

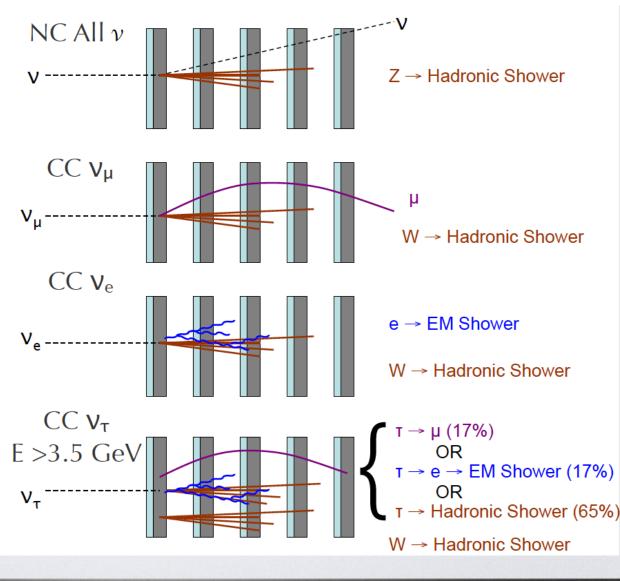
Analysis of Neutral Current Interactions in MINOS: A Search for Sterile Neutrinos

Alexandre Sousa Harvard University

DPF 2009 Wayne State University, Detroit, MI 07/27/2009

DPF '09, WSU - Jul 27, 2009

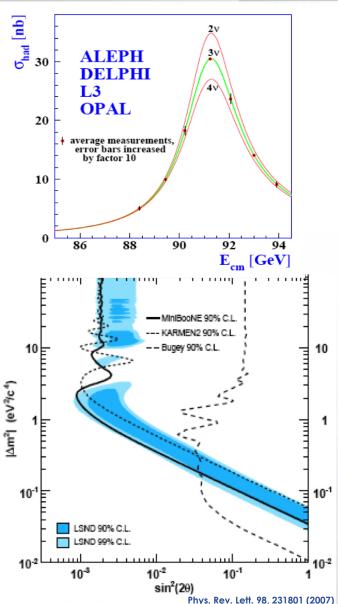
Alex Sousa - Harvard University


Neutrino Interactions in MINO

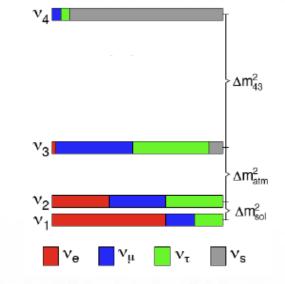
 The MINOS detectors observe both neutral current (NC) and charged current (CC) interactions

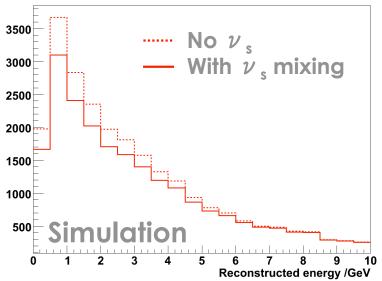
 Reconstructed events are composed of tracks and showers

- MINOS is not optimized to measure short showering NC events, but they are interesting!
- NC events allow us to look for sterile neutrinos

