

Search for a Standard Model Higgs Boson in H → WW Channel at CDF

Jennifer Pursley

University of Wisconsin, Madison

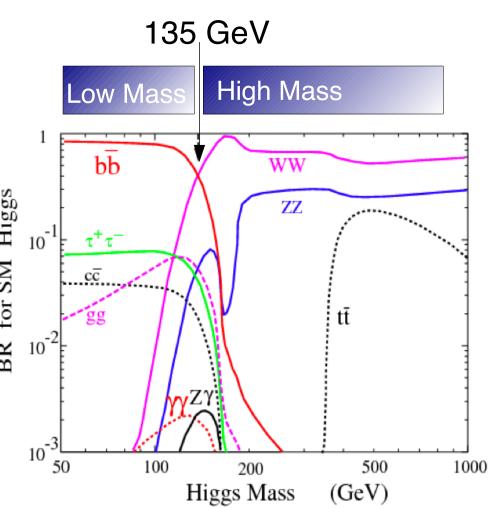
2009 Meeting of the Division of Particles and Fields of the American Physical Society Wayne State University, July 27 - 31, 2009

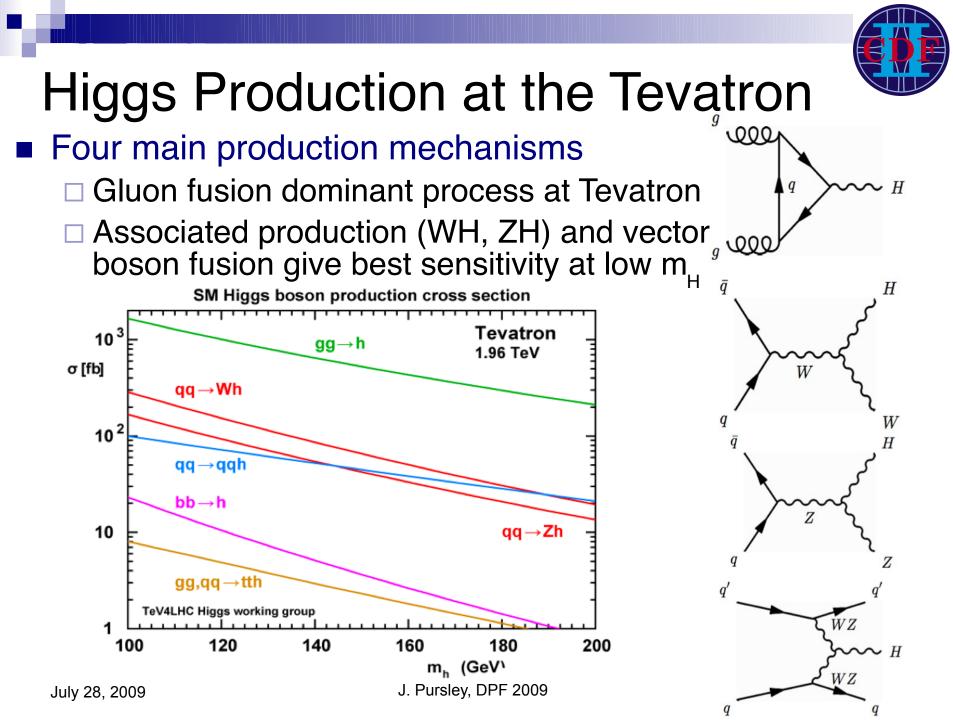
SM Higgs Searches at the Tevatron


As of March 2009: Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹ Limit/SN LEP Exclusion Tevatron Exclusion Expected Observed 10 ±1σ Expected 5% CL ±2σ Expected See N. Krumnack's talk for details SM March 5, 2009 100 110 120 130 140 150 160 170 180 190 20 m_H(GeV/c²)

Tevatron goal: continue to expand mass region where sensitive to SM Higgs boson production

□ Today: New CDF result for high mass Higgs using 4.8 fb⁻¹

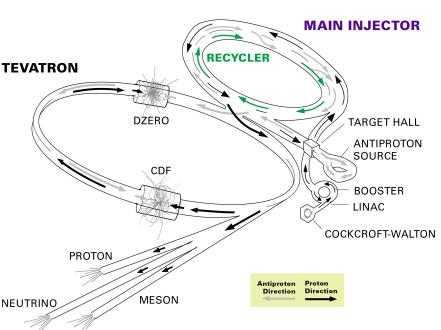

Standard Model Higgs Decay

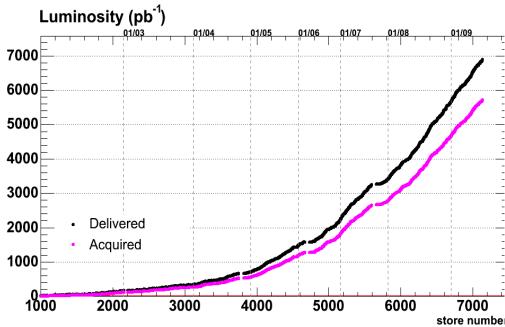


• For $gg \rightarrow H \rightarrow WW \sigma x BR$, \square Peak sensitivity at m_{\perp} ~ 160

WW decay modes

- Η □ Hadronic W decay modes have large QCD bkg 3R for
- \Box Dilepton (e, μ): BR ~ 6%
 - Small BR, but... clean, easy to trigger
 - Sensitive to $\tau \rightarrow (e, \mu)$
- High mass Higgs search: $H \rightarrow WW \rightarrow \ell \nu \ell \nu$

