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MotivationMotivation

• The SM predicts that CP violating phases in the c 
will be small. We should check that.

• Theory now gives a better prediction for ΔΓs , We 
therefore want a better measurement of this. 

• In contrast to hadron colliders, electron-positron B-
factories produce Bs in a unique entangled state. 

• In this talk, I will consider how to make use of this 
correlated initial state to address these two issues.

Nierst and Lenz JHEP 0706:072 (2007)
Badin, Gabbiani and Petrov Phys.Lett.B653:230-240 (2007)
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Current knowledgeCurrent knowledge
(from HFAG 2009)(from HFAG 2009)

• HFAG 2009 fit to CDF and 
D0 results:

0.054 1
0.070.154  pss
+ −
−ΔΓ =

1.412 0.042 pssτ = ±

.0381

.0502 0.109s sy τ +
−= ΔΓ =

Results from CDF and DO:
CDF,  Phys.Rev.Lett.100:121803 (2008)
DO, Phys.Rev.Lett.95:171801 (2005) 
Phys.Rev.Lett.98:121801 (2007) 
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Upsilon(5s): BUpsilon(5s): Bss MenuMenu

• Constraints we will try to live with:
– 107-108  bb events (σbb=0.3nb→L=30-300 fb-1)
– Limited time resolution (cannot see Δms oscillations)

• Using this, what will we do?

– Measure ΔΓs using time independent correlations of 
inclusive states

– Measure mixing/decay phases correlating inclusive with 
exclusive decays

– Measure ΔΓs using time asymmetry of inclusive states (much 
better)

– Constrain tan(φs) (i.e. mixing phase) using time asymmetry of 
inclusive states
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B factories at Upsilon(5s)B factories at Upsilon(5s)

• CLEO has run at the Upsilon(5s) for 0.4fb-1

• More recently BELLE has run at Upsilon(5s)

• BELLE has now gathered ~100fb-1 [=3x107 bb 
events]

BELLE Collab.. PRL 102, 021801 (2009)
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Basics of BBasics of BssBBss Production at Production at 
Upsilon(5s)Upsilon(5s)

Fractions of Upsilon(5s) 
events going to each BsBs 
mode (from HFAG 2009)
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Experimental ScenarioExperimental Scenario

• A Bs Bs pair is produced in about 20% of the e+e-
→bb events at the Upsilon(5s).
– Bs Bs

– B*s Bs

– B*s B*s →90% of the time!
• In all cases the system decays radiatively to a Bs Bs

pair. 

sB
sB

(5 )sϒ

sB

(5 )sϒ

sB sB

(5 )sϒ

sB γγ γ

*
sB *

sB
*
sB
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(*) (*)
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s s

B B B Br
B B

+
= ≤

<10% <10% ~90%
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Properties of Meson PairsProperties of Meson Pairs

• In asymmetric B-factories, the system is in motion wrt the lab 
frame

• This allows us to get time information from the position of the 
decay (as in the Upsilon(4s)).

• I will assume time resolution not fine enough to see Δms
oscillations. 

• Unlike the Upsilon(4s), there are a variety of initial states

(5 )sϒ

    C= 1s sB B −

(5 )sϒ

  C= 1s sB B +

*
s sB B

γ

(5 )sϒ

  C= 1s sB B −

* *
s sB B

2γ
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Initial StateInitial State

• C=-1 implies L=odd and P=-1 (>90% of the time)

• C=+1 implies L=even and P=+1

( )1 1
2

C
s s s sB B B B=−Ψ = −

( )1 1
2

C
s s s sB B B B=+Ψ = +
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Categories of BCategories of Bss DecaysDecays

• Given limited # of mesons, we want to consider final states 
with as much BR as possible. 

• Use inclusive states composed of many exclusive states.
• Taggable Decays (t)

– This includes semileptonic decays as well as hadronic decays which 
give the flavor of the Bs meson. 

– Usually we won’t actually care whether it tags a Bs meson (t+) or a 
Bs meson (t-) [i.e. due to rapid oscillations].

• Hadronic Decays (h)
– This includes all decays that are not taggable
– Decays with quark content           should be included in this sample.
– It is advantageous to cut away as many non-ccss states as 

possible. 
– The width difference is entirely due to a difference in the decay 

rate of the eigenstates to hadronic states

ccss
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• Exclusive final state
– A single quantum amplitude (e.g. )

• Semi-exclusive state
– A set of related amplitudes (e.g. : three polarization 

amplitudes; : s-wave vs p-wave)
– It is generally possible to separate out the components 

from the decay distribution.

s SD D+ −

* *
s SD D+ −

s SD D η+ − ′
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Hadronic

Map of StatesMap of States

All Bs Decays

ccss
quark 
content

Semi
leptonic

Taggable

Better

An exclusive
state

An semi-exclusive
state
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Oscillation Formalism:Oscillation Formalism:
Decay Matrix for a General StateDecay Matrix for a General State

• For a single state, let 
– A=amplitude(Bs→f) 
– A=amplitude(Bs→f) 

• For a set of states F={f}

* *
2 2 2

* *
   for a single quantum state 

f

f

i
f f f

f i
f f f

u v w eA A A A
R u v w

A A A A w e u v

θ

θ−
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Oscillation of a Single MesonOscillation of a Single Meson

• At time t, 

• The time evolution is given by

• Thus the time dependent decay rate is

ρ0=Initial state density Matrix
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General ResultGeneral Result
Single MesonSingle Meson

• Define

• Result

• Average Branching Ratio (as measured e.g. at a collider)
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Oscillation of Entangled MesonsOscillation of Entangled Mesons

• For the C=±1 state, the time dependent decay to a 
final state F1 F2 is: 

– s12=statistical factor=1/2 for F1 =F2 or 1 otherwise. 

