A Phenomenological Study of Photon Production in Low Energy Neutrino Nucleon Scattering

James Jenkins

Theoretical Division, T-2 Los Alamos National Laboratory

Division of Particles and Fields (DPF 2009)

▲ @ ▶ ▲ ⊇ ▶

Outline

- 2 Process
 - Diagram and Couplings
 - Cross Section

3 Phenomenology

- Results
- Interference Effects

In collaboration with Terry Goldman (LANL) arXiv:0906.0984 [hep-ph] (submitted for publication in PRD)

Motivation

See previous talk by Richard Hill

Neutrino experiments are probing the sub-% level and the need for accurate background calculations is increasing.

Why study photon production?

- Some experiments can't distinguish photons and electrons
- Currently included radiative corrections are incomplete
 - Only nucleon bremsstrahlung and radiative Δ decays
- MiniBoone low energy anomaly
 - Possible standard model background
 - Possible $\nu \bar{\nu}$ differences (Hard to achieve)

See also Harvey, Hill, Hill (2007) and R.J. Hill (2009)

Diagram and Couplings Cross Section

Radiative Process

- Phenomenological couplings from decays
- Full ωZ running
- Vector meson dominance
- $\gamma \bullet$ Fully relativistic treatment
 - Interference effects
 - Extend to CC processes
 (π production)
 - Extend to higher energy

- < ≣ → <

< 🗇 ▶

 $\mathcal{L}_{I} = eg_{\omega\gamma\pi}\epsilon_{\mu\nu\xi\sigma}\omega^{\mu}\partial^{\nu}\pi^{0}\mathcal{F}^{\xi\sigma} + g_{\pi NN}\bar{\Psi}\gamma^{\mu}\partial_{\mu}\vec{\pi}\cdot\vec{\tau}\Psi$

Diagram and Couplings Cross Section

A Closer Look at the Couplings

Find couplings phenomenologically

 $\omega - \pi - \gamma$ vertex has the "anomaly" form but exists independent of anomaly!

"Dress" $\pi - N - N$ to account for form factors.

Diagram and Couplings Cross Section

$\omega - Z$ Running Calculation

Parameterize
$$\omega - q\bar{q}$$
 coupling
by $g_{\omega q\bar{q}}M^2/(M^2 - p^2)$

Extract $g_{\omega q ar q} pprox 3.1$ from $\omega \ o \ \pi^0 \ \pi^+ \ \pi^-$

- Evaluate self energy $\Pi_{\mu\nu}$
- Consider terms contributing to p² dependence
- Orop logarithmic contributions

$$g_{\omega Z}(p^{2}) = \frac{-gg_{\omega q\bar{q}}M^{2}s_{\theta_{W}}^{2}}{12\pi^{2}c_{\theta_{W}}} \int_{0}^{1} dz \int_{0}^{1-z} dx \frac{p^{2}Z(z-1) + m_{q}^{2}}{p^{2}Z(z-1) + m_{q}^{2} + x(M^{2} - m_{q}^{2})}$$
Assuming $m_{q} \sim 3$ MeV and $M \sim M_{\omega}$ at $E \sim 200 - 1000$ MeV
 $\rightarrow \bar{g}_{\omega Z} \approx 600$ MeV²

Diagram and Couplings Cross Section

$\omega - \pi - \gamma$ Vertex

Use $\Gamma(\omega \rightarrow \pi + \gamma)$ from the phenomenological interaction

$$\mathcal{L}_{\mathcal{I}} = eg_{\omega\gamma\pi}\epsilon_{\mu
u\xi\sigma}\omega^{\mu}\partial^{
u}\pi^{0}F^{\xi\sigma}$$

Neglecting the π mass, the squared amplitude is

$$\mathcal{A}^2=-rac{2e^2g^2_{\omega\gamma\pi}}{3}k\cdot q=rac{e^2g^2_{\omega\gamma\pi}M^4_\omega}{6},$$

which implies the decay width

$$\Gamma(\omega
ightarrow \pi + \gamma) = rac{lpha g_{\omega\gamma\pi}^2 M_\omega^3}{24}.$$

