

Bodhitha Jayatilaka Duke University

on behalf of the CDF and DØ collaborations

July 27, 2009 Meeting of the APS Division of Particles & Fields

The quest for the Higgs

- SM has a broken symmetry
 - EWSB can be described by the Higgs mechanism
 - Prescribes observation of the Higgs boson
- Experimental evidence so far:
 - Direct searches at LEP exclude *m_H*<114 GeV/c²
 - Direct searches at Tevatron exclude 160<m_H<170 GeV/c²
 - Indirect constraints from precision measurements (m_W and m_t) prefer low mass Higgs: m_H<163 GeV/c²
- Efforts on low mass Higgs searches are key

Low mass Higgs searches

- Low mass SM Higgs production (*m_H*<135 GeV/*c*²)
 - Decay dominated by $H \rightarrow b\overline{b}$
 - gg→H→b5 difficult to see experimentally
- Rely on associated production, *WH* and *ZH*
 - Obvious choices: identified leptons
 - WH→IvbБ
 - ZH→IIbБ
 - What's left: invisible leptons
 - WH→(l)vb5
 - ZH→vvbБ

This talk

3

Previous two talks

The experiments

Analysis strategy

- Trigger on events with large missing $E_{\rm T}$
- Select events with 2 or more jets
 - 3-jet events add sensitivity to $W \rightarrow \tau v$
- Exclude identified leptons
 - Ensures independent channel from other VH searches
- \bullet Backgrounds by source of missing E_{T}
 - Instrumental: QCD multijet
 - Real: W/Z+jets, top, diboson
- After preselection cuts, apply further cuts to reduce background
 - Identify b-jets (CDF: secondary vertex tags, DØ: neural network)
 - Identify QCD background (CDF: neural network)

- Missing E_T>50 GeV
- 2 or 3 jets with E_T>25 GeV (>35 GeV for at least one jet)
- ΔR(jet1, jet2)>1.0

DØ preselection: ● Missing E_T>40 GeV

- 2 or 3 jets with $E_T>20$ GeV
- $\Delta \phi$ (jet1, jet2)<165°

Identifying b-jets

- CDF- Two different secondary vertex tag algorithms: "SecVtx" (ST) and "JetProb" (JP)
 - 3 exclusive event categories depending on type of tags: ST+ST, ST+JP, ST
 - Most sensitivity from ST+ST category with single tags adding 10%
- DØ- Train neural net to identify b jets
 - Employ asymmetric cuts on tag output: one jet tagged at 73% efficiency, other at 48%
 - Found to provide best sensitivity to H→b5 signal

Background modeling

- After preselection, S/B~1/20,000 (1/3,500 after tagging)
- Easy: real missing ET
 - Top, electroweak
 - Model using simulation
- Difficult: instrumental missing ET
 - QCD multijet (increased dramatically by allowing 3-jet events)
 - Model using data
 - Important to determine probabilities of (mis)tagging a light flavor jet

QCD rejection neural network

- Train neural network to separate multijet background from signal
- Exploit correlations amongst variables
 - $\Delta \phi$ (jets), ΔR (jets), missing E_T, etc.
- Train using simulated events
 - QCD with heavy flavor
 - 50/50 mixture of ZH and WH events
- Rejects 65% of multijet background at expense of only 5% of signal

Control samples: electroweak

- Check background modeling in events primarily with real missing E_T
 - Require one identified lepton

Control samples: QCD

- Check background modeling in events primarily with instrumental missing E_T
- CDF: Two QCD control regions
 - "Signal-like" region includes events cut by QCD reduction NN

Final samples

CDF

DØ

Process	ST	ST+ST	ST+JP
QCD+Mistags	941±44	42.1±8.7	78±11
Single top	43.2±7.9	8.5±1.7	7.2±1.5
Top pair	124±17	27.4±4.3	27.1±4.6
Diboson	35.6±6.8	4.9±1.2	4.3±1.1
W+h.f.	297±130	11.0±6.5	21±11
Z+h.f	107±46	10.8±5.0	11.3±5.2
Total Exp	1548±146	105±13	149±17
Observed	1443	105	148
ΖΗ→ννbδ	2.1	1.0	0.8
WH→(I)vb5	1.8	0.9	0.7
ZH→(I)(I)bБ	0.09	0.04	0.03

Process	Events	
W+jets	174.0	
Z+jets	127.3	
top	95.2	
Diboson	12.5	
QCD	33.8	
HZ	2.12±0.01	
HW	1.58±0.01	
Total	442±1.1	
Observed	439	

Signal expectation shown for m_H =115 GeV/ c^2

Final discriminant: CDF

- Train neural networks to discriminate signal from background
 - Separate NNs for 2-jet and 3-jet events

Final discriminant: DØ

- Boosted decision tree used to discriminate signal from background
 - Retained DT with larger weight to misclassified events
- Separate DTs trained for Run 2a and Run 2b datasets

Results

Conclusion

- Both CDF and DØ have completed searches for low mass Higgs events without identified leptons in 2.1 fb⁻¹ of data
 - CDF: A factor of ~2 improvement over method used in previous publication [PRL 100, 211801 (2008)]
- New analyses are on the way
 - Considerably more data already available
 - Trigger and b-tagging improvements
- Low mass Higgs search are one of the highest priorities at the Tevatron
 - Much more difficult experimentally at LHC energies