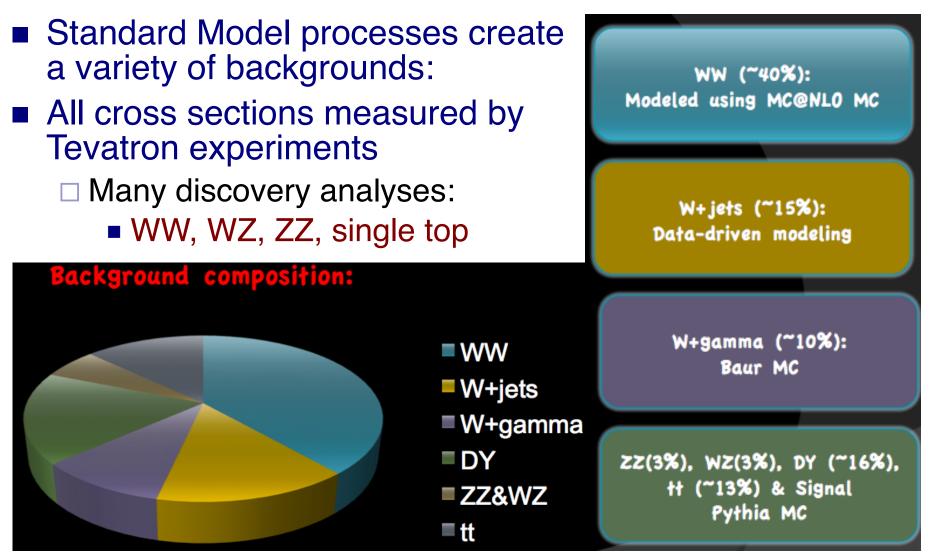




Tevatron Performance

- Collide pp at √s = 1.96 TeV
- Integrated over 250 pb⁻¹ of data in January 2009

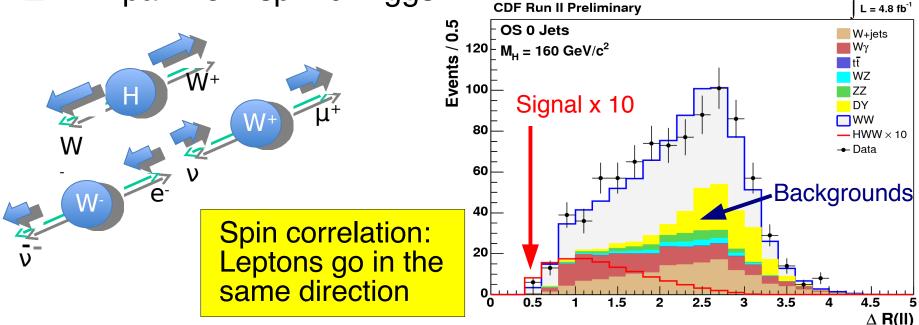
FERMILAB'S ACCELERATOR CHAIN

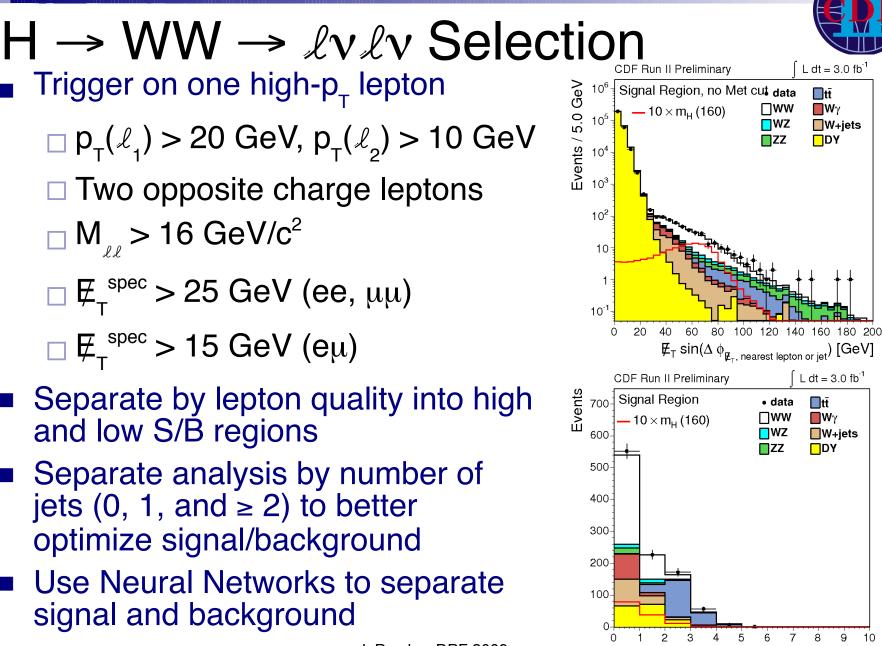


CDF has acquired about 5.8 fb⁻¹ total

□ Today's results use 4.8 fb⁻¹

$H \rightarrow WW \rightarrow \ell \nu \ell \nu Backgrounds$




$H \rightarrow WW \rightarrow \ell \nu \ell \nu$ Signature

Decay kinematics

- \square 2 high $p_{_{T}}$ leptons (e or $\mu)$ with missing transverse energy
- Broad invariant mass spectrum
- \Box WW pair from spin-0 Higgs:

