Discovery Potential for Di-lepton and Lepton+Etmiss Resonances at High Mass with ATLAS

DPF2009, Detroit, MI. July 30 ${ }^{\text {th }}, 2009$

Isabel Pedraza-Morales
University of Wisconsin-Madison On behalf of the ATLAS Collaboration

Prelude

\& Fact: We are looking for new physics. Why?
\propto Necessity to explain the origin of the hierarchy problem, the mechanism of electroweak symmetry breaking...
\& Standard Model is low energy effective theory.
\& Many models of new physics predict new heavy resonances decaying into di-leptons (e, μ, τ, ν).

Cos String inspired models 2
$)_{2}$ Extended gauge symmetries
Q_{3} Left-right symmetric models
CR Extra dimensions
\& Technicolor
© Etc...
Q ATLAS is sensitive to a broad array of new physics. We will address the discovery potential of some of these new physics final states.

ATLAS Detector

PERFORMANCE		
Tracker	Si pixels, strips + TRT (pid)	$\sigma / p_{T} \approx 5 \times 10^{-4} \mathrm{p}_{\mathrm{T}} \oplus 0.01$
EM calorimeter	$\mathrm{Pb}+\mathrm{LAr}$	$\sigma / \mathrm{E} \approx 10 \% / \sqrt{ } \mathrm{E} \oplus 0.007$
Hadronic calorimeter	Fe+scintillator / $\mathrm{Cu}+\mathrm{LAr}$	$\sigma / E \approx 50 \% / V E \oplus 0.03$
Combined Muons (ID+MS)	2\%@50GeV to	10\%@1TeV
Isabel Pedraza-DPF2009	3	7/30/09

W'

© W' in the Sequential Standard Model:
$\propto \times$ W' is an additional heavy gauge boson
$\infty \times$ W' has the same couplings as W to left-handed fermions; no interaction with other heavy gauge bosons (W, Z, Z')
\propto Lower bound on W' mass (direct searches): $\sim 1 \mathrm{TeV}$

- Standard Model backgrounds:
- W $\rightarrow 1 \nu(1: \mathrm{e}, \mu, \tau)$
- QCD (dijets processes)
- ttbar
- W' signature:

- High energy lepton accompanied by missing energy coming from the undetected neutrino.

W'

Decay channels

Event Selection
\& Good reconstructed electron/muon
∞ Just one lepton with $p_{T}>50 \mathrm{GeV}$
© $\mathrm{E}_{\mathrm{T}}{ }^{\text {Miss }}>50 \mathrm{GeV}$
c又 $\sum \mathrm{p}_{\mathrm{T}}^{\text {leptons }} /\left(\Sigma \mathrm{p}_{\mathrm{T}}{ }^{\text {leptons }} \sum \mathrm{E}_{\mathrm{T}}{ }^{\text {Miss }}\right)>0.5$
$\propto<$ Expected luminosity for a 5σ discovery (number counting)

- Electron, muon channels studied
-Worse muon resolution at high p_{T}
- Possible discovery above TeV limits (1 TeV) with $\mathrm{O}\left(10 \mathrm{pb}^{-1}\right)$

Di-lepton final states

C

Z'
$\infty \quad Z^{\prime}$ in some representative models:
Q P Sequential Standard Model $Z_{\text {ssm }}$
$\propto \mathrm{E}_{6}\left(\mathrm{Z}^{\prime}{ }_{\psi}, \mathrm{Z}^{\prime}{ }_{\eta}, \mathrm{Z}^{\prime}{ }_{\chi}\right)$
© Left-Right Symmetric models ($Z^{\prime}{ }_{\text {LRM }}, Z^{\prime}{ }_{\text {ALRM }}$)

Z^{\prime} Model	Indirect Searches (GeV)	Direct Searches (GeV)	
		$e^{+} e^{-}$Colliders	$p^{+} p^{-}$Colliders
Z_{χ}^{\prime}	680	781	864
Z_{ψ}^{\prime}	481	366	853
Z_{η}^{\prime}	619	515	933
$Z_{L R S M}^{\prime}$	804	518	-
$Z_{S S M}^{\prime}$	1787	1018	966

Table 1: 95\% C.L. limits on various Z^{\prime} models.