Fitting to observed decay width yields $g_{\omega\gamma\pi} = 1.8/M_{\omega}$

・ロン ・四 と ・ ヨ と ・ ヨ と …

Diagram and Couplings Cross Section

Amplitude

• $k = (E_k, \vec{E}_k)$

$$\mathcal{A}^{2} = \frac{128M_{n}^{2}g_{\nu Z}^{2}g_{\omega \gamma \pi}^{2}g_{\pi NN}^{2}g_{\omega Z}^{2}(q^{2})}{(q^{2} - M_{Z}^{2})^{2}(q^{2} - M_{\omega}^{2})^{2}(Q^{2} - M_{\pi}^{2})^{2}} \quad \text{Couplings \& Propagators} \\ \times \quad \ell_{i} \cdot \ell_{f}(p_{i} \cdot p_{f} - M_{N}^{2}) \left((k \cdot \ell_{i})^{2} + (k \cdot \ell_{f})^{2} \right) \quad \text{Kinematics}$$

From this, evaluate cross section in CM frame

- $\ell_i = (E_{\ell_i}, \vec{E}_{\ell_i}), \ \ell_f = (E_{\ell_f}, \vec{E}_{\ell_f})$ Massless ν momentum • $p_i = (E_{p_i}, -\vec{E}_{\ell_i}), \ p_f = (E_{p_f}, \vec{p}_{p_f})$ Nucleon momentum
 - Photon momentum

Write as a function of the invariant quantity $\sqrt{s} = E_{\ell_i} + E_{\mathcal{P}_i}$

Diagram and Couplings Cross Section

Cross Section Formula

$$\begin{aligned} \frac{d\sigma}{dE_k d\mu} &= \frac{M_N^2 g_{\omega Z}^2 g_{\omega \gamma \pi}^2 g_{\pi NN}^2}{(2\pi)^4 E_{\ell_i} (E_{\ell_i} + E_{p_i})} \int dE_{\ell_f} d\phi \frac{g_{\omega Z}^2 (q^2) q^2 Q^2 \left((k \cdot \ell_i)^2 + (k \cdot \ell_f)^2 \right)}{(q^2 - M_Z^2)^2 (q^2 - M_\omega^2)^2 (Q^2 - M_\pi)^2} \end{aligned}$$
Where $q^2 &= -2E_{\ell_i} E_{\ell_f} (1 - \mu_{\ell_f})$ and $Q^2 = q^2 - 2k \cdot \ell_i + 2k \cdot \ell_f$
 $\mu_{\ell_f} &= \mu \mu_{\ell_f k} + \sqrt{1 - \mu^2} \sqrt{1 - \mu_{\ell_f k}^2} \cos \phi.$

This is the only source of ϕ dependence in the system. Momentum conservation then fixes

$$\mu_{\ell_f k} = \frac{1}{2E_{\ell_f}E_k} \left(\sqrt{s}^2 - 2\sqrt{s}(E_{\ell_f} + E_k) + 2E_k E_{\ell_f} - M_N^2\right).$$

Cross Section Formula (Continued)

Evaluate in the limit $|q^2| \ll M_Z^2$, $|Q^2| \gg M_\pi^2$ and $g_{\omega Z}(q^2) \sim \bar{g}_{\omega Z}$ Integrating over ϕ

$$\begin{array}{ll} \displaystyle \frac{d\sigma}{dE_k d\mu} & = & \displaystyle \frac{M_N^2 E_k^2 g_{\nu Z}^2 \bar{g}_{\omega Z}^2 g_{\omega \gamma \pi}^2 g_{\pi NN}^2}{(2\pi)^3 E_{\ell_i} (E_{\ell_i} + E_{\rho_i}) M_Z^4} \int dE_{\ell_i} \left(E_{\ell_i}^2 (1-\mu)^2 + E_{\ell_i}^2 (1-\mu_{\ell_i k})^2 \right) \\ & \times & \displaystyle \frac{1}{f^2 (b-c)^2} \left\{ \frac{a-b}{(b^2-1)^{\frac{1}{2}}} + \frac{c^3-2ac^2+abc-b+a}{(c^2-1)^{\frac{3}{2}}} \right\}, \end{array}$$

where

$$f = 2E_{\ell_{i}}E_{\ell_{f}}\sqrt{1-\mu^{2}}\sqrt{1-\mu_{\ell_{f}k}^{2}}$$

$$a = \frac{2E_{\ell_{i}}E_{\ell_{f}}(1-\mu\mu_{\ell_{f}k})}{f}$$

$$b = \frac{2E_{\ell_{i}}E_{\ell_{f}}(1-\mu\mu_{\ell_{f}k})+2E_{k}E_{\ell_{i}}(1-\mu)-2E_{k}E_{\ell_{f}}(1-\mu\ell_{\ell_{f}k})}{f}$$

$$c = \frac{2E_{\ell_{i}}E_{\ell_{f}}(1-\mu\mu_{\ell_{f}k})+M_{\omega}^{2}}{f}.$$
Hence Lengths we be defined as the second

