Entangled $B_{s}-B_{s}$ States at The Upsilon (5s)

Outline

- Motivation
- Upsilon(5s): Bs menu
- Experimental Scenario
- Categories of B_{s} Decays
- Oscillation Formalism
- Basic (qualitative) Idea
- Correlations
- Asymmetries
- Conclusions

Motivation

- The SM predicts that CP violating phases in the c will be small. We should check that.
- Theory now gives a better prediction for $\Delta \Gamma_{s}$, We therefore want a better measurement of this.

$$
\begin{aligned}
& \text { Nierst and Lenz JHEP 0706:072 (2007) } \\
& \text { Badin, Gabbiani and Petrov Phys.Lett.B653:230-240 (2007) }
\end{aligned}
$$

- In contrast to hadron colliders, electron-positron Bfactories produce B_{s} in a unique entangled state.
- In this talk, I will consider how to make use of this correlated initial state to address these two issues.

Current knowledge (from HFAG 2009)

Upsilon(5s): B_{s} Menu

- Constraints we will try to live with:
- 107-108 b̄ events ($\sigma_{b b}=0.3 \mathrm{nb} \rightarrow \mathrm{L}=30-300 \mathrm{fb}^{-1}$)
- Limited time resolution (cannot see Δm_{s} oscillations)
- Using this, what will we do?
- Measure $\Delta \Gamma_{s}$ using time independent correlations of inclusive states
- Measure mixing/decay phases correlating inclusive with exclusive decays
- Measure $\Delta \Gamma_{s}$ using time asymmetry of inclusive states (much better)
- Constrain $\tan \left(\phi_{s}\right)$ (i.e. mixing phase) using time asymmetry of inclusive states

B factories at Upsilon(5s)

- CLEO has run at the Upsilon(5s) for $0.4 \mathrm{fb}^{-1}$
- More recently BELLE has run at Upsilon(5s) BELLE Collab.. PRL 102, 021801 (2009)
- BELLE has now gathered ~100fb-1 $\left[=3 \times 10^{7} \mathrm{bb}\right.$ events]

Basics of $B_{s} B_{s}$ Production at Upsilon(5s)

Heary Flavour Averaging Group

b hadron species	fraction in $Y(5 S)$ decay	ratio
$\mathrm{B}_{\mathrm{s}}{ }^{(*)}$ anti- $\mathrm{B}^{\left({ }^{(*)}\right.}$	$\mathrm{f}_{\mathrm{s}}{ }^{\left.(*)()^{*}\right)}=\mathrm{f}_{\mathrm{s}}(\mathrm{Y}(5 \mathrm{~S}))=0.197 \pm 0.029$	
$\mathrm{B}_{\mathrm{s}}{ }^{*}$ anti-B ${ }^{*}$	$\mathrm{f}_{\text {s }}{ }^{\text {** }}$	$\mathrm{f}_{\mathrm{s}}{ }^{* *} / \mathrm{f}_{\text {s }}{ }^{(*)(*)}=0.901+0.038-0.040$

Experimental Scenario

- $A B_{s} B_{s}$ pair is produced in about 20% of the $e+e-$ $\rightarrow \bar{b} b$ events at the Upsilon(5s).
- $B_{s} B_{s}$
- $B^{*}{ }_{s} B_{s}$
- $\mathrm{B}_{\mathrm{s}} \mathrm{B}^{\star}{ }_{s} \rightarrow 90 \%$ of the time!

$$
\left.r^{*}=\frac{\begin{array}{c}
\text { Define } \\
B_{s}^{(*)} \bar{B}_{s}+B_{s} \bar{B}_{s}^{(*)}
\end{array}}{B_{s}^{(*)} \bar{B}_{s}^{(*)}} \leq 10 \%\right)
$$

- In all cases the system decays radiatively to a $B_{s} B_{s}$ pair.

David Atwood (Iowa State University)

-8-

DPF 2009 July 282009

Properties of Meson Pairs

- In asymmetric B-factories, the system is in motion wrt the lab frame
- This allows us to get time information from the position of the decay (as in the Upsilon(4s)).
- I will assume time resolution not fine enough to see Δm_{s} oscillations.
- Unlike the Upsilon(4s), there are a variety of initial states

David Atwood (Iowa State University)

-9-

DPF 2009 July 282009

Initial State

- $C=-1$ implies $L=o d d$ and $P=-1$ ($>90 \%$ of the time)

$$
\Psi^{C=-1}=\frac{1}{\sqrt{2}}\left(\left|B_{s}\right\rangle\left|\bar{B}_{s}\right\rangle-\left|\bar{B}_{s}\right\rangle\left|B_{s}\right\rangle\right)
$$