Dilepton opening angle strongest background discriminant

July 28, 2009

9

8

 $L dt = 3.0 \text{ fb}^{-1}$

W+jets

∎tī **W**γ

 $L dt = 3.0 \text{ fb}^{-1}$

∎tī

Wγ

W+jets

∏ww

∎wz

ΠZΖ

data

NMU

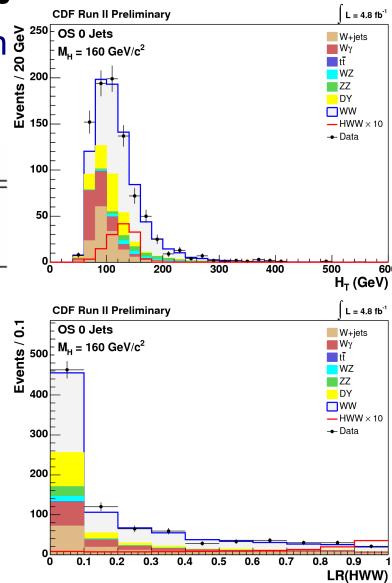
🗖 WZ

ZZ

6

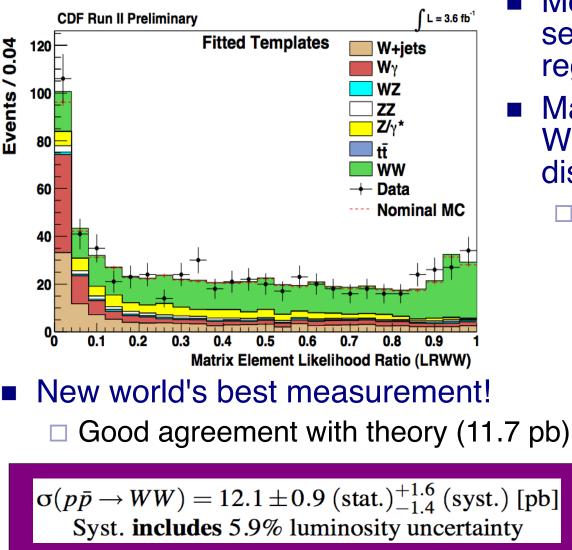
$H \rightarrow WW + 0$ Jet Analysis

Only consider gg → H production Small contributions from VH and vector boson fusion

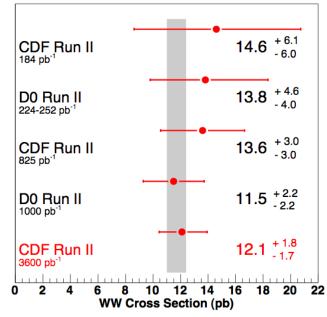

0 Jets	$m_H = 165$	Bkgd	Data
High S/B	10	516 ± 52	513
Low S/B	2	343 ± 40	372

Dominant background WW

Dilepton opening angle best discriminant

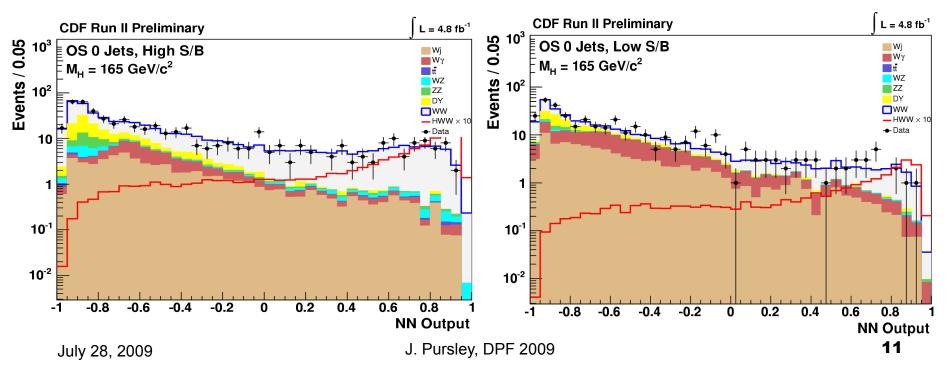

Inputs to Neural Network

Use kinematic variables and leading order matrix elementbased likelihood ratios



WW Cross Section

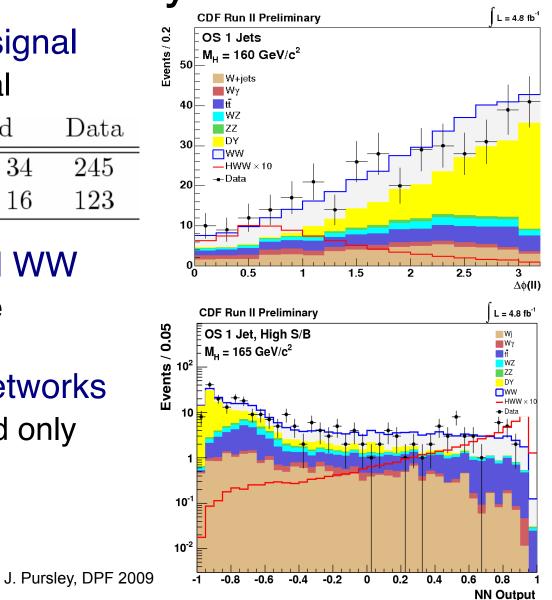
- Measure WW cross section in 0 jet signal region
- Maximum likelihood fit to WW likelihood ratio distribution
 - Systematic uncertainties included as Gaussian constraints in fit


July 28, 2009

$H \rightarrow WW + 0$ Jet Results

Output of the Neural Network:

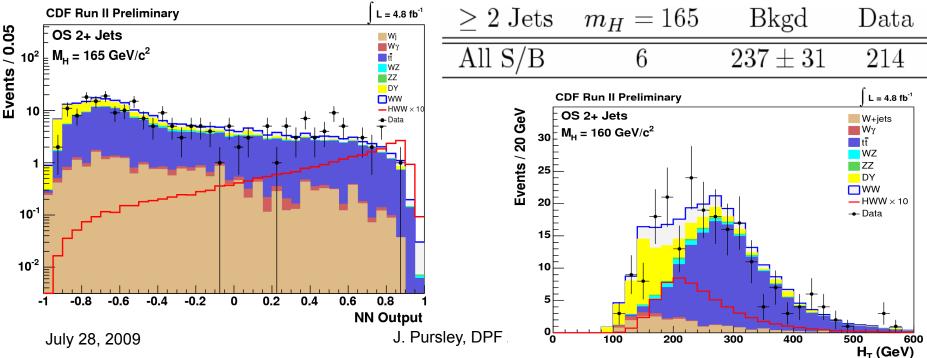
- No excess observed at high NN score
- Limits calculated from NN output distributions using Bayesian approach
- Majority of H→WW sensitivity comes from 0 jet channel

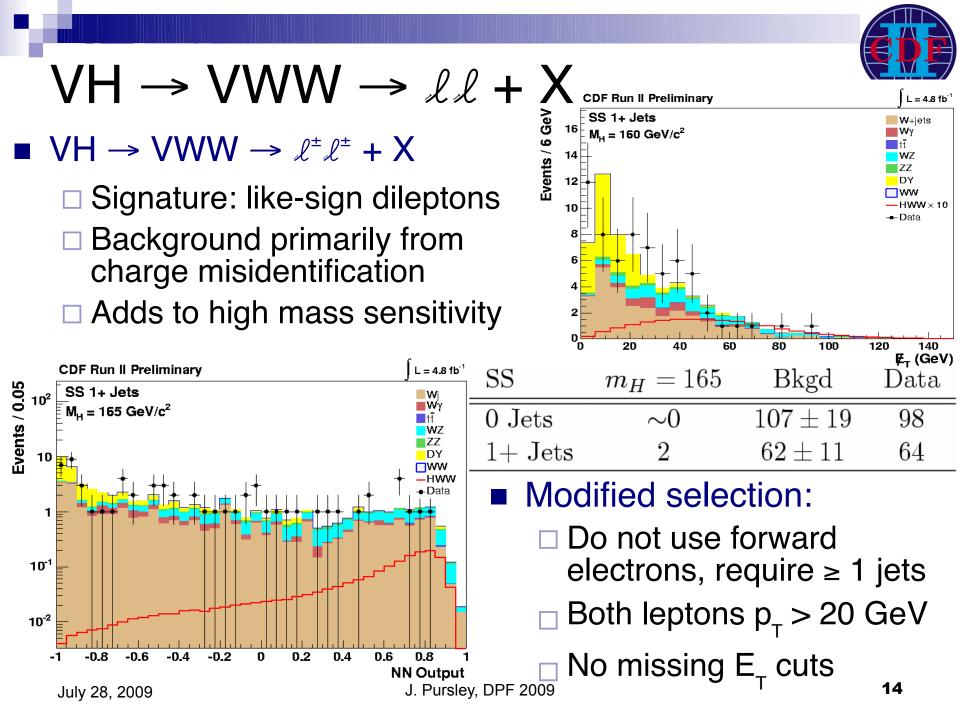


$H \rightarrow WW + 1$ Jet Analysis

Include VH and VBF signal
 Additional 20% signal

1 Jets	$m_H = 165$	Bkgd	Data
High S/B	6	255 ± 34	245
Low S/B	1	129 ± 16	123

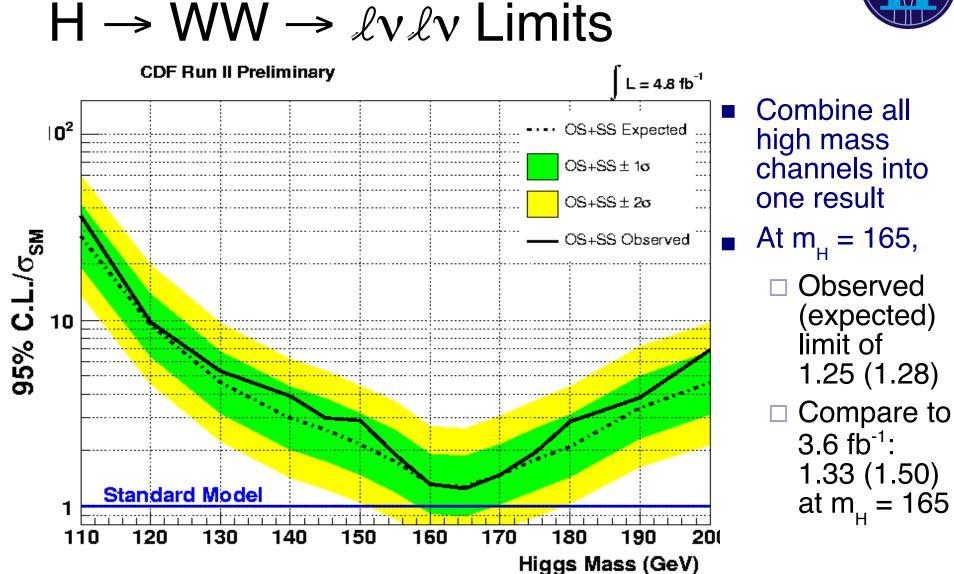

- Dominant background WW
 Drell-Yan similar size
- Use kinematic input variables to Neural Networks
 - Matrix elements used only for 0 jet events