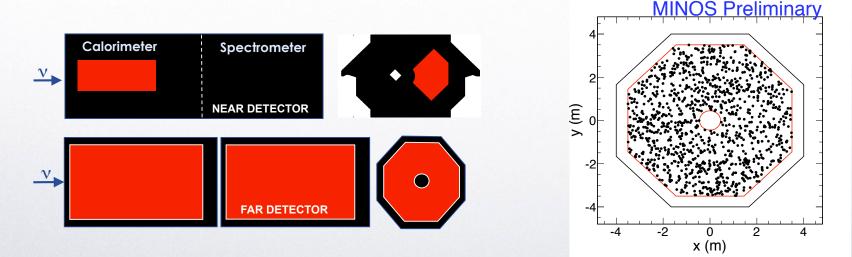


Sterile Neutrinos

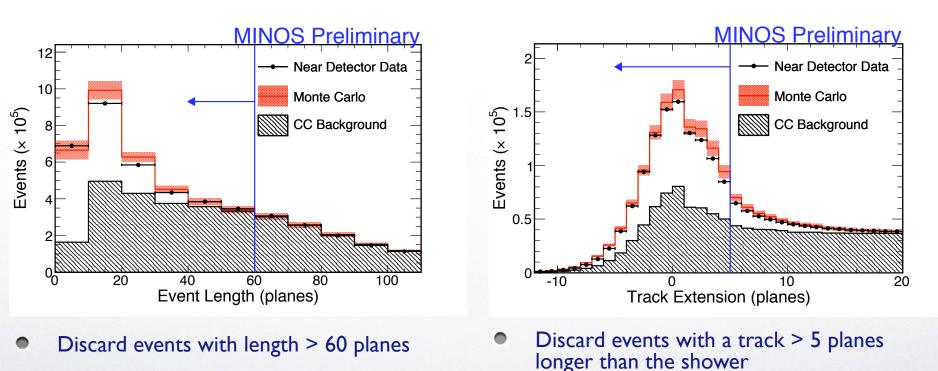

- Measurements of Z⁰ width at LEP => 3 light active neutrinos
 - Any additional neutrinos may not couple to Z⁰
 => sterile neutrinos
- Short baseline LSND experiment suggested a new large mass splitting, possibly explained by an additional neutrino
- MiniBooNE, Bugey and Karmen experiments strongly disfavor oscillations into sterile neutrinos as explanation for LSND signal
- Searches on long baseline experiments for additional massive neutrino(s) still relevant:
 - Dark Matter, Supernovae
 - See-saw mechanism
- Sterile Neutrinos => New Physics!


Looking for Sterile Neutrinos

- Standard neutrino oscillations in MINOS are driven by Δm^2_{atm}
 - Neutral current interaction rate is the same for the three active flavors
 - Standard oscillations do not affect NC interactions
- Oscillations into additional neutrino V_s may be driven by Δm^2_{atm} or a new mass scale
 - Vs mixing would reduce number of NC interactions as Vs do not interact in the detector
- Sterile neutrino signal
 - Depletion of NC spectrum at Far Detector
 - Energy-dependent



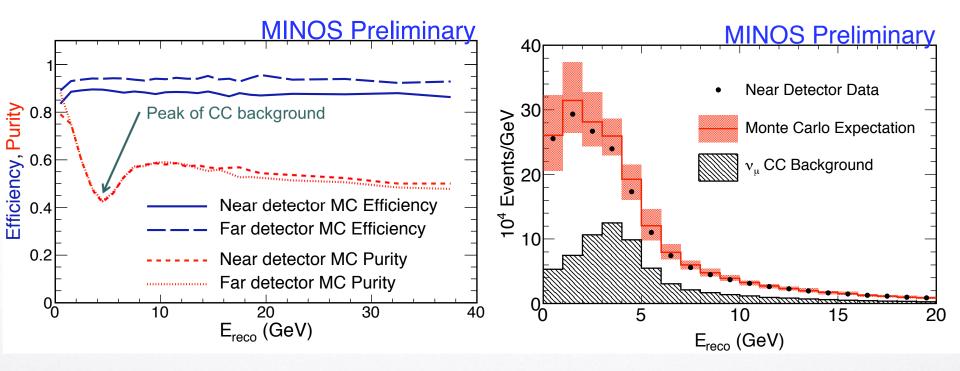
- Beam quality and detector quality cuts
 - Beam positioning, magnetic horns energized, detectors running within operational parameters
- Cosmics removed using timing and steepness
- Event vertex reconstructed within the fiducial volume of the detectors
 - Fiducial volume optimized for containment of hadronic showers



NC/CC Event Separation

- NC event selection achieved via cuts on topological variables
- NC events are typically shorter than CC events
- Expect showers and no tracks or very short tracks reconstructed for NC events