- $C=+1$ implies $L=$ even and $P=+1$

$$
\Psi^{C=+1}=\frac{1}{\sqrt{2}}\left(\left|B_{s}\right\rangle\left|\bar{B}_{s}\right\rangle+\left|\bar{B}_{s}\right\rangle\left|B_{s}\right\rangle\right)
$$

Categories of B_{s} Decays

- Given limited \# of mesons, we want to consider final states with as much $B R$ as possible.
- Use inclusive states composed of many exclusive states.
- Taggable Decays (\dagger)
- This includes semileptonic decays as well as hadronic decays which give the flavor of the B_{s} meson.
- Usually we won't actually care whether it tags a B_{s} meson ($\dagger+$) or a B_{s} meson ($t-$) [i.e. due to rapid oscillations].
- Hadronic Decays (h)
- This includes all decays that are not taggable
- Decays with quark content $c \bar{C} s \bar{S}$ should be included in this sample.
- It is advantageous to cut away as many non-ccss states as possible.
- The width difference is entirely due to a difference in the decay rate of the eigenstates to hadronic states
- Exclusive final state
- A single quantum amplitude (e.g. $D_{s}^{+} D_{S}^{-}$)
- Semi-exclusive state
- A set of related amplitudes (e.g. $D_{s}^{+^{*}} D_{S}^{-*}$: three polarization amplitudes; $D_{s}^{+} D_{s}^{-} \eta^{\prime}: s$-wave vs p-wave)
- It is generally possible to separate out the components from the decay distribution.

Map of States

Oscillation Formalism: Decay Matrix for a General State

- For a single state, let
- A=amplitude ($B s \rightarrow f$)
- \bar{A} =amplitude $(\bar{B} s \rightarrow f)$
$R_{f}=\left[\begin{array}{ll}A^{*} A & A^{*} \bar{A} \\ \bar{A}^{*} A & \bar{A}^{*} \bar{A}\end{array}\right]=\left[\begin{array}{cc}u_{f}+v_{f} & w_{f} e^{i \theta_{f}} \\ w_{f} e^{-i \theta_{f}} & u_{f}-v_{f}\end{array}\right]$ for a single quantum state $u^{2}=v^{2}+w^{2}$
- For a set of states $F=\{f\}$

$$
R_{F}=\sum_{f} R_{f}=\left[\begin{array}{cc}
u_{F}+v_{F} & w_{F} e^{i \theta_{F}} \\
w_{F} e^{-i \theta_{F}} & u_{F}-v_{F}
\end{array}\right] \quad \text { for a set of quantum states } u^{2} \geq v^{2}+w^{2}
$$

Oscillation of a Single Meson

- At time $t,|\psi(t)\rangle=a(t)\left|B_{s}\right\rangle+\bar{a}(t)\left|\bar{B}_{s}\right\rangle \equiv\left[\begin{array}{l}a(t) \\ \bar{a}(t)\end{array}\right]$
- The time evolution is given by

$$
|\psi(t)\rangle=U(t)|\psi(0)\rangle
$$

$$
g_{ \pm}(t)=\frac{1}{2}\left(e^{-i m_{1} t} e^{-\frac{1}{2} \Gamma_{t} t} \pm e^{-i m_{2} t} e^{-\frac{-1}{} \Gamma_{2} t}\right)
$$

$$
U(t)=\left[\begin{array}{cc}
g_{+}(t) & e^{-i \phi} g_{-}(t) \\
e^{+i \phi} g_{-}(t) & g_{+}(t)
\end{array}\right]
$$

- Thus the time dependent decay rate is

$$
\Gamma(F, t)=\operatorname{Tr}\left[U^{\dagger}(t) R_{F} U(t) \rho_{0}\right]
$$

$\rho_{0}=$ Initial state density Matrix

General Result Single Meson

- Define

$$
\begin{aligned}
& x=\frac{\Delta m}{\Gamma} \quad S_{x}=\sin (x \Gamma t) \quad C_{x}=\cos (x \Gamma t) \\
& y=\frac{\Delta \Gamma}{2 \Gamma} \quad S_{y}=\sinh (y \Gamma t) \quad C_{y}=\cosh (y \Gamma t) \\
& C_{\theta}^{\phi}=\cos (\phi+\theta) \quad S_{\theta}^{\phi}=\sin (\phi+\theta)
\end{aligned}
$$