$H \rightarrow WW + \ge 2$ Jets Analysis

- No separation by lepton quality due to low statistics
- VH and VBF signal contributions dominant (60%)
- Largest background is tt
 - \Box Anti-*b*-tagging reduces tt background by > 50%
- Use kinematic input variables to Neural Networks

$H \rightarrow WW \rightarrow \ell \nu \ell \nu$ Systematics


Systematic (%)	Sig	Bkgs
Cross section	5-12	5-10
Conversions	0	20-30
NLO diagrams	3-10	5-10
PDF model	1-3	1-5
Jet modeling	1-2	1-30
Lepton ID	2	2
Trigger efficiency	2-3	2-7
Luminosity	6	6

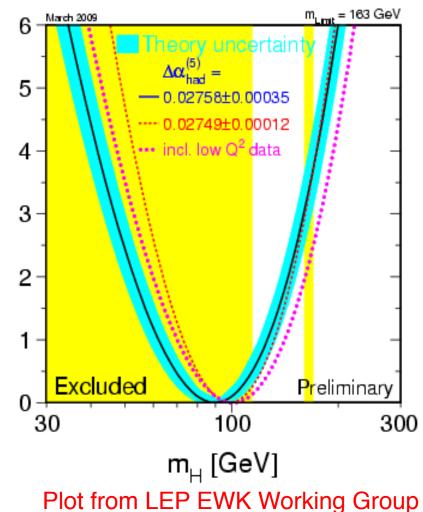
- Two classes of systematics:
 - □ Shape
 - Modify output of discriminant
 - Studied but found to be negligible

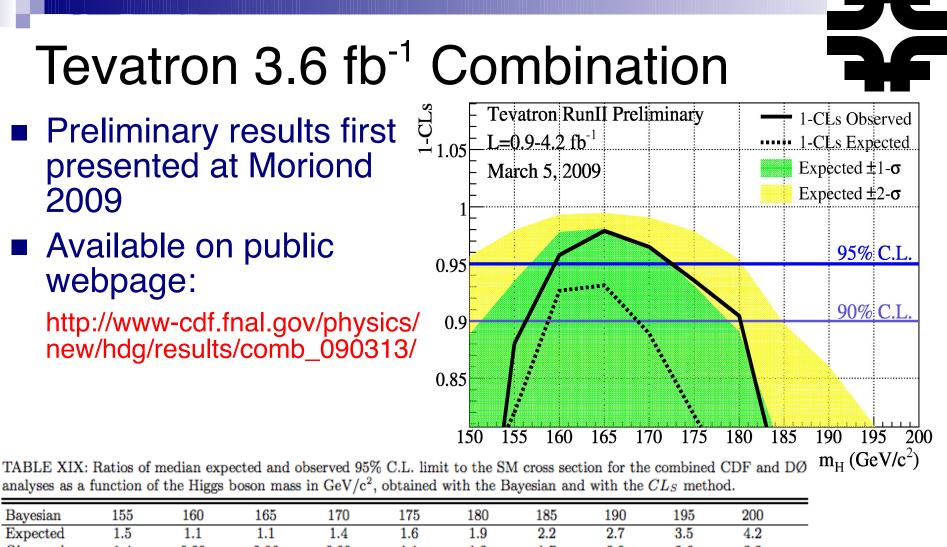
Flat

- Affect only normalization, do not modify shape
- Dominant systematics

Summary

- Tevatron making great strides in SM Higgs searches
 - Rapid incorporation of new data and analysis improvements
 - March 2009: 3.6 fb⁻¹, July 2009: 4.8 fb⁻¹
 - Results available on http://www-cdf.fnal.gov/physics/new/ hdg/results/hwwmenn_090710/
 - CDF and D0 both approaching Standard Model sensitivity at high masses
 - □ New Tevatron combination for Lepton-Photon Aug 2009
 - Incorporate new high and low mass results
- Tevatron excludes at 95% C.L. production of SM Higgs bosons in mass range 160-170 GeV
 - □ More to come...


Extra Slides


July 28, 2009

Standard Model and the Higgs

- Standard Model needs Higgs or Higgs-like mechanism to:
 - Explain electroweak symmetry breaking
 - Give particles mass
- Direct Higgs searches at LEP Exclude Higgs of M_H < 114.4 GeV at 95% C.L.
- Indirect constraints from electroweak data prefer lighter Higgs (M_H < 154 GeV)
 - □ Combined with LEP results → upper limit of $M_{_{\rm H}} < 185 \text{ GeV}$

Observed	1.4	0.99	0.86	0.99	1.1	1.2	1.7	2.0	2.6	3.3	
CL_S	155	160	165	170	175	180	185	190	195	200	
Expected	1.5	1.1	1.1	1.3	1.6	1.8	2.5	3.0	3.5	3.9	
Observed	1.3	0.95	0.81	0.92	1.1	1.3	1.9	2.0	2.8	3.3	

