

Discovery Potential for Di-lepton and Lepton+Etmiss Resonances at High Mass with ATLAS

DPF2009, Detroit, MI. July 30th, 2009

Isabel Pedraza-Morales University of Wisconsin-Madison On behalf of the ATLAS Collaboration

Isabel Pedraza-DPF2009

Prelude

- Rear Fact: We are looking for new physics. Why?
 - Recessity to explain the origin of the hierarchy problem, the mechanism of electroweak symmetry breaking...
 - Standard Model is low energy effective theory.
- Many models of new physics predict new heavy resonances decaying into di-leptons (e, μ , τ , ν).
 - String inspired models

 - Rextra dimensions

 - R Etc...
- ATLAS is sensitive to a broad array of new physics. We will address the discovery potential of some of these new physics final states.

ATLAS Detector

	ATLAS		
Weight	7000 tons		
Diameter	22m		
Length	46m		
Peak B Field	2T solenoid 3.9T (peak) BA toroid		
	4.1T (peak) EC toroids		

PERFORMANCE					
Tracker	Si pixels, strips + TRT (pid)	$\sigma/p_{T} \approx 5 \times 10^{-4} p_{T} \oplus 0.01$			
EM calorimeter	Pb + LAr	$\sigma/E \approx 10\%/\sqrt{E \oplus 0.007}$			
Hadronic calorimeter	Fe+scintillator / Cu + LAr	σ/E ≈ 50%/√E ⊕ 0.03			
Combined Muons (ID+MS)	2%@50GeV to	10%@1TeV			
Isabel Pedraza-DPF2009	3	7/30/09			

Lepton+MET final states

W' in the Sequential Standard Model:

- \mathbf{R} W' is an additional heavy gauge boson
- W' has the same couplings as W to left-handed fermions; no interaction with other heavy gauge bosons (W, Z, Z') ← Construction Co
- Standard Model backgrounds: •
 - W \rightarrow 1 ν (1: e, μ , τ)
 - QCD (dijets processes)
 - ttbar

- W' signature:
 - High energy lepton accompanied by missing energy coming from the undetected neutrino.

Isabel Pedraza-DPF2009

Decay channels

• W' \rightarrow e ν

Event Selection Real Good reconstructed electron/muon \bigcirc Just one lepton with $p_T > 50 \text{GeV}$ $\propto E_{T}^{Miss} > 50 GeV$ $\propto \sum p_T^{\text{leptons}} / (\sum p_T^{\text{leptons}+} \sum E_T^{\text{Miss}}) > 0.5$ Isabel Pedraza-DPF2009 6

 \mathbf{X}

 \curvearrowright Expected luminosity for a 5 σ discovery (number counting)

•Electron, muon channels studied

- •Worse muon resolution at high p_T
- •Possible discovery above TeV limits (1TeV) with O(10pb⁻¹)

Isabel Pedraza-DPF2009

- - $\mathbf{CR} \ \mathbf{E}_6(\mathbf{Z'}_{\Psi}, \mathbf{Z'}_{\eta}, \mathbf{Z'}_{\chi})$
 - $\textcircled{R} Left-Right Symmetric models (Z'_{LRM}, Z'_{ALRM})$

Z'

Z' Model	Indirect Searches (GeV)	Direct Searches (GeV)		
		e^+e^- Colliders	p^+p^- Colliders	
Z'_{χ}	680	781	864	
$Z'_{\chi} Z'_{\psi}$	481	366	853	
Z'_{η}	619	515	933	
Z'_{LRSM}	804	518	-	
Z'_{SSM}	1787	1018	966	

Table 1: 95% C.L. limits on various Z' models.

9

- Standard Model backgrounds
 - For $Z' \rightarrow ee, \ \mu \ \mu$
 - Drell-Yan

• For $Z' \rightarrow \tau \tau$

q

- ttbar
 - QCD

Isabel Pedraza-DPF2009

• W+jets

Ζ'

• Expected luminosity for a 5σ discovery

As little as $100pb^{-1}$ of physics data could yield a 5σ discovery.