- Result $\Gamma\left(B_{s} \rightarrow F, t\right)=e^{-r t}\left[u_{F} C_{y}+v_{F} C_{x}-w_{F} S_{y} C_{\theta}^{\phi}+w_{F} S_{x} S_{\theta}^{\phi}\right] \leftrightarrow \rho_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

$$
\begin{aligned}
& \Gamma\left(\bar{B}_{s} \rightarrow F, t\right)=e^{-\Gamma t}\left[u_{F} C_{y}-v_{F} C_{x}-w_{F} S_{y} C_{\theta}^{\phi}-w_{F} S_{x} S_{\theta}^{\phi}\right] \leftrightarrow \rho_{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& \Gamma\left(\left\{B_{s} \bar{B}_{s}\right\} \rightarrow F, t\right)=e^{-r t}\left[u_{F} C_{y}-w_{F} S_{y} C_{\theta}^{\phi}\right] \leftrightarrow \rho_{0}=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- Average Branching Ratio (as measured e.g. at a collider)

$$
\hat{\Gamma}(F)=\int \Gamma\left(\left\{B_{s} \bar{B}_{s}\right\} \rightarrow F, t\right) d t=\frac{1}{\Gamma}\left[\frac{u_{F}-y w_{F} C_{\theta}^{\phi}}{1-y^{2}}\right]
$$

Oscillation of Entangled Mesons

- For the $C= \pm 1$ state, the time dependent decay to a final state $F_{1} F_{2}$ is:

$$
\begin{aligned}
& \Gamma^{ \pm}\left(F_{1} F_{2}, t_{1} t_{2}\right)=s_{12} \operatorname{Tr}\left(\left[U^{\dagger}\left(t_{1}\right) R_{1} U\left(t_{1}\right)\right] T_{ \pm}\left[U^{\dagger}\left(t_{2}\right) R_{2} U\left(t_{2}\right)\right]^{T} T_{ \pm}^{\dagger}\right) \\
& T_{ \pm}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
0 & 1 \\
\pm 1 & 0
\end{array}\right]
\end{aligned}
$$

- $s_{12}=$ statistical factor $=1 / 2$ for $F_{1}=F_{2}$ or 1 otherwise.

General Result: Entangled Mesons

$$
\begin{aligned}
& S_{y}^{ \pm}=\sinh \left(y \Gamma\left(t_{1} \pm t_{2}\right)\right) \quad C_{y}^{ \pm}=\cosh \left(y \Gamma\left(t_{1} \pm t_{2}\right)\right) \\
& S_{x}^{ \pm}=\sin \left(x \Gamma\left(t_{1} \pm t_{2}\right)\right) \quad C_{x}^{ \pm}=\cos \left(x \Gamma\left(t_{1} \pm t_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\Gamma^{-}\left(F_{1} F_{2}, t_{1} t_{2}\right)=2 s_{12} e^{-\Gamma\left(t_{1}+t_{2}\right)}[& \left(u_{1} u_{2}-w_{1} w_{2} C_{1}^{\phi} C_{2}^{\phi}\right) C_{y}^{-}+\left(u_{1} w_{2} C_{2}^{\phi}-u_{2} w_{1} C_{1}^{\phi}\right) S_{y}^{-} \quad \begin{array}{l}
\text { Only depends } \\
\text { on time }
\end{array} \\
& \left.-\left(v_{1} w_{2} S_{2}^{\phi}-v_{2} w_{1} S_{1}^{\phi}\right) S_{x}^{-}-\left(v_{1} v_{2}+w_{1} w_{2} S_{1}^{\phi} S_{2}^{\phi}\right) C_{x}^{-}\right] \quad \text { difference }
\end{aligned} \quad \begin{aligned}
\Gamma^{+}\left(F_{1} F_{2}, t_{1} t_{2}\right)=2 s_{12} e^{-\Gamma\left(t_{1}+t_{2}\right)}[& {\left[\left(u_{1} u_{2}+w_{1} w_{2} C_{1}^{\phi} C_{2}^{\phi}\right) C_{y}^{+}-\left(u_{1} w_{2} C_{2}^{\phi}+u_{2} w_{1} C_{1}^{\phi}\right) S_{y}^{+}\right.} \\
& \left.+\left(v_{1} w_{2} S_{2}^{\phi}+v_{2} w_{1} S_{1}^{\phi}\right) S_{x}^{+}-\left(v_{1} v_{2}-w_{1} w_{2} S_{1}^{\phi} S_{2}^{\phi}\right) C_{x}^{+}\right] \\
B^{-}=\int \Gamma^{-}\left(F_{1} F_{2}, t_{1} t_{2}\right) d t_{1} d t_{2}= & \frac{2 s_{12}}{\Gamma^{2}}\left[\left(u_{1} u_{2}-w_{1} w_{2} C_{1}^{\phi} C_{2}^{\phi}\right) \frac{1}{1-y^{2}}-\left(v_{1} v_{2}+w_{1} w_{2} S_{1}^{\phi} S_{2}^{\phi}\right) \frac{1}{1-x^{2}}\right] \\
B^{+}=\int \Gamma^{+}\left(F_{1} F_{2}, t_{1} t_{2}\right) d t_{1} d t_{2}= & \frac{2 s_{12}}{\Gamma^{2}}\left[\left(u_{1} u_{2}+w_{1} w_{2} C_{1}^{\phi} C_{2}^{\phi}\right) C_{y}^{+} \frac{1+y^{2}}{\left(1-y^{2}\right)^{2}}-\left(u_{1} w_{2} C_{2}^{\phi}+u_{2} w_{1} C_{1}^{\phi}\right) S_{y}^{+} \frac{2 y}{\left(1-y^{2}\right)^{2}}\right. \\
& \left.+\left(v_{1} w_{2} S_{2}^{\phi}+v_{2} w_{1} S_{1}^{\phi}\right) \frac{2 x}{\left(1+x^{2}\right)^{2}}-\left(v_{1} v_{2}-w_{1} w_{2} S_{1}^{\phi} S_{2}^{\phi}\right) \frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}\right]
\end{aligned}
$$