• Same selection applied to Far Detector data and MC


DPF '09, WSU - Jul 27, 2009

Alex Sousa - Harvard University

• Main background originates from inelastic (high-y) v_{μ} CC events

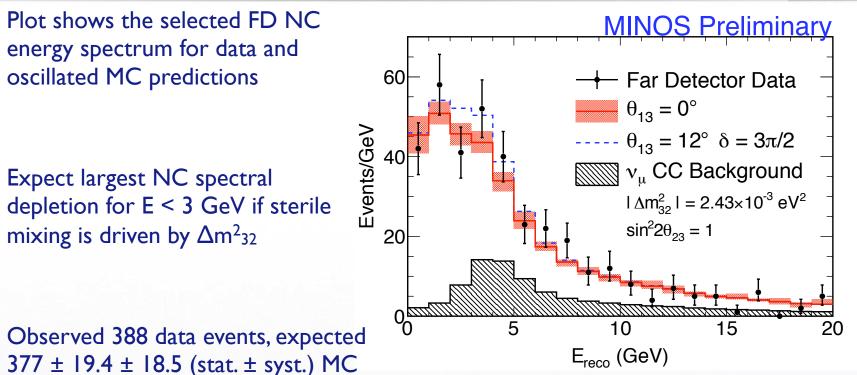
- NC events selected with ~90% efficiency and ~60% purity
- ND reconstructed NC-like energy spectrum
 - Good agreement between data and MC
 - Differences smaller than systematic uncertainties

DPF '09, WSU - Jul 27, 2009

7

Three-Flavor Analysis

- Compare the NC energy spectrum measured in the FD data (3.18×10²⁰ POT exposure) with the expectation from standard 3-flavor neutrino oscillation physics. FD predictions are obtained using the Far/Near Ratio extrapolation method
- Fix the oscillation parameter values in predictions:
 - $sin^2 2\theta_{23} = I$ (SuperKamiokande)
 - $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$ (MINOS CC measurement)
 - $\Delta m_{21}^2 = 7.59 \times 10^{-5} \text{ eV}^2$, $\theta_{12} = 35^\circ$ (KamLAND + SNO)
 - $\theta_{13} = 0 \text{ or } 12^{\circ}$ (Chooz limit)
 - $\delta_{CP} = 3\pi/2$ (maximal v_e appearance)
 - Normal mass hierarchy
 - Note: CC v_e are classified as NC by the analysis
- Make comparisons in terms of the **R** statistic:


Predicted CC background from all flavors

$$R = \frac{N_{data} - \sum B_{CC}}{S_{NC}}$$

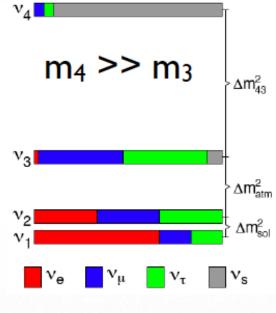
Three-Flavor Analysis

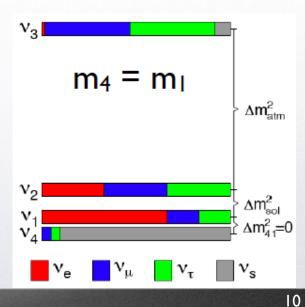
377 ± 19.4 ± 18.5 (stat. ± syst.) MC events

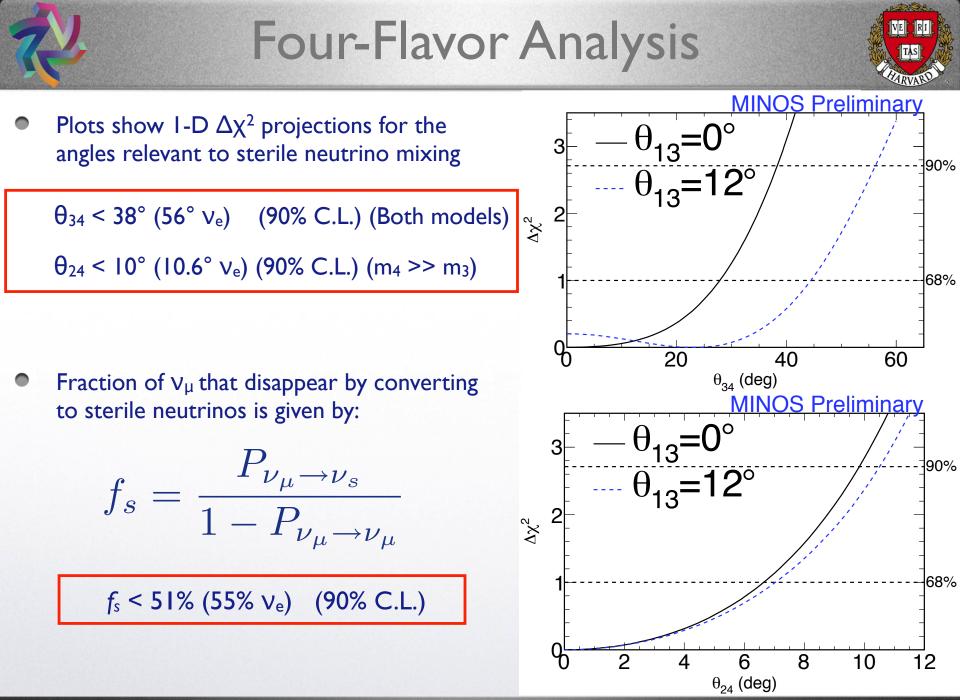
Data is consistent with no NC disappearance