Results Interference Effects

Results

æ

Results Interference Effects

Differential Cross Section $E_{\nu} = 200 \text{ MeV} (\omega \text{ case})$

・ロト ・ ア・ ・ ヨト ・ ヨト

Results Interference Effects

Differential Cross Section $E_{\nu} = 350 \text{ MeV}$ (ω case)

ヘロン ヘアン ヘビン ヘビン

Results Interference Effects

Differential Cross Section $E_{\nu} = 500 \text{ MeV} (\omega \text{ case})$

イロト 不得 とくほと くほとう

Results Interference Effects

Differential Cross Section $E_{\nu} = 1000 \text{ MeV} (\omega \text{ case})$

・ロト ・ ア・ ・ ヨト ・ ヨト

Results Interference Effects

Total Cross Section (ω case)

James Jenkins *ν*-N Radiative Corrections

Results Interference Effects

$\omega - \rho^0$ Diagram Interference

Dominant Effects

•
$$\omega(\rho) - \pi - \gamma$$
 vertex
• $\frac{g_{\rho\gamma\pi}}{g_{\omega\gamma\pi}} = \frac{0.55M_{\omega}}{1.8M_{\rho}} = 0.31$

• $Z - \omega(\rho)$ mixing

• Large isospin enhancement of ${\it Z}-\rho$ mixing relative to ${\it Z}-\omega$

$$\frac{g_{\rho Z}}{g_{\omega Z}} = \frac{g_{Zd\bar{d}} - g_{Zu\bar{u}}}{g_{Zd\bar{d}} + g_{Zu\bar{u}}} \times \frac{g_{\rho q\bar{q}}}{g_{\omega q\bar{q}}} \\
\sim 3\frac{1 - 2s_{\theta_{W}}^{2}}{2s_{\theta_{W}}^{2}} \times \sqrt{\frac{\Gamma(\rho \to \pi\pi)}{\Gamma(\omega \to \pi\pi\pi)}} \frac{\phi(\omega \to \pi\pi\pi)}{\phi(\rho \to \pi\pi)} = 4.1$$

$$\sigma^{
ho}/\sigma^{\omega} pprox (g_{
ho-\gamma-\pi}/g_{\omega-\gamma-\pi})^2 imes (g_{
ho Z}/g_{\omega Z})^2 pprox 1.6$$

Amplitudes are similar \rightarrow large interference Total cross sections can be between {0.07, 5, 1} of σ_{ω} case!

Results Interference Effects

Summary

I present a SM contribution to t-channel photon production in neutrino nucleon scattering.

These rates can be large enough to affect current experiments but possess large interference uncertainties.

Further Results

- Same cross sections for ν and $\bar{\nu}$
- Vanishing diagram permutations
 - Replace ω with axial vector
 - Exchange ω and π_0
 - Invert exchange so that π_0 couples to neutrino

Measurements of photon (and even π_0) production can help shed light on this process.

(日)

Results Interference Effects

Looking Forward to π^0 Production

$$= \left(q^{2} - M_{W}^{2}\right)^{2} (q^{2} - M_{D}^{2})^{2} (G^{2} - M_{\pi}^{2})^{2} \left\{ \int_{q}^{q} \frac{m^{2}}{m^{2}} \left\{ 2 \int_{q}^{q} \frac{m^{2}}{m^{2}} \left\{ \int_{q}^{q} \frac{m^{2}}{m^{2}} \frac{m^{2}}{m^{2}} \left\{ \int_{q}^{q} \frac{m^{2}}{m^{2}} \left\{ \int_{q}^{q} \frac{m^{2}}{m^{2}} \frac{m^{2}}{m^{2}} \left\{ \int_{q}^{q} \frac{m^{2}}{m^{2}} \frac{m^{2}}{m^{2}} \left\{ \int_{q}^{q} \frac{m^{2}}{m^{2}} \frac{m^{2}}{m^{2}} \frac{m^{2}}{m^{2}} \left\{ \int_{q}^{q} \frac{m^{2}}{m^{2}} \frac{m^{2}}{$$

ト (注) (注)

P.

э