

Indirect Dark Matter Search with VERITAS

Ryan Dickherber* for the VERITAS collaboration

*Washington University in St. Louis & McDonnell Center for the Space Sciences

Evidence for Dark Matter

Begeman, Broeils and Sanders, 1991

- Galactic:
 - Rotation Curves
 - Velocity Dispersion
 - Colliding Clusters
- Universal
 - CMB (WMAP)
 - Distribution of Galaxies (SDSS)
- ...and more
- But what is it?

Gamma-Ray Annihilation

- WIMPs
 - LSP (supersymmetry)
 - LKP (extra dimensions)
- DM+DM->gamma-rays
 - Pions decay
 - Internal bremsstrahlung
 - Line emission
- DM decay -> gamma-rays
- Experiments
 - Fermi (space)
 - HESS
 - MAGIC
 - VERITAS
 - And others

VERITAS

- 4 IACTs see Cherenkov light from gamma-ray (and cosmic-ray) air showers
- Sensitive to ~100GeV-30TeV
 - Energy resolution ~15%
 - Good for neutralinos, e.g., constrained ~50GeV-100TeV
- 3.5° field of view
 - Cannot search the whole sky. What are well-motivated sources?
- Location: Southern Arizona

How VERITAS Works

Graphic taken from Brian Humensky. For more information on VERITAS, see Brian Humensky's excellent talk from yesterday.

Lambda-CDM

- Hierarchical structure formation
- DM halos have subhalos
- More dwarfs predicted than observed
 - DM-only dwarfs with no visible component?

Target: Dwarf Galaxies

- Dwarf Spheroidals
 - Draco
 - Ursa Minor ->
 - Willman I
 - Bootes I
- Motivation
 - High mass/light ~200
 - DM dominated
 - No typical gamma-ray sources
 - Clean DM signal

Credit: DSS Image

Observations: Dwarf Galaxies

~10-15 hours exposure each

Target: Local Group Galaxies

- M32 and M33
 - High central stellar density may enhance concentration of DM subhalos or increase density of DM
- (not M31)

Observations: Local Group Galaxies

M32

• M33: -0.3σ

• M32: 0.59σ

Gamma-ray Flux Equation

Cross Section Upper Limits

- Given flux and assuming NFW mass profile, solve for cross section
- MSSM models within 3 std deviations from WMAP relic density
- 95% confidence upper limits; ring background model analysis and Rolke zerobounded profile likelihood

Boosts

Kuhlen, Madau and Silk, 2009

- Substructure
 - Flux goes as ρ^2
 - boost=amount over NFW flux
 - N-body sims: boost minimum of \sim 3
 - Boost could be ~100
- Sommerfeld Enhancement
 - DM particles go ~270km/s; not relativistic
 - Slow moving particles suffer
 Sommerfeld Enhancement
 - Goes as $1/v^2$

Upper Limits with Boost

- Given flux and assuming NFW mass profile, solve for cross section
- MSSM models within 3 std deviations from WMAP relic density
- 95% confidence upper limits; ring background model analysis and Rolke zerobounded profile likelihood

Conclusion

- Gamma-ray observations are the most direct technique to map the distribution of dark matter in the sky
- Gamma-ray observations cover regions of parameter space uncovered by other techniques
- Status of VERITAS search for dark matter:
 - Upper limits placed on several well-motivated sources
 - Search will continue with more sources and longer observations
 - Follow-up on Fermi unidentified sources?
 - Annulus around galactic center?
- Next-generation gamma-ray experiments will dig deeper into parameter space