

Analysis of

$J / \Psi \pi^{+} \pi^{-}$and $D^{*} \bar{D}^{0}$ Decays of the $\times(3872)$

Eric Braaten
James Stapleton
Ohio State University

support

DOE, Division of High Energy Physics Alexander von Humboldt Foundation

Analysis of $J / \psi \pi^{+} \pi^{-}$and $D^{*} \overline{\mathrm{D}}^{0}$ Decays of the $\mathrm{X}(3872)$

- What is the $X(3872)$?
- Universal properties
- Confusion from $\mathrm{D}^{*}{ }^{0} \overline{\mathrm{D}}^{0}$ decay modes
- Line shapes
- Analysis of recent data from Belle, Babar

X(3872)

discovered by Belle Collaboration in August 2003
$B^{+} \longrightarrow K^{+}+X \quad X \longrightarrow J / \psi \pi^{+} \pi^{-}$
final-state $J / \Psi \rightleftharpoons$ contains $c \bar{c}$

- mass not consistent with charmonium spectrum predicted by potential models
- decays violate isospin symmetry:

$$
\begin{array}{lll}
X \longrightarrow J / \psi \pi^{+} \pi^{-} & \text {isospin } 1 & \\
X \longrightarrow J / \psi \pi^{+} \pi^{-} \pi^{0} & \text { isospin } 0 & \text { Belle }
\end{array}
$$

What is the $X(3872)$?

Two crucial experimental inputs:
I. Quantum numbers: $J^{\mathrm{PC}}=\mathrm{I}^{++}$
a. $X \longrightarrow J / \psi \gamma \Longrightarrow \mathrm{C}=+\quad$ Belle, Babar
b. $X \longrightarrow J / \psi \pi^{+} \pi^{-}$angular distribution
$\Longrightarrow \mathrm{I}^{++}$or 2^{-+}Belle, CDF
c. 2^{-+}is disfavored by

$$
\begin{aligned}
& X \longrightarrow \psi(2 S) \gamma \\
& X \longrightarrow D^{* 0} \bar{D}^{0}
\end{aligned}
$$

Babar
Belle, Babar
2. Mass is extremely close to $D^{*} \bar{D}^{0}$ threshold

$$
M_{X}-\left(M_{D^{* 0}}+M_{D^{0}}\right)=-0.25 \pm 0.40 \mathrm{MeV}
$$

measured in $J / \Psi \pi^{+} \pi^{-}$channel Belle, Babar, CDF

What is the $X(3872)$?
Two crucial experimental inputs:
I. Quantum numbers: $\mathrm{J}^{\mathrm{PC}}=\mathrm{I}^{++}$

2. Mass is extremely close to $D^{* 0} \bar{D}^{0}$ threshold

$$
M_{X}-\left(M_{D^{* 0}}+M_{D^{0}}\right)=-0.25 \pm 0.40 \mathrm{MeV}
$$

Conclusion:
$X(3872)$ is a weakly-bound charm meson molecule

$$
X=\frac{1}{\sqrt{2}}\left(D^{* 0} \bar{D}^{0}+D^{0} \bar{D}^{* 0}\right)
$$

with large separation between charm mesons

What is the $X(3872)$?

Nonrelativistic Quantum Mechanics

- short-range interactions
- S-wave resonance close enough to threshold

> large scattering length a (>> range) universal features depend only on a , insensitive to shorter distances
$X(3872)$ close to $D^{* 0} D^{0}$ threshold universal features depend only on large scattering length for $D^{*} D^{0}$

What is the $X(3872)$?

Universal features

scattering

- cross section: $4 \pi a^{2}$
bound state ($a>0$)
- small binding energy: $\hbar^{2} /\left(2 \mu a^{2}\right)$
- large rms separation: $a / \sqrt{2}$

$$
\underline{X(3872)}
$$

- binding energy: $0.25 \pm 0.40 \mathrm{MeV}$
- rms separation: $6.3_{-2.4}^{+\infty} \mathrm{fm}$

What is the $X(3872)$?
universal properties of $X(3872)$ do not depend on binding mechanism!