H → WW 0 Jet Systematics

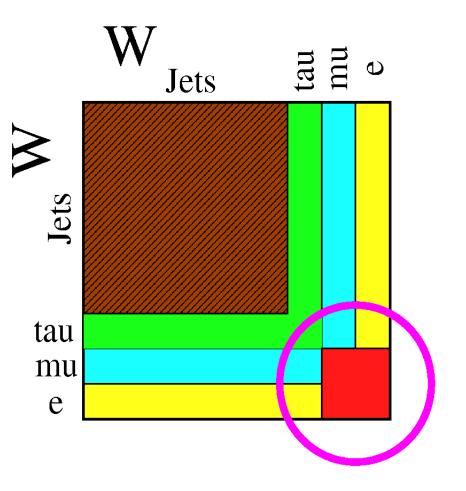
0 Jet Uncertainties	WW	WZ	ZZ	$tar{t}$	DY	$W\gamma$	W+jet	$gg \to H$	WH	ZH	VBF
Cross Section											
Scale								10.9%			
PDF Model								5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%		12.0%			
Acceptance											
Scale (leptons)								2.5%			
Scale (jets)								4.6%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%		1.5%			
PDF Model (jets)								0.9%			
Higher-order Diagrams	5.5%	10.0%	10.0%	10.0%	5.0%	10.0%					
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%		1.0%			
Conversion Modeling						20.0%					
Jet Fake Rates											
Jet Pare Rates											
(Low S/B)							21.5%				
							21.5% 27.7%				
(Low S/B)	3.9%			4.5%		4.5%		3.7%			
$\begin{array}{c} (\text{Low S/B}) \\ (\text{High S/B}) \end{array}$	3.9% 2.0%	1.7%	2.0%	4.5% 2.0%	1.9%	$\frac{4.5\%}{1.4\%}$		3.7% 1.9%			
(Low S/B) (High S/B) MC Run Dependence		1.7% 2.1%	2.0% 2.1%		1.9% 3.4%						
(Low S/B) (High S/B) MC Run Dependence Lepton ID Efficiencies	2.0%			2.0%		1.4%		1.9%			

H → WW 1 Jet Systematics

1 Jet Uncertainties	WW	WZ	ZZ	$tar{t}$	DY	$W\gamma$	W+jet	$gg \to H$	WH	ZH	VBF
Cross Section											
Scale								10.9%			
PDF Model								5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%		12.0%	5.0%	5.0%	10.0%
Acceptance											
Scale (leptons)								2.8%			
Scale (jets)								-5.1%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%		1.7%	1.2%	0.9%	2.2%
PDF Model (jets)								-1.9%			
Higher-order Diagrams	5.5%	10.0%	10.0%	10.0%	5.0%	10.0%			10.0%	10.0%	10.0%
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%		1.0%	1.0%	1.0%	1.0%
Conversion Modeling						20.0%					
Jet Fake Rates											
Jet rake mates											
(Low S/B)							22.2%				
$\begin{array}{c} (\text{Low S/B}) \\ (\text{High S/B}) \end{array}$							$22.2\%\ 31.5\%$				
(Low S/B)	1.8%			2.2%		2.2%		2.6%	2.6%	1.9%	2.8%
(Low S/B) (High S/B) MC Run Dependence Lepton ID Efficiencies	2.0%	2.0%	2.2%	2.2% 1.8%	2.0%	2.2% 2.0%		2.6% 1.9%	2.6% 1.9%	1.9% 1.9%	2.8% 1.9%
(Low S/B) (High S/B) MC Run Dependence		2.0% 2.1%	2.2% 2.1%		2.0% 3.4%						
(Low S/B) (High S/B) MC Run Dependence Lepton ID Efficiencies	2.0%			1.8%		2.0%		1.9%	1.9%	1.9%	1.9%

$H \rightarrow WW \ge 2$ Jets Systematics

≥ 2 Jets Uncertainties	WW	WZ	ZZ	$t ar{t}$	DY	$W\gamma$	W+jet	$gg \to H$	WH	ZH	VBF
Cross Section											
Scale								10.9%			
PDF Model								5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%		12.0%	5.0%	5.0%	10.0%
Acceptance											
Scale (leptons)								3.1%			
Scale (jets)								-8.7%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%		2.0%	1.2%	0.9%	2.2%
PDF Model (jets)								-2.8%			
Higher-order Diagrams	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%			10.0%	10.0%	10.0%
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%		1.0%	1.0%	1.0%	1.0%
Conversion Modeling						20.0%					
<i>b</i> -tag Veto				7.0%							
Jet Fake Rates							27.1%				
MC Run Dependence	1.0%			1.0%		1.0%		1.7%	2.0%	1.9%	2.6%
Lepton ID Efficiencies	1.9%	2.9%	1.9%	1.9%	1.9%	1.9%		1.9%	1.9%	1.9%	1.9%
Trigger Efficiencies	2.1%	2.1%	2.1%	2.0%	3.4%	7.0%		3.3%	2.1%	2.1%	3.3%
Luminosity	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%		5.9%	5.9%	5.9%	5.9%