Basic (qualitative) Idea: What happens if CP is conserved?

- The eigenstates are CP eigenstates

$$
\left|B_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|B_{s}\right\rangle+\left|\bar{B}_{s}\right\rangle\right) \quad\left|B_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|B_{s}\right\rangle-\left|\bar{B}_{s}\right\rangle\right)
$$

- The decay rate of B_{1} and B_{2} to taggable states is the same.
- The branching ratio of B_{1} to taggable states will therefore be smaller because it has a larger total width.
- Just one catch:
- there is no easy way to get a pure B_{i} sample.

$$
\text { e.g. DA and Petrov PRD } 71054032 \text { (2005) }
$$

Measuring y If CP is conserved

- This leads to a couple of ways to find y at B factories (e.g. starting from a $C=-1$ pair):
- You can find the BR of B_{1} to taggable states by correlating with a $C P=-1$ eigenstate; this in effect gives a sample of B_{2} states
- If you observe one of the mesons decaying to a taggable state, it is more likely to be a B_{2}.
- The other meson is thus more likely to be a B_{1} and thus less likely to decay itself to taggable states.
- There will be an effect proportional to y^{2}.

- By the same argument, B_{1} has a larger branching ratio to hadronic states since they account for the width difference.
- Thus tt th and hh correlations will all show effects proportional to y^{2}.
- The correlation of tor h states with a CP eigenstate will show an effect proportional to y

DPF 2009 July 282009

Correlations of Inclusive States

- Define $a=\left[\frac{e^{+} e^{-} \rightarrow B_{\mathrm{s}}^{(*)} \bar{B}_{\mathrm{s}}^{(*)}}{e^{+} e^{-} \rightarrow b \bar{b}}\right]_{\Upsilon(5 s)} \approx 20 \%$

$$
B_{5 s}\left(F_{1} F_{2}\right)=\left[\frac{e^{+} e^{-} \rightarrow F_{1} F_{2}}{e^{+} e^{-} \rightarrow b \bar{b}}\right]_{\Upsilon(5 s)}
$$

- The correlated branching ratios are

$$
\begin{aligned}
& B_{55}(t t)=a \hat{B}_{t}^{2}\left[1-\left(1-2 r^{*}\right) y^{2}\right] \\
& B_{5 s}(h h)=a \hat{B}_{h}^{2}\left[1-\left(1-2 r^{*}\right)\left[\frac{1-\hat{B}_{h}}{\hat{B}_{h}}\right]^{2} y^{2}\right] \\
& B_{5 s}(h t)=2 a \hat{B}_{h} \hat{B}_{t}\left[1+\left(1-2 r^{*}\right)\left[\frac{1-\hat{B}_{h}}{\hat{B}_{h}}\right] y^{2}\right]
\end{aligned}
$$

These are all sensitive to y^{2}

How Well Can y be measured?