$E_{\rm reco}$ (GeV	/) $N_{\rm Data}$	$S_{ m NC}$	$B_{\rm CC}^{\nu_{\mu}}$	$B_{\rm CC}^{\nu_{\tau}}$	$B_{\rm CCn}^{\nu_e}$	
0 - 3	141	125.1	13.3	1.4	2.3 (12.4)	
3 - 120	247	130.4	84.0	4.9	16.0(32.8)	
$0 - 3 \qquad R = 0.99 \pm 0.09 \pm 0.07 - 0.08(\nu_e)$						
$3 - 120$ $R = 1.09 \pm 0.12 \pm 0.10 - 0.13(\nu_e)$						
0 - 120	R = 1	$.04 \pm 0.0$	8 ± 0.07	-0.10(1)	$\nu_e)$	

Four-Flavor Analysis

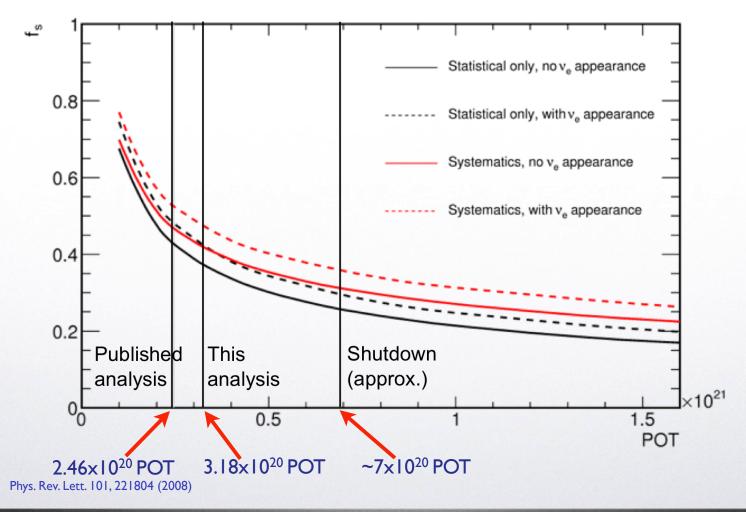



- Assume an additional sterile neutrino and an additional neutrino mass scale
- Extend mixing matrix with extra angles and phases:


 $U = R_{34}(\theta_{34})R_{24}(\theta_{24},\delta_2)R_{14}(\theta_{14})R_{23}(\theta_{23})R_{13}(\theta_{13},\delta_1)R_{12}(\theta_{12},\delta_3)$

- Consider two hypothesis for neutrino mass spectrum
 - m₄ >> m₃
 - $m_4 = m_1$
- Oscillation formulae are simplified under the assumptions:
 - |∆m²₂₁|~0
 - $\theta_{14} = 0$
 - $\delta_2 = 0$

$=> U = R_{34}(\theta_{34}) R_{24}(\theta_{24}) R_{23}(\theta_{23}) R_{13}(\theta_{13},\delta_{1})$


DPF '09, WSU - Jul 27, 2009

11

• Expect to improve 90% C.L. limit on sterile fraction with increased data exposure

Neutrino Decay

If neutrinos were to decay into a sterile CC-only fit 1.5species, NC spectrum would also be affected Ratio to no oscillations MINOS CC results disfavor pure neutrino decay as an alternative to oscillations at 3.7σ MINOS data 0.5 Best oscillation fit Best decay fit Can improve this result by performing joint Best decoherence fit NC + CC fits to the data using a model with: 5 20 30 50 10 15 neutrino oscillations Reconstructed neutrino energy (GeV) single mass scale decays $\alpha < 1.6 \times 10^{-3} \text{ GeV/km}$ (90% C.L.)

$$P_{decay} = \left(1 - e^{-\alpha L/E}\right) \sin^2 \theta$$

NC+CC fits disfavor pure neutrino decay ($\Delta m^2 \rightarrow 0$) at 5.4 σ

(90% C.L)