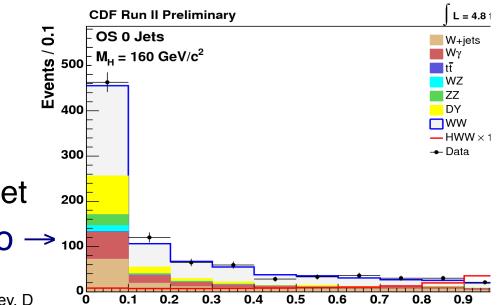

$H \rightarrow WW \ge 1$ Jets SS Systematics

Uncertainty Source	WW	WZ	ZZ	$t\bar{t}$	DY	$W\gamma$	W+jet				
Cross Section											
Scale											
PDF Model											
Total	6.0%	6.0%	6.0%	10.0%	5.0%	10.0%					
Acceptance											
Scale											
PDF Model	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%					
Higher-order Diagrams	5.0%	10.0%	10.0%	10.0%		10.0%					
Jet Modeling	3.0%				17.0%	16.0%					
Conversion Modeling						20.0%					
Charge Mismeasurement Rate	16.5%			16.5%	16.5%						
Jet Fake Rates							30.0%				
MC Run Dependence	1.9%			1.0%		Uncert	ainty Sourc	e	$gg \to H$	WH	ZH
Lepton ID Efficiencies	2.0%	2.0%	2.0%	2.0%	2.0%		Section				
Trigger Efficiencies	2.1%	2.1%	2.1%	2.0%	3.4%	Scale					
Luminosity	5.9%	5.9%	5.9%	5.9%	5.9%	PDF N	Aodel			- 001	- 001
						- Total	4-200			5.0%	5.0%
						-	otance			: 201	2.201
							Model (lepto	/		1.2%	0.9%
							Higher-orde	0		10.0%	10.0%
						Lepton	n ID Efficien	cies		2.0%	2.0%
						Trigger	r Efficiencies	5		2.1%	2.1%
						Lumir	nosity			5.9%	5.9%
										-	

$H \rightarrow W^+W^-$ Final States

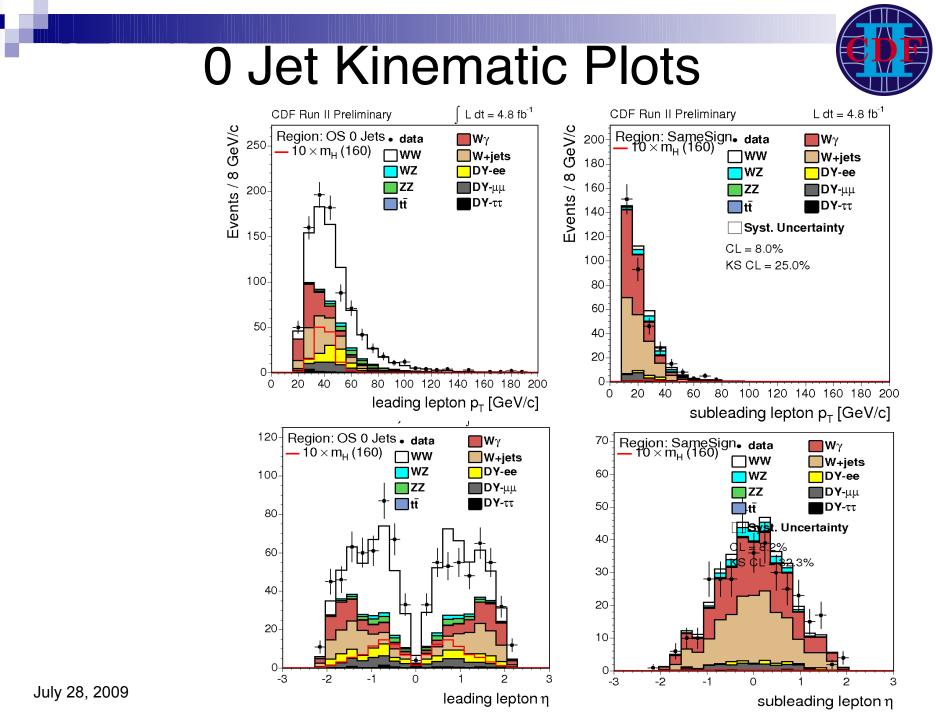
- W decay modes
 Leptonic 33% (e, μ)
 - □ Hadronic 67%
- Dilepton (e, μ): BR ~ 6%
 - \Box Sensitive to $\tau \rightarrow$ (e, μ)
 - Small BR, but... clean, easy to trigger
- Lepton + τ_{had} : BR ~ 4%
 - Potentially useful
- Lepton + jets: BR ~ 30%
 Large W+jets background
- All hadronic: BR ~ 45%
 - Large QCD background

LR(HW\

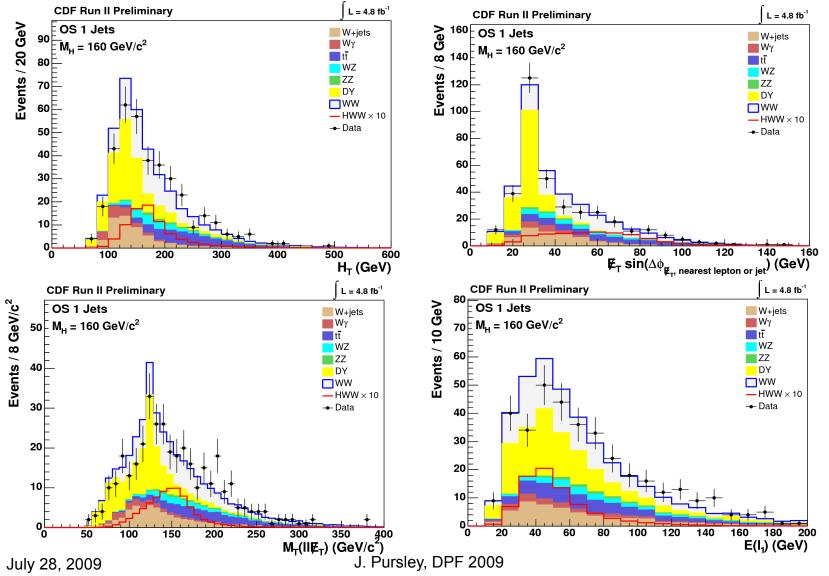

Matrix Elements

$$P(\vec{x}_{obs}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma_{th}(\vec{y})}{d\vec{y}} \, \varepsilon(\vec{y}) \, G(\vec{x}_{obs}, \vec{y}) \, d\vec{y}$$