- potential between $D^{* 0} \bar{D}^{0}$ just deep enough for bound state?
- P-wave charmonium state $\chi_{c 1}(2 P)$ near $D^{* 0} \bar{D}^{0}$ threshold?
- tetraquark state $(c q \bar{c} \bar{q})$ near $D^{* 0} \bar{D}^{0}$ threshold?

Resonant interactions with $D^{* 0} \bar{D}^{0}$
will transform it into a charm meson molecule

What is the $X(3872)$?
$X(3872)$ is a weakly-bound charm meson molecule with large separation between charm mesons

Why is this conclusion not universally accepted?

- lack of familiarity with S-wave threshold resonances
- failure to distinguish between universal and nonuniversal predictions
- confusion from $D^{* 0} \bar{D}^{0}$ decay modes

What is the $X(3872)$?
Example of failure to distinguish between universal and nonuniversal predictions
$\frac{\operatorname{Br}[X \rightarrow \psi(2 S) \gamma]}{\operatorname{Br}[X \rightarrow J / \psi \gamma]}=3.4 \pm 1.4 \quad$ Babar 2009
"generally inconsistent with a purely $D^{* 0} \bar{D}^{0}$ molecular interpretation"

NO! inconsistent with model by Swanson in which $\mathrm{X}(3872)$ is bound state of

$$
D^{*} \bar{D}, D \bar{D}^{*}, J / \psi \rho, J / \psi \omega
$$

Mass of the $X(3872)$

PDG average 2008, 2009:

$$
3872.3+/-0.8 \mathrm{MeV}
$$

from combining measurements
in $J / \psi \pi^{+} \pi^{-}, D^{0} \bar{D}^{0} \pi^{0}, D^{* 0} \bar{D}^{0}$ channels Belle, CDF, Babar, D0

BUT measurements in $D^{0} \bar{D}^{0} \pi^{0}, D^{* 0} \bar{D}^{0}$ channels are NOT measurements of mass of $X(3872)$!
most recent measurements in $J / \psi \pi^{+} \pi^{-}$channel Babar, Belle, CDF
$387 \mathrm{I} .55+/-0.20 \mathrm{MeV}$

measurements of mass of $X(3872)$

WEIGHTED AVERAGE
3872.3 ± 0.8 (Error scaled by 2.3)

4 lowest measurements: $\quad J / \psi \pi^{+} \pi^{-}$
2 highest measurements: $D^{0} \bar{D}^{0} \pi^{0}, ~ D^{* 0} \bar{D}^{0}$
incompatible sets of measurements
PDG: combine them anyway and inflate error by 2.3

Width of the $\times(3872)$

$$
\begin{gathered}
\text { PDG average 2008, 2009: } \\
3.4^{+2.1}{ }_{-1.7} \mathrm{MeV} \\
\hline
\end{gathered}
$$

from Babar measurement in $D^{* 0} \bar{D}^{0}$ channel

BUT measurement in $D^{* 0} \bar{D}^{0}$ channel is NOT a measurement of width of $X(3872)$!
measurements in $J / \psi \pi^{+} \pi^{-}$channel

$$
\begin{aligned}
& <2.3 \mathrm{MeV} \text { at } 90 \% \mathrm{C} . \mathrm{L} . \\
& <3.3 \mathrm{MeV}
\end{aligned}
$$

Belle (2003)
Babar (2008)

Line Shapes of the $\mathrm{X}(3872)$
 Braaten and Lu, Phys. Rev. D 76, 094028 (2007) Phys. Rev. D 77, 014029 (2008)

Scattering amplitude
for S-wave threshold resonance

$E=$ energy relative to threshold
$\gamma=$ inverse scattering length

Line shapes

Scattering amplitude for $D^{* 0} \bar{D}^{0}$

Take into account

- $\mathrm{D}^{* 0}$ width: $\Gamma_{* 0} \approx 70 \mathrm{keV}$
- inelastic scattering channels $\left(J / \Psi \pi^{+} \pi^{-}\right.$, etc, $)$
\leadsto complex scattering length

$$
f(E)=\frac{1}{-\left(\gamma_{\mathrm{re}}+i \gamma_{\mathrm{im}}\right)+\sqrt{-2 \mu\left(E+i \Gamma_{* 0} / 2\right)}}
$$

binding energy: $E_{X}=\left(\gamma_{\mathrm{re}}^{2}+\gamma_{\mathrm{im}}^{2}\right) /(2 \mu)$
width: $\quad \Gamma_{X}=\Gamma_{* 0}+2 \gamma_{\mathrm{re}} \gamma_{\mathrm{im}} / \mu$

