= -1100 \; {\rm GeV} \; ({\rm FD \; calculation}), \quad X_t^{\rm \overline{MS}} = -1200 \; {\rm GeV} \; ({\rm RG \; calculation}) \\ A_b &= A_t, \quad m_{\tilde{g}} = 500 \; {\rm GeV} \; . \end{split}$$

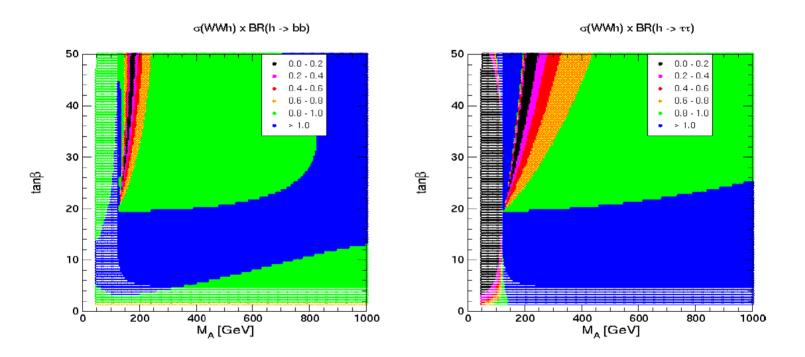


Figure 4: $[\sigma \times BR]_{MSSM}/[\sigma \times BR]_{SM}$ is shown for the channels $W^* \to Wh \to Wb\bar{b}$ (left plot) and $W^* \to Wh \to W\tau^+\tau^-$ (right plot) in the $M_A - \tan\beta$ -plane for the small α_{eff} scenario. The white-dotted area is excluded by LEP Higgs searches.