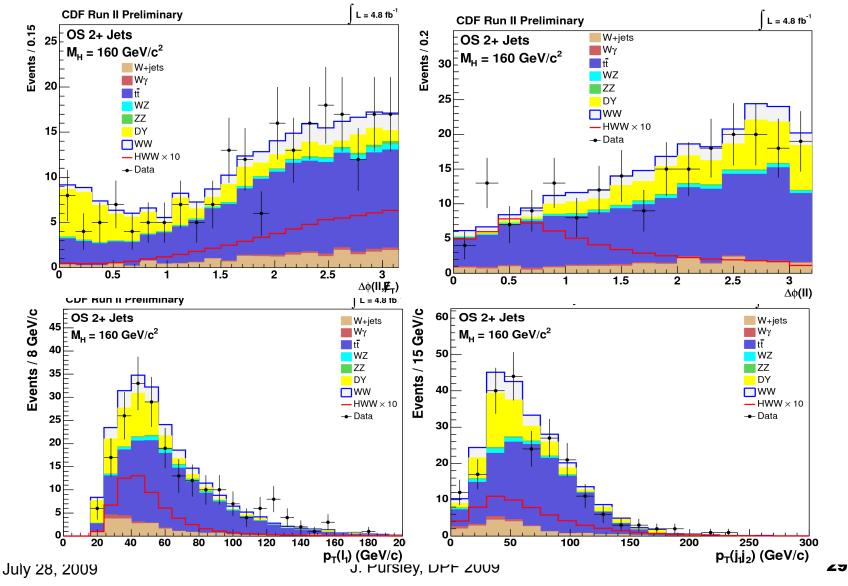
Event-by-event probability density


- \vec{x}_{obs} Observed leptons and $\not\!\!E_T$
- \vec{y} True lepton 4-vectors (l, v)
- σ_{th} Leading order theoretical cross-section
- $\epsilon(\vec{y})$ Efficiency & acceptance
- $G(\vec{x}_{obs}, \vec{y})$ Resolution effects
- $1/\langle \sigma \rangle$ Normalization
- Model 5 modes:
 HWW, WW, ZZ, Wγ, W+jet
- Construct Likelihood Ratio →

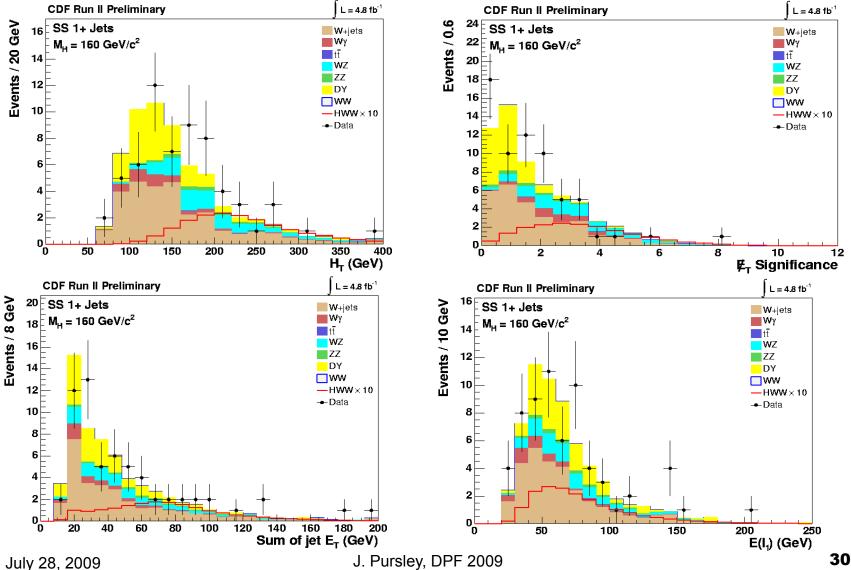
 $LR_m = \frac{P_m(\vec{x}_{obs})}{P_m(\vec{x}_{obs}) + \sum_i k_i P_i(\vec{x}_{obs})}$


July 28, 2009

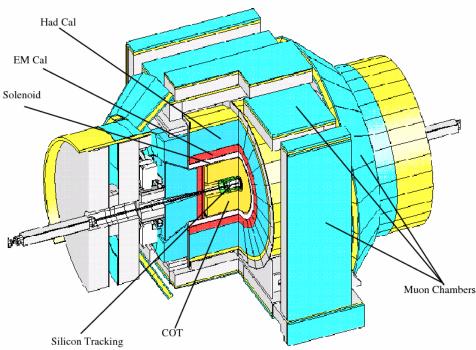
J. Pursley, D

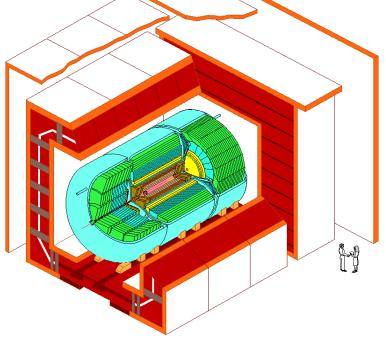


1 Jet NN Inputs



2+ Jet NN Inputs


SS NN Inputs



CDF and D0 Detectors

CDF

- Silicon inner tracker, wire drift chamber outer
- EM and had calorimeters
- □ Muon coverage lηl< 1.5</p>

D0

DØ Detector

- Silicon inner tracker, fiber outer tracker
- LAr-U calorimeter
- Good muon coverage

July 28, 2009