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How to bridge the soft and the hard
physics at RHIC ?7??

Jiangyong Jia

= Context of the discussion Stony Brook University & BNL

= Relation between Jet quenching, medium response and flow.




Production of hadrons in P+P

s Jet fragmentation (hard-scattering picture) describes the
data down to 2 GeV

=« pQCD calculation describe hadrons spectra done to 1-2 GeV
=« Large fraction of soft pairs show jet-like correlation.
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not jet-like.

What about Au+Au?

= Intermediate p; (<5) particles are

= Less suppression and large v2.
= Strong dependence on flavor

= Hard-scattering at initial state ®

final state effects.

= Flow, Jet eloss, Medium response,
Parton coalesces
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C(a9)

Jet and the Medium
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Modified jet + flowing medium

= Three inseparable aspects:
= Jet quenching
= medium response
Medium collectivity

o~
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Current model treat Jet and medium separately
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A qualitative picture: context for discussion
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= High pT jets assumed to be described by pQCD eloss: E>>w>>T
= Works better for leading particle and those jets that loose small energy

s If AA jet = pp hard-scattering ® final state effects

« Initial jet production should be important down to low pT, just that these semi-
hard partons are strongly modified or thermalized in the medium—->non perturb.?

= Intermediate pT dominated by medium response—> partially thermalized semi-hard
partons, gluon feedback from hard-partons . They have imprints of both hard-

scattering and flow.

= Low pT: Semi-hard partons that fully thermalized in the medium become part of the

bulk.
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Challenge for pQCD: leading particle suppression

RP dependence of suppression
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Challenge for pQCD: Model Comparisons

AMY
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Beyond pQCD Mechanism for leading
particle suppression?
= Is pQCD treatment of eloss applicable for sQGP?

gNBEE 2 log

dE

= Non-perturbative approachxes give very different density, path

length dependence.

gNBJE,,,.  (liwurs 2007), (Gubsdt 2008), (Khazee -
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Treatments of lost energy

= pQCD: shower gluons feedback to low pT
= Not enough yield enhancement, not enough broadening, wrong PID mix.
=« Can soft gluon radiation treated by pQCD?
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Treatment of lost energy

= Use shower gluons as seed for medium response.

= Easier to generate large yield by picking from bulk.

= Possible to generate ridge and cone.

= Correct chemistry.

= Medium response should be sensitive to energy loss mechanism

= Different for elastic or raidtive eloss (Majumder)
= Significantly different from ADS/CFT prediction
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A. Majumder, B. Neufeld, B. Muller etc
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Intermediate pT hadrons: quenched jet & medium response
= Based on p+p: Hadrons at 2-5 GeV/c mainly from jets.
= AA Jet correlation: Enhancement of correlated yield (larger than pp)
Should have both hard-scattering and flow signature.

=« Implication for two source model assumption:
C(A¢) = Jet + jet-flow-cross-term + flow. (“Jet”=Jet+ cross term)
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Source of pairs at intermediate p-

jet-jet jet-medium medium-medium
= \—/ S
2
AA ZRﬁQ il RAA

= Most models consider only jet-jet and ]et-medlum contribution.

= The medium-medium contribution (triggering on the medium) could
be large, in the limit of R,, = 0, it dominates.

nucl-ex/0806.1225
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Triggering on medium response

medium-medium jet-medium
Mach cone
ridge
\ \
» vz
o

= 120° is a special case.

= [wo sided mach-cone can generated peaks at Ap=0 and 120 degree
= If so, may be a common origin for the ridge and the cone

I,» make no sense in this region
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Influence of transverse flow on medium response

5 d3N

= Medium response and v, are entangled via radial flow

flow and shockwave
are perpendicular

d3p

flow and shockwave

are aligned
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== Bulk-Bulk

mm Jet-Bulk +Bulk-Bulk

Chiu,Hwa, arXiv:0809.3018

flow misaligned

Alignment of jet and medium
flow produces the ridge. 14




Influence of jet medium response on flow?

for 20-30% bin Au+Au, %@Lihtegrﬁwﬂ.o
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A 10 GeV dijet pair can single-handedly change the energy flow anisotropy

= Medium response (Quenched jet) can influence the v2
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AMPT jet embedding

s Embed 15 GeV dijet at b=0fm, only elastic 2 body eloss.
= Mean scatters=30, mfp=0.16 fm, average p transfer 0.6 GeV/c
= Most energy is deposited before freeze out.

= Energy deposited early, and shared by large number of partons.
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AMPT jet embedding

= Jets from center seem to enhance the in-plane flow?