 $\tau_{3/m_{3}} > 2.1 \times 10^{-12} \text{ s/eV}$

Summary

 MINOS has completed an analysis of neutral current interactions using 3.18×10²⁰ POT NuMI beam exposure

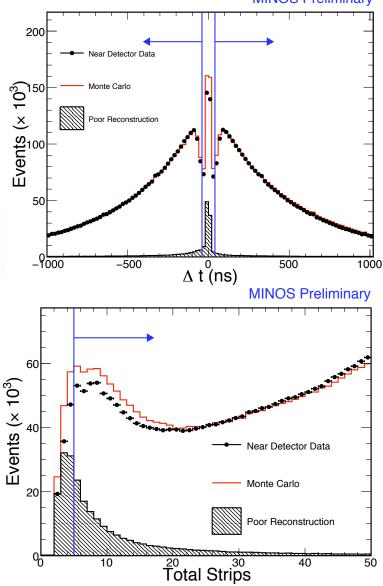
- Results are consistent with no oscillations into sterile neutrinos
 - $R=1.04 \pm 0.08 \pm 0.07 0.10(v_e)$
 - $f_s < 51\% (55\% v_e) (90\% C.L.)$

- Disfavor pure neutrino decay by 5.4σ as an alternative to oscillations
- To be submitted to Phys. Rev. D

• Limits expected to improve with analysis of $\sim 7 \times 10^{20}$ POT data sample.

