Observation of WW/WZ \rightarrow lvjj at CDF

Martina Hurwitz, University of Chicago, for the CDF collaboration

DPF Electroweak session, July 22 2009

Tevatron and CDF

- Tevatron and CDF in stable datataking mode for several years
- ~6 fb⁻¹ of recorded data available

WW / WZ production

- WW / WZ production at Tevatron
 - Tests Standard Model predictions
 - Can be enhanced by new physics (Higgs, SUSY, ...)
 - Has similar topology to SM Higgs production
- Observation and cross section measurements in leptonic modes
 - WW \rightarrow lvlv, WZ \rightarrow lvll
 - Consistent with SM so far
- Semi-leptonic modes suffer from large backgrounds
 - Evidence of WW/WZ \rightarrow lvjj reported by D0
 - Recent first observation of WW/WZ/ZZ \rightarrow MET+jj at CDF

WW+WZ → lvjj

- Require high-p_T electron or muon, large missing transverse energy (MET), and two jets
- Reconstruct W or Z from twojet system
 - Don't separate W from Z because of detector smearing
- WW is dominant over WZ
 σ*B.R. (WW) ~ 3.6 pb
 σ*B.R. (WZ) ~ 0.6 pb
- Presenting two recent measurements of WW+WZ \rightarrow lvjj at CDF
 - 1) Matrix element analysis in 2.7 fb⁻¹ (focus of this talk)
 - 2) Search for resonance in dijet invariant mass spectrum in 3.9 fb⁻¹

Event selection

- Triggers:
 - High-p_{τ} electron and muon triggers
 - Trigger requiring high MET and exactly two jets
- Four lepton categories: central electrons, central muons, forward muons, muons from MET+jets triggers
- Offline selection
 - Electron or muon with E_{T} or p_{T} > 20 GeV
 - MET>20 GeV
 - Two jets with E_{T} >25 GeV
 - Various vetos to reduce backgrounds and improve data / MC agreement

Backgrounds

Process		Shape modeling	Normalization estimate
W+jets	Large cross section, looks like signal	MC (Alpgen + Pythia)	Free parameter in final signal extraction
Z+jets	Reduce significantly by cutting on additional leptons	MC (Alpgen + Pythia)	MC (using measured cross section)
QCD	Reduce with cuts on MET, m _T (W)	Data with loosened lepton ID	Fit to MET spectrum
ttbar	Reduce with cuts on additional leptons and jets	MC (Pythia)	MC
Single top	Very small cross section	MC (MadEvent + Pythia)	MC

QCD multi-jet background

- Jet fakes a lepton and mismeasurement leads to large MET
 - Difficult to model
- Fit to MET spectrum to derive normalization
- Larger contribution in events with electrons
 - Not satisfied with modeling of these events
 - Impose very hard cuts on MET and transverse mass of leptonic W to reduce contribution to ~1%
 - Significantly reduces signal acceptance in electron events

Measurement is dominated by muon events

Expected event yields

Process	Event yield
WW signal	441 ± 28
WZ signal	79 ± 6
W+jets	9425 ± 283
Z+jets	546 ± 82
QCD multijet	252 ± 101
$t\bar{t}$	111 ± 15
single top	90 ± 9
Total predicted	10944 ± 313
Observed	10948

- Observed and predicted total agree by construction
 - W+jets contribution comes from fit to data
 - W+jets estimate used in validation of modeling, but not in final cross section fit
- Small signal-to-background ratio → use matrix element technique to discriminate

- Can define probability of an event originating from a specific process by evaluating the differential cross section: $P_{evt} \sim \frac{d\sigma}{\sigma}$
 - Integrate over detector response function, initial parton distribution functions, and z-component of missing energy
- Evaluate probabilities for signal and background processes and define Event Probability Discriminant (EPD) as:

Effectiveness of matrix element

- Dijet mass (M_{ii}): resonance in signal at W/Z peak
- Low-EPD events dominated by background, signal-to-background ratio improves with increasing EPD

Validation of MC modeling

- EPD relies on modeling of background and signal kinematics
- Check modeling of input variables and reconstructed bosons
 - Define control regions with little expected signal contribution according to dijet mass range

Validation of MC modeling

- Assign systematic uncertainty
- Derived in sidebands, extrapolated through signal region

Validation of discriminant in sideband regions:

- Binned maximum likelihood fit
 - Signal cross section and W+jets normalization are free parameters
- Bayesian approach: systematic uncertainties treated as nuisance parameters with Gaussian priors
 - Jet energy scale and resolution (shape and rate)
 - Background normalizations
 - Monte Carlo statistical uncertainties on templates
 - ISR / FSR and PDF uncertainties
 - Shape uncertainty in W+jets background: from uncertainty in factorization and renormalization scales in Alpgen and small mismodeling observed in dijet mass control regions
 - 6% uncertainty in integrated luminosity

Results

Measured cross section: $\sigma(WW+WZ) = 17.7 \pm 3.9 \text{ pb}$ (NLO: 16.1 ± 0.9 pb) p-value = 3.5 x 10⁻⁸ 5.4σ signifiance (5.1σ expected)

Search using dijet mass

- Search for resonance in M_{ii}
 - Intuitive search technique, but lower sensitivity expected
- Event selection different than in matrix element analysis to achieve smoothly falling distribution in background
 - Cut on p_{T} of hadronic W candidate (p_{T} >40 GeV)
 - Different QCD veto
 - Less strict veto in electrons →
 ~equal acceptance in muon and electron events

Signal extraction in dijet mass

- Create three templates
 - Electroweak (EWK) = W+jets,
 Z+jets, and top backgrounds
 - QCD
 - Signal = WW and WZ
- Perform binned likelihood fit to sum of three templates
 - EWK normalization, signal normalization, overall normalization are free parameters
 - QCD is constrained by MET fit
- Muon and electron events fit separately, results combined at end

Results from fit to dijet mass

σ (WW+WZ) = 14.4±3.1(stat)±2.2(sys) pb (NLO: 16.1 ± 0.9 pb)

Significance: 4.6σ (4.9σ expected)

- We have observed WW/WZ events in channel with lepton (electron or muon), MET, and two jets
 - Challenging search with large W+jets background
 - Interesting topology analogous with Higgs searches
- Search using matrix element discriminant with 2.7 fb⁻¹ of luminosity finds signal with significance of 5.4 σ
- Two separate measurements of cross section give compatible results and are in good agreement with SM
 - $-\sigma(WW+WZ) = 17.7 \pm 3.9 \text{ pb}$ (Matrix element technique)
 - $-\sigma(WW+WZ) = 14.4 \pm 3.8 \text{ pb}$ (Dijet mass technique)

 $[\sigma(WW+WZ) = 16.1 \pm 0.9 \text{ pb} (\text{Standard model at NLO})]$