By E. ShinIchi, S. Mohapatra Very preliminary
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RP dependence of jet correlation

= [he path length difference leads to a left/right asymmetry
= The pattern depends on the mechanism of jet-medium
interactions

= Mach cone: signal decreases with path length due to attenuation
= Gluon Radiation : signal increase with path length
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c,(data) - ¢,(flow)
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c,(data) - ¢,(flow)

Left/Right asymmetry from Data

0.08
0.06[—
(D) ¢=[2,3]0/8
L (2) 0=[-3;-2]/8
0.04 : :

0.02

1 Ll T I Ll T T I T T

-0.02

PHENIX preliminary

-004 lllllllllllllll.llllllll:llllllll

-1 0 1 2 3 4

Ad = Ppsso, ~ ¢Trig. (rad)

DPF 2009

Esumi QM2009

200GeV Au+Au -> h-h (run7)
(p;M9=2~4GeV/c, p{s°=1~2GeV/c)
mid-central : 20-50%
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Flow bias

s Some of the asymmetry is caused by the residual elliptic flow.
= But it appears also as asymmetry at the near-side.

= A good way to check the flow background subtraction procedure
=« Or it indicates that the flow in jetty events is different from inclusive v2.
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Role of hadronization

= Hadronization seems play an important role on most
observables

= Recombination peak in v2 and Raa vs pT
= Quark number scaling of PID v2
= Sensitivity of mach cone on the freeze out condition

B. Betz et.al 0807.4526

1.2 T T T
pQCD V=058 ——
al 075 — |
0.90 ——
Neck ——
0.8 E
=
T 06+
2 Au+ Au CollisionVs=200GeV 5
R N . o3
STAR Prelimar L - P 04}
. y [ PHENIX T
ZT_'t'.T 0‘25__ preliminary . 20~60% 02|
p+p | g A
] 0.2 . 20-60 0 :
i I 20-60% AdS/CFT
r . i
---------------------------------------- o~ B o i
> 015~ ®
. [ e + 1 i '} }
I ] » ; %
s 0.1 =
l P S
A x N - b
0.05[
6 8 10 12 % | | PR I R ST N S N B |
0 2 2 oS 10
p_(GeVic
p. (GeV/c) : A
- 0 /2 T 3n/2 2n
DPF 2009 ¢ [rad]



The Future

Heavy quark is the ideal probe for jet quenching, medium
response, medium collectivity.

Supersonic: probe Stationary: probe
Energy loss/medium response Collective flow
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Comment on Sergey’s remarks

What one mean by two source model

C(A¢) = Jet + jet-flow-cross-term + flow. ("Jet”=Jet+ cross term)

The correlation is sensitive to localized energy
deposition: could be either fluctuation or energy loss.
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as vy 1s small, thus should not affect the main features observed here. Correlation functions
from events generated using only the NEXUS code without the hydrodynamic evolution
was also verified and we did not observe any type of topology structure in the correlation

function, except for a narrow Jet like peak structure in Ay = 0 and A¢ = 0. It 1s important

to note that, when coupling the NEXUS with SPHERIO, Jets are averaged with softer

particles and are thermalized within each hydrodynamic cell. Events generated considering

just pure hydrodynamics starting with smooth initial conditions also do not generate the

topology structures. Only when we couple the NEXUS outputs (the initial conditions) with

the SPHERIO calculation (the hot and dense medium) in an event-by-event fashion, the

Ridge structure can be observed. Thus, in conclusion, the topology structures observed in
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Summary

= Jet quenching, medium response and flow are three
inseparable aspects for understanding the jet-medium
interaction (especially at RHIC)
= No clear scale separation between different physics at pT<10 GeV.

= Intermediate pT particle production maybe dominated by
medium response caused by lost energy of jets
= It carries information of both initial hard-scattering and flow

= Require proper understanding the mutual influence of jet
and flowing medium.

= RP dependent correlation study may shed light on this.
=« Heavy quarks

DPF 2009 27



Single gluon emission spectra

O=mp. E=1D6V.L =5 . T = 300V, w=#53 Qa1 g 5)
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Energy Loss and Di-Jets

e) QGP effects on di-jet production

» “Standard” quenching of leading
hadrons
» Redistribution of the lost energy

in “soft” hadrons

One way of incorporating energy loss:
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The Scaling Pattern of the RHIC Data

= In absorption picture: Ry,=exp(-kL), logR,,=-KL
= 6 centrality and 6 angular bin
L1+
Jleog2A

= Very good scaling, but this L is different from the length
implied by energy loss models
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per-trig yield=

Per-trigger vyield

Pair Yield

per-trig yield , ,

Trig Yield

I=,

per-trig yield |

= Per-trigger yield is useful if triggers come from fragmentation.

= But origins of triggers are complicated at p; < 4 GeV/c.
= Per-trigger yield can’t be compared with p+p directly.
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Low pT triggers may originate from the whole overlap
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Medium-Medium term
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= Both jets are converted into hadrons emitted at angle
Pairs peaks at: 0, £2D, &, = = 2D.

fromy’original jet direction.

s Since 2D= nt — D, med-med pairs appear at sa cation as jet-medium pairs.

And they come from the Mach €one of the same jet!!!
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