BACKUP

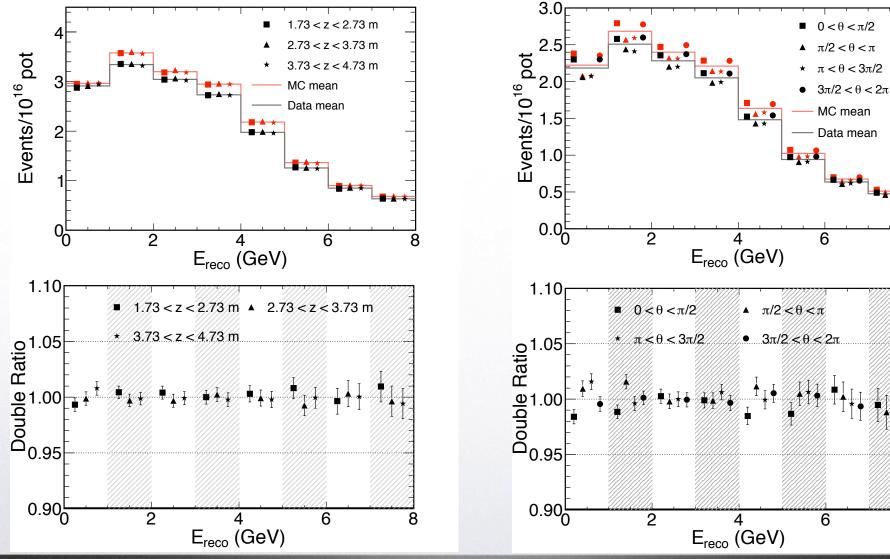
DPF '09, WSU - Jul 27, 2009


15

Near Detector Pre-Selection

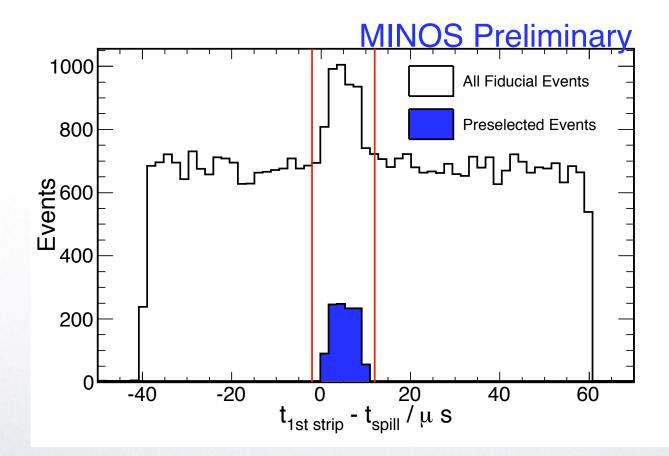
IVE IRI ILASI MARVARDA

MINOS Preliminary

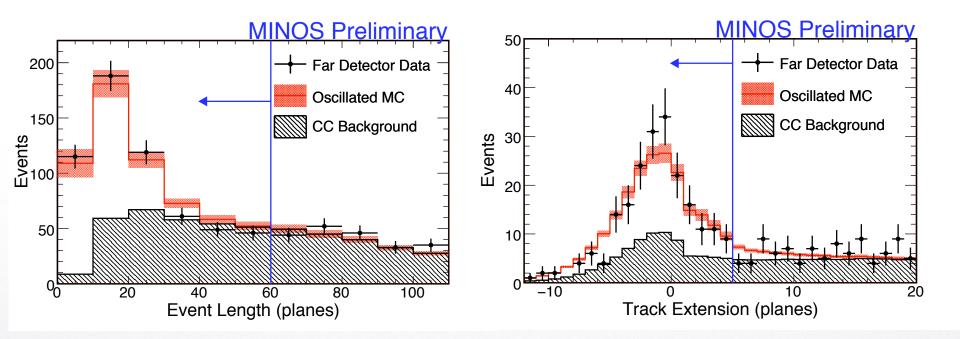

- High event rate in ND can cause poor event reconstruction
 - Split events
 - Incorrect vertex
- Apply a series of cuts
 - Time and spatial separation
 - Total number of hit strips
 - Event steepness
 - Activity in edge region
- Reduce poorly reconstructed background <IGeV from 34% to 8%

Near Detector Data Quality

Compare NC-selected Data/MC in different regions of the ND detector


DPF '09, WSU - Jul 27, 2009

Alex Sousa - Harvard University


17

- NE RI ILS MANADO
- Cosmic backgrounds are removed using combination of timing and steepness

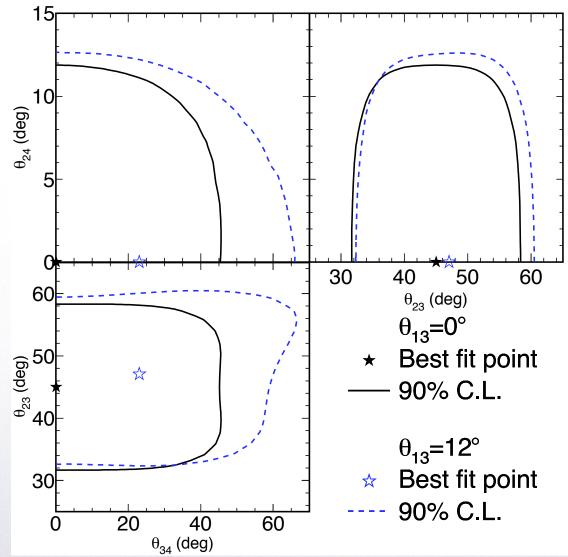
Extrapolation to Far Detector

- The measured ND energy spectrum is used to predict the FD energy spectrum via the Far/Near Ratio method
- Far/Near Ratio accounts for differences in detector geometry and fiducial volumes without relying on a specific parameterization of the ND data

$$FD_{i}^{predicted} = \frac{FD_{i}^{MC}}{ND_{i}^{MC}} ND_{i}^{Data}$$

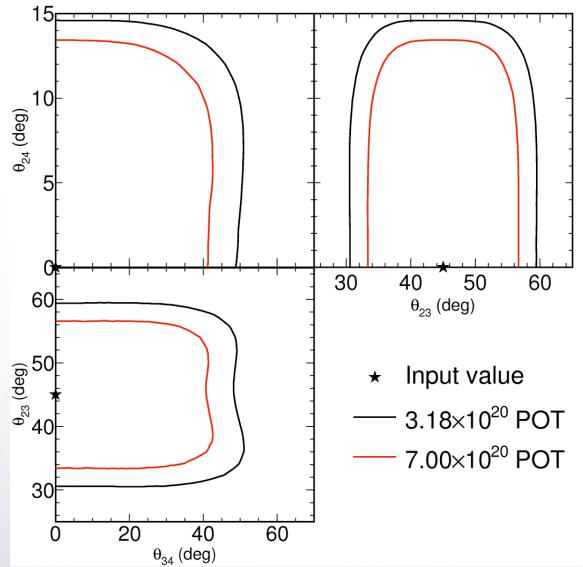
- Apply corrections to each energy bin in the FD MC using the ND data/MC differences as a scale factor
- Robust to most systematic uncertainties on flux and cross-sections
- FD data spectrum blinded until analysis procedures defined to avoid prediction biases