( )† † †
1 2 1 2 12 1 1 1 2 2 2( , ) ( ) ( ) ( ) ( )
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F F t t s Tr U t RU t T U t R U t T

T

±
± ±

±

⎡ ⎤ ⎡ ⎤Γ = ⎣ ⎦ ⎣ ⎦

⎡ ⎤
= ⎢ ⎥±⎣ ⎦
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General Result:General Result:
Entangled MesonsEntangled Mesons
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Basic (qualitative) Idea: Basic (qualitative) Idea: 
What happens if CP is conserved?What happens if CP is conserved?

• The eigenstates are CP eigenstates

• The decay rate of B1 and B2 to taggable states is the 
same. 

• The branching ratio of B1 to taggable states will 
therefore be smaller because it has a larger total 
width. 

• Just one catch:
– there is no easy way to get a pure Bi sample.

( ) ( )1 1
1 22 2

             s s s sB B B B B B= + = −

e.g. DA and Petrov PRD 71 054032 (2005)
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Measuring yMeasuring y
If CP is conservedIf CP is conserved

• This leads to a couple of ways to find y  at B-
factories (e.g. starting from a C=-1 pair):
– You can find the BR of B1 to taggable states by correlating 

with a CP=-1 eigenstate; this in effect gives a sample of B2
states

– If you observe one of the mesons decaying to a taggable 
state, it is more likely to be a B2. 

• The other meson is thus more likely to be a B1 and thus less 
likely to decay itself to taggable states.

• There will be an effect proportional to y2. 

CP=-1
B2B1

tag

B2B1

tag tagy∝ 2y∝ −
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• By the same argument, B1 has a larger branching 
ratio to hadronic states since they account for the 
width difference. 

• Thus tt  th and hh correlations will all show effects 
proportional to y2.

• The correlation of t or h states with a CP eigenstate 
will show an effect proportional to y

B2B1

hadron tag

B2B1

hadron hadron

2y∝ −2y∝ +
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Correlations of Inclusive StatesCorrelations of Inclusive States

• Define

• The correlated branching ratios are 
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⎢ ⎥⎣ ⎦⎣ ⎦

These are all
sensitive to y2
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How Well Can y be measured?How Well Can y be measured?

• Assume that 
– Bt=0.3 
– Bh=0.7 (loose cuts) or 0.5 (tight cuts)
– y=0.1
– r*=0.1
– I assume that taggable states are not contaminated by ccss 

states
– Likewise all ccss states are designated hadronic

• How many ee→bb events do you need to get a 5σ
effect just including statistical errors? 
– tt correlation: N=21x106. 
– hh correlation: N=120x106 (loose cuts) N=8x106 (tight cuts)
– ht correlation N=25x106 (loose cuts)  N=7x106 (tight cuts)

• Note, the number increases like y-4 as y decreases.
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Inclusive / SemiInclusive / Semi--exclusive Correlationsexclusive Correlations

• For a state Y, define 

• Measuring this will give us information about θ+φ, 
– if Y is a single quantum state w=u so cos(θ+φ) is determined 

by PY.
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How Well can PHow Well can PYY be Measured?be Measured?

• Consider a final state like Y=DsDs with Br~1%. 
• We expect P~1 since this a CP eigenstate.
• If the acceptance is about 10%, in effect the Br is 

0.1%
• How many ee→bb events do you need to get a 5σ

effect?
– tY correlation N=33x106.
– hY correlation N=76x106 (loose cuts);  N=20x106 (tight cuts)
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Problem with This ApproachProblem with This Approach

• For hh, ht and tt correlations, the deviation from the product 
branching ratios is O(y2)~1%.

• To use this method the input branching ratios,                must 
be known to better than 1% 

• In the tY and hY correlations the deviations are O(y)~10%

• Likewise the input branching ratios must be known to this 
precision.

• How do we get around this?

ˆ ˆand  h tB B
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Better yet: Time AsymmetryBetter yet: Time Asymmetry

• Recall the time dependent rate

• The colored terms are the only ones anti-symmetric 
under t1¨t2

• Consider the asymmetry  

• In general this will be sensitive to the red term
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Time Asymmetry for ht CorrelationsTime Asymmetry for ht Correlations

• For the ht correlation

• How many ee→bb events do you need to get a 5σ
effect?
– A(ht) correlation N=1.8x106 (loose cuts)
– A(ht) correlation N=1.3x106 (tight cuts)

• Why do you do so well???

• Further advantage of an asymmetry: null experiment, 
don’t need to subtract another measurement to find 
the signal

2
*( ) (1 ) 1.5%ˆ

h

yA ht r
B

= − ≈

B2B1

hadron tag

Decays
early

Decays
late
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Charge/Time AsymmetryCharge/Time Asymmetry

• We can look for the blue term by considering the 
asymmetry taking into account the sign of the 
taggable decay.

• For tan=1, A’~0.5%
• This asymmetry therefore gives us  tan(phase).
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Charge/Time Asymmetry Charge/Time Asymmetry 

• How many ee→bb events do you need to get a 5σ
effect for A’ (ht) if tan(φ+θ)=1?

– A’(ht) correlation 
N=7.0x106 (loose cuts)   N=6.0x106 (tight cuts) 
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SummarySummary

• At the Upsilon(5s), 90% of the time, Bs pairs are 
produced in the C=-1 correlated state.

• The correlation between the product branching ratio 
and the correlated branching ratio tells us about 
mixing
– Two inclusive states: |y|
– Inclusive/exclusive    y cos(φ+θ)

• Time taggable/hadronic time asymmetry gives us y2

and tan(φ+θ).
• This method is better because it is a null experiment
• All this may be done with existing or soon to be 

acquired data