Line shapes

scattering amplitude for $D^{* 0} \bar{D}^{0}$

$$
f(E)=\frac{1}{-\left(\gamma_{\mathrm{re}}+i \gamma_{\mathrm{im}}\right)+\sqrt{-2 \mu\left(E+i \Gamma_{* 0} / 2\right)}}
$$

spectral function

$$
\operatorname{Im} f(E)=|f(E)|^{2} \gamma_{\mathrm{im}}+|f(E)|^{2}\left(\mu \sqrt{E^{2}+\Gamma_{* 0}^{2} / 4}+\mu E\right)^{1 / 2}
$$

line shape in other channels:
$\mathrm{J} / \Psi \pi^{+} \pi^{-}$, etc.
line shape in
$D^{0} \bar{D}^{0} \pi^{0}, D^{0} \bar{D}^{0} \gamma$

Line shapes

 1Breit-Wigner resonance: $\quad \overline{\left.\mid E+E_{X}+i \Gamma_{X} / 2\right)\left.\right|^{2}}$
S-wave threshold resonance:

$$
\left|-\left(\gamma_{\mathrm{re}}+i \gamma_{\mathrm{im}}\right)+\sqrt{-2 \mu\left(E+i \Gamma_{* 0} / 2\right)}\right|^{2}
$$

Line shapes

$$
\mathrm{J} / \Psi \pi^{+} \pi^{-} \text {versus } D^{0} \overline{\mathrm{D}}^{0} \pi^{0}
$$

"virtual state"

$$
\gamma_{\mathrm{re}}<0
$$

"bound state"
$\gamma_{\mathrm{re}}>0$

Line shapes

$X(3872)$ resonance in $D^{* 0} \bar{D}^{0}$
If $D^{0} \pi^{0}$ has invariant mass close enough to $D^{* 0}$ mass (within 6 MeV for Belle, within 10 MeV for Babar) impose constraint that it comes from decay of $D^{* 0}$

Line shapes

$$
D^{0} \bar{D}^{0} T^{0} \text { versus } D^{* 0} \bar{D}^{0}
$$

position and width of peak in $D^{*} \bar{D}^{0}$ are not mass and width of $X(3872)$!

Analysis of recent data from Babar and Belle on $X(3872)$ resonance in $J / \Psi \pi^{+} \pi^{-}$and $D^{0} \bar{D}^{0} \pi^{0}$

Braaten and Stapleton, arXiv:0907.3I67

- signal: S-wave threshold resonance with parameters $\gamma_{\mathrm{re}}, \gamma_{\mathrm{im}}$
- background: $J / \psi \pi^{+} \pi^{-}$constant

$$
D^{* 0} \bar{D}^{0} \quad \sim \sqrt{E}
$$

- experimental resolution: model by Gaussian smearing

$$
\begin{aligned}
J / \psi \pi^{+} \pi^{-} & \sigma & \sim \text { constant } \\
D^{* 0} \bar{D}^{0} & \sigma(E) & \sim \sqrt{E}
\end{aligned}
$$

- maximize Log(likelihood)

Analysis of recent data
$J / \psi \pi^{+} \pi^{-}$

$D^{*} \bar{D}^{0}$

Line shapes from fits to Belle data in J/ $\Psi \pi^{+} \pi^{-}$

Summary

- PDG averages for mass and width of $X(3872)$ are wrong!
- position and width of peak in $D^{0} \bar{D}^{0} T^{0}$ or $\mathrm{D}^{*}{ }^{0} \overline{\mathrm{D}}^{0}$ should NOT be interpreted as mass and width of $X(3872)$
- among existing measurements, only $\mathrm{J} / \Psi \pi^{+} \pi^{-}$ should be included in PDG averages
- instead of analyzing $D^{0} \bar{D}^{0} \pi^{0}$ channel as
$\mathrm{D}^{*} \mathrm{D}^{0}$, it would be preferable to analyze it as $\mathrm{D}^{0} \bar{D}^{0} \Pi^{0}$ (like 2006 Belle analysis)