 Best fit points with I σ errors obtained for the active-sterile oscillation models. Results are shown with and without V_e appearance at the Chooz limit


Mo	odel	θ_{13}	χ^2 /D.O.F.	θ_{23}	θ_{24}	$ heta_{34}$	f_s
$m_4 = m_1$	0°	47.5/39	$45.0^{\circ}^{+9.0}_{-8.9}$	-	$0.1^{\circ + 28.7}$	0.51	
	12°	46.2/39	$47.1^{\circ}{}^{+8.8}_{-11.0}$		$23.0^{\circ}{}^{+22.6}_{-24.1}$	0.55	
$m_4 \gg m_3$	0°	47.5/38	$45.0^{\circ}{}^{+9.0}_{-8.9}$			0.52	
	12°	46.2/38	$47.1^{\circ}{}^{+8.8}_{-11.0}$	$0.0^{\circ+7.2}$	$23.0^{\circ}{}^{+22.6}_{-24.1}$	0.54	

Four-Flavor Contours

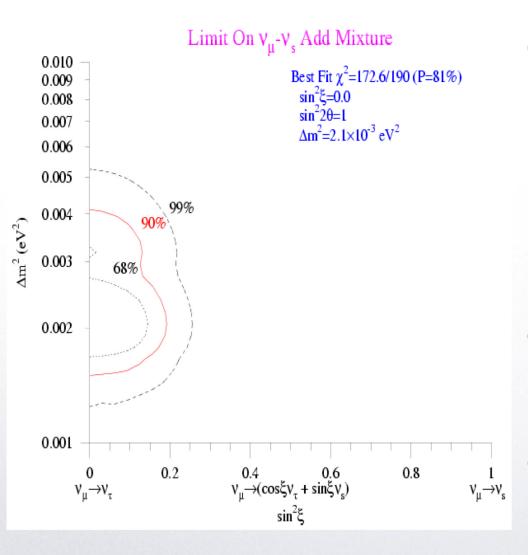
MINOS Preliminary



Four-Flavor Sensititivities

MINOS Preliminary

Systematic Errors


- Relative Normalization: ±4%
 - POT counting, Near/Far reconstruction efficiency, fiducial mass
- Relative Hadronic Calibration: ±3%
 - Inter-Detector calibration uncertainty
- Absolute Hadronic Calibration: ±11%
 - Hadronic Shower Energy Scale(±6%), Intranuclear rescattering(±10%)
- Muon energy scale: ±2%
 - Uncertainty in dE/dX in MC
- CC Contamination of NC-like sample: ±15%
- NC contamination of CC-like sample: ±25%

- Cross-section uncertainties:
 - m_A (qe) and m_A (res): ±15%
 - KNO scaling: ±33%
- **Poorly reconstructed events:** ±10%
- Near Detector NC Selection: ±8% in 0-1 GeV bin
- Far Detector NC Selection: ±4% if E < 1 GeV, <1.6% if E > 1 GeV
- Beam uncertainty: 1σ error band around beam fit results

Uncertainty	$m4 \equiv m_1$		$m_4 \gg m_3$			Osc. with decay	
	$\Delta(heta_{23})$	$\Delta(heta_{34})$	$\Delta(heta_{23})$	$\Delta(\theta_{24})$	$\Delta(\theta_{34})$	$\Delta(lpha)$	$\Delta(\theta)$
Absolute $E_{Had.}$	0.3°	3.6°	0.2°	1.5°	4.5°	2.54×10^{-4}	2.6°
Relative $E_{Had.}$	0.6°	9.9°	0.6°	2.1°	9.9°	0.70×10^{-4}	3.7°
Normalization	0.3°	12.6°	0.1°	5.1°	6.3°	6.25×10^{-4}	0.9°
CC Background	0.1°	9.9°	0.2°	0.3°	9.9°	1.23×10^{-4}	4.0°
ND Selection	0.1°	9.9°	0.2°	0.3°	9.9°	1.15×10^{-4}	3.9°

- High energy V experience matter effects which suppress oscillations to sterile V
 - Matter effects not seen in up-µ or highenergy PC data
 - Reduction in neutral current interactions also not seen
 - constrains V_s component of V_μ disappearance oscillations
- Pure v_{μ} -> v_s disfavored
 - V_s fraction < 20% at 90% C.L.
- Result published only in conference proceedings