- Standard Model backgrounds
- For $Z^{\prime} \rightarrow$ ee, $\mu \mu$
- Drell-Yan
- For $Z^{\prime} \rightarrow \tau \tau$
- ttbar
- QCD
- $\mathrm{W}+$ jets

∞ Event Selection

Z'
∞ Z' $\rightarrow \mu \mu$
© Two muons with $\mathrm{p}_{\mathrm{T}}>30 \mathrm{GeV}$
\& Opposite charge
∞ Z' \rightarrow ee
Cs 2 electrons
© At least one with $\mathrm{p}_{\mathrm{T}}>65 \mathrm{GeV}$
© Opposite charge

Isabel Pedraza-DPF2009

10

$$
\begin{array}{lll}
\propto & \mathrm{Z}^{\prime} & \rightarrow \tau \tau \\
\propto & \tau \text { selection } \\
\propto \& & \text { Opposite charge } \\
\propto & \mathrm{E}_{\mathrm{t}}^{\text {miss }}>30 \mathrm{GeV} \\
\propto & \mathrm{~m}_{\mathrm{T}}>300 \mathrm{GeV} \\
\propto & \mathrm{p}_{\mathrm{T}}^{\text {tot }}<70 \mathrm{GeV} \\
\propto \& & \mathrm{~m}_{\mathrm{vis}}>300 \mathrm{GeV} \\
\propto & \cos \Delta \phi_{\mathrm{lh}}>-0.99
\end{array}
$$

Z'

- Expected luminosity for a 5σ discovery

As little as $100 \mathrm{pb}^{-1}$ of physics data could yield a 5σ discovery.

Z'

- Expected luminosity for a 5σ discovery

$$
Z^{\prime} \rightarrow \text { ee, } \mathrm{m}=1 \mathrm{TeV}
$$

-Different systematic errors were applied for two benchmark models.

- As little as $50 \mathrm{pb}^{-1}$ of physics data could yield a 50 discovery.
- Expected luminosity for a 5σ discovery

\bullet^{\prime} ' $_{\text {SSM }}$ with a mass up to 1.2 TeV could yield a 5 sigma significance with $\sim 1 \mathrm{fb}^{-1}$ of data

$\rho_{\text {TC }}$ and $\omega_{\text {TC }}$

as One of the most promising search channels is the dilepton decay of the ρ_{TC} and ω_{TC}.

Q The "Technicolor Strawman Model" or TCSM is used as a benchmark model for generic strongly interacting theories.

∞ The limits set by CDF rule out $\rho_{\text {TC }}$ and $\omega_{\text {TC }}$ masses below 280 GeV for a particular choice of the TCSM parameters.

The meson natural widths are less than a

$m_{\rho_{T}, \omega_{T}}(\mathrm{GeV})$	400	600	800	1000
Peak mass (GeV)	403	603	804	1004
$\sigma(m)(\mathrm{GeV})$	13	22	34	46

- Standard model background GeV , so the observed
width $\quad \sigma(\mathrm{m}) \quad$ is entirely due to detector resolution.
- Drell-Yan

ρ_{TC} and ω_{TC}

\propto Event Selection for muon channel \& $\mathrm{p}_{\mathrm{T}}>30 \mathrm{GeV}$
a Trigger selection
© Well reconstructed muons
Q Op Oposite charge
\& Mass window $\pm 1.5 \sigma$

- Discovery Potential
- Including estimated early alignment: $+50 \%$ luminosity needed

Graviton

C R Randall-Sundrum model addresses the hierarchy problem by adding one extra-dimension. It predicts the existence of a tower of Kaluza-Klein exitations of the graviton.

Graviton

as These graviton should be observable as resonances which decay into lepton pairs at LHC.
cos The current limits depend on the parameters of the model, and range from several hundreds GeV to one TeV

- Standard Model backgrounds
- For G \rightarrow ee
- Drell-Yan
- All other backgrounds are expected to be small.