Isabel Pedraza-DPF2009

Z'

• Expected luminosity for a 5 σ discovery

Different systematic errors were applied for two benchmark models.
As little as 50pb⁻¹ of physics data could yield a 5σ discovery.

Isabel Pedraza-DPF2009

Z'

13

7/30/09

$\rho_{\rm TC}$ and $\omega_{\rm TC}$

- ເ ⊗ Constant on the most promising search channels is the dilepton decay of the ρ_{TC} and ω_{TC}.
- A The limits set by CDF rule out $ρ_{TC}$ and $ω_{TC}$ masses below 280GeV for a particular choice
 of the TCSM parameters.

m_{ρ_T,ω_T} (GeV)	400	600	800	1000
Peak mass (GeV)	403	603	804	1004
$\sigma(m)$ (GeV)	13	22	34	46

 f_1 f_2 W p_{tc} f_1 f_2 f_2

The meson natural widths are less than a GeV, so the observed width $\sigma(m)$ is entirely due to detector resolution.

7/30/09

- Standard model background
 - Drell-Yan

$\rho_{\rm TC}$ and $\omega_{\rm TC}$

Revent Selection for muon channel

- $\sim p_T > 30 GeV$

- Opposite charge
- \sim Mass window $\pm 1.5 \sigma$

7/30/

- Discovery Potential
 - Including estimated early alignment: +50% luminosity needed

Randall-Sundrum model addresses the hierarchy problem by adding one extra-dimension. It predicts the existence of a tower of Kaluza-Klein exitations of the graviton.

- These graviton should be observable as resonances which decay into lepton pairs at LHC.
- The current limits depend on the parameters of the model, and range from several hundreds GeV to one TeV

- Standard Model backgrounds
 - For $G \rightarrow ee$
 - Drell-Yan
 - All other backgrounds are expected to be small.

Model Par	ameters	Γ_G	σ_m	$\sigma \cdot BR(G \to e^+e^-)$	
m_G	k/\bar{M}_{pl}	[GeV]	[GeV]	[fb]	
500 GeV	0.01	0.08	4.6	187.4	
750 GeV	0.01	0.10	6.4	27.7	
1.0 TeV	0.02	0.57	7.9	26.0	
1.2 TeV	0.03	1.62	10.3	22.4	
1.3 TeV	0.04	2.98	11.4	25.3	
1.4 TeV	0.05	5.02	13.1	26.8	

7/30/09

→ee

•The observed distribution includes a graviton with mass 1 TeV and coupling $\kappa / M_{pl} = 0.02$.

19

7/30/09

Example of the potential of the early data of LHC $W' \rightarrow e \nu$, $\mu \nu$

- \bigcirc The early run of the LHC is expected to be at √s=10TeV.
- ↔ With this we can have new physics showing up.
- C R The lowered center-of-mass energy, at 10TeV, degrades the production cross section, thus the sensitivity. In the case of the W' →1 ν the fraction left for the cross sections for signal and background are:

W' m=1 7	TeV W'm=	=1.5 TeV	W' m=2 TeV	W' m=2	.5 TeV
51.54%	40.37%	/ 0	34.50%	27.40%	
	W	tt	DiJet'	S -	
	62.60%	56.43%	63.08%	0	

 \bigcirc The signal and background remain without significant modifications on their shape for √s=10TeV.

Isabel Pedraza-DPF2009

Example of the potential of the early data of LHC

$$W' \rightarrow e \nu, \mu \nu$$

CR Exclusion limits W' $\rightarrow e \nu$

W' is one of the searches that can be done in the first run of the LHC. With O(50pb⁻¹) of well understood data we can either discover it or exclude it beyond the current limit.

Isabel Pedraza-DPF2009

Conclusions

- A selection of analyses on new predicted particles with Di-lepton and Lepton+MET final states was presented.
- A 14TeV studies have shown that the existence of a W' and Z' could be established at the 5 sigma level even with O(100pb⁻¹) of integrated luminosity

BACKUP

Electrons

The QCD cross sections at LHC are 10 to 100 times higher than at the Tevatron

Muons

Tau leptons

- $\bowtie Z \rightarrow \tau \tau$ can then be used to set the ET miss scale to a few %