Model Parameters		Γ_{G} $[\mathrm{GeV}]$	σ_{m} $[\mathrm{GeV}]$	$\sigma \cdot B R\left(G \rightarrow e^{+} e^{-}\right)$ $[\mathrm{fb}]$
m_{G}	$k / \bar{M}_{p l}$	$\left[\begin{array}{c}\text { (}\end{array}\right.$		
500 GeV	0.01	0.08	4.6	187.4
750 GeV	0.01	0.10	6.4	27.7
1.0 TeV	0.02	0.57	7.9	26.0
1.2 TeV	0.03	1.62	10.3	22.4
1.3 TeV	0.04	2.98	11.4	25.3
1.4 TeV	0.05	5.02	13.1	26.8

Graviton

$\mathrm{G} \rightarrow \mathrm{ee}$

-

-The observed distribution includes a graviton with mass 1 TeV and coupling $\kappa / \mathrm{M}_{\mathrm{pl}}=0.02$.
$\propto<$ Event selection
as Two electrons
CB $\mathrm{p}_{\mathrm{T}}>=65 \mathrm{GeV}$
Q $\cos \Delta \phi_{\mathrm{ee}}<0$

Graviton

Co Discovery potential as a function of the graviton mass.

For some values of $\mathrm{k} / \mathrm{M}_{\mathrm{p}}$, possible discovery with $\mathrm{O}\left(100 \mathrm{pb}^{-1}\right)$

Example of the potential of the early data of LHC

$$
\mathrm{W}^{\prime} \rightarrow \mathrm{e} \nu, \mu \nu
$$

Q The early run of the LHC is expected to be at $\sqrt{ } \mathrm{s}=10 \mathrm{TeV}$.
C With this we can have new physics showing up.
co The lowered center-of-mass energy, at 10 TeV , degrades the production cross section, thus the sensitivity. In the case of the W' $\rightarrow 1 \nu$ the fraction left for the cross sections for signal and background are:

$\mathbf{W}^{\prime} \mathrm{m}=1 \mathrm{TeV}$	$\mathrm{W}^{\prime} \mathrm{m}=1.5 \mathrm{TeV}$	$\mathbf{W}^{\prime} \mathrm{m}=2 \mathrm{TeV}$	$\mathbf{W}^{\prime} \mathrm{m}=2.5 \mathrm{TeV}$
51.54%	40.37%	34.50%	27.40%

W	tt	DiJet's
62.60%	56.43%	63.08%

Example of the potential of the early data of LHC

∞ The signal and background remain without significant modifications on their shape for $\sqrt{ } \mathrm{s}=10 \mathrm{TeV}$.

Example of the potential of the early data of LHC

$$
\mathrm{W}^{\prime} \rightarrow \mathrm{e} \nu, \mu \nu
$$

∞ Exclusion limits W' \rightarrow e ν

W^{\prime} is one of the searches that can be done in the first run of the LHC.
With $\mathrm{O}\left(50 \mathrm{pb}^{-1}\right)$ of well understood data we can either discover it or exclude it beyond the current limit.

Conclusions

CR A selection of analyses on new predicted particles with Di-lepton and Lepton+MET final states was presented.
∞ LHC and ATLAS constitute a powerful tool to discover or exclude new particles.

CP 14 TeV studies have shown that the existence of a W' and Z' could be established at the 5 sigma level even with $\mathrm{O}\left(100 \mathrm{pb}^{-1}\right)$ of integrated luminosity
∞ The initial run of few tens of pb^{-1} at 10 TeV would be enough to go beyond Tevatron limits in most of these models.

BACKUP
 ∞

Electrons

\& The QCD cross sections at LHC are 10 to 100 times higher than at the Tevatron

Muons

Tau leptons

∞ With $100 \mathrm{pb}-1$, clear signals for W and Z in τ channels
$\infty \quad \mathrm{Z} \rightarrow \tau \tau$ can then be used to set the ET miss scale to a few $\%$
Q τ reconstruction is tricky and relies (not for very first data but soon after) on multivariate techniques.