- Assume that
- $\mathrm{B}_{\mathrm{t}}=0.3$
- $\mathrm{B}_{\mathrm{h}}=0.7$ (loose cuts) or 0.5 (tight cuts)
- $y=0.1$
- $\mathrm{r}^{\star}=0.1$
- I assume that taggable states are not contaminated by ccss states
- Likewise all ccss states are designated hadronic
- How many ee \rightarrow bb events do you need to get a 5σ effect just including statistical errors?
- t† correlation: N=21×106.
- hh correlation: $\mathrm{N}=120 \times 10^{6}$ (loose cuts) $\mathrm{N}=8 \times 10^{6}$ (tight cuts)
- ht correlation $N=25 \times 10^{6}$ (loose cuts) $N=7 \times 10^{6}$ (tight cuts)
- Note, the number increases like y^{-4} as y decreases.

Inclusive / Semi-exclusive Correlations

- For a state Y, define

$$
\begin{aligned}
& P_{Y}=\frac{w_{Y} C_{Y}^{\phi}}{u_{Y}} \\
& \hat{P}_{Y}=\frac{P_{Y}-y}{1-y P_{Y}}=\frac{\operatorname{Br}\left(B_{1} \rightarrow Y\right)-\operatorname{Br}\left(B_{2} \rightarrow Y\right)}{\operatorname{Br}\left(B_{1} \rightarrow Y\right)+\operatorname{Br}\left(B_{2} \rightarrow Y\right)}
\end{aligned}
$$

- Measuring this will give us information about $\theta+\phi$,
- if Y is a single quantum state $w=u$ so $\cos (\theta+\phi)$ is determined by P_{y}.

$$
\begin{aligned}
& B_{5 s}(t Y)=2 a \hat{B}_{t} \hat{B}_{Y}\left[1+\left(1-2 r^{*}\right) y \hat{P}_{Y}\right] \\
& B_{5 s}(h Y)=2 a \hat{B}_{h} \hat{B}_{Y}\left[1-\left(1-2 r^{*}\right)\left[\frac{1-\hat{B}_{h}}{\hat{B}_{h}}\right] y \hat{P}_{Y}\right]
\end{aligned}
$$

How Well can P_{Y} be Measured?

- Consider a final state like $\mathrm{Y}=\mathrm{D} s \mathrm{D}$ with $\mathrm{Br} \sim 1 \%$.
- We expect $P \sim 1$ since this a CP eigenstate.
- If the acceptance is about 10%, in effect the Br is 0.1\%
- How many ee \rightarrow bb events do you need to get a 5σ effect?
- tY correlation $\mathrm{N}=33 \times 10^{6}$.
- hY correlation $\mathrm{N}=76 \times 10^{6}$ (loose cuts); $\mathrm{N}=20 \times 10^{6}$ (tight cuts)

Problem with This Approach

- For hh, ht and tt correlations, the deviation from the product branching ratios is $O\left(y^{2}\right) \sim 1 \%$.
- To use this method the input branching ratios, \hat{B}_{h} and \hat{B}_{t} must be known to better than 1%
- In the +Y and hy correlations the deviations are $\mathrm{O}(\mathrm{y}) \sim 10 \%$
- Likewise the input branching ratios must be known to this precision.
- How do we get around this?

Better yet: Time Asymmetry

- Recall the time dependent rate
$\Gamma^{-}\left(F_{1} F_{2}, t_{1} t_{2}\right)=2 s_{12} e^{-\Gamma\left(t_{1}+t_{2}\right)}\left[\left(u_{1} u_{2}-w_{1} w_{2} C_{1}^{\phi} C_{2}^{\phi}\right) C_{y}^{-}+\left(u_{1} w_{2} C_{2}^{\phi}-u_{2} w_{1} C_{1}^{\phi}\right) S_{y}^{-}\right.$

$$
\left.-\left(v_{1} w_{2} S_{2}^{\phi}-v_{2} w_{1} S_{1}^{\phi}\right) S_{x}^{-}-\left(v_{1} v_{2}+w_{1} w_{2} S_{1}^{\phi} S_{2}^{\phi}\right) C_{x}^{-}\right]
$$

- The colored terms are the only ones anti-symmetric under $\dagger_{1} \leftrightarrow \dagger_{2}$
- Consider the asymmetry

$$
A\left(F_{1} F_{2}\right)=\frac{\left(F_{2} \text { decays first }\right)-\left(F_{1} \text { decays first }\right)}{\operatorname{Total} F_{1} F_{2}}
$$

- In general this will be sensitive to the red term

$$
A\left(F_{1} F_{2}\right)=\left(1-r^{*}\right)\left(\hat{P}_{2}-\hat{P}_{1}\right) y+O(1 / x)
$$

Time Asymmetry for ht Correlations

- For the ht correlation

$$
A(h t)=\left(1-r^{*}\right) \frac{y^{2}}{\hat{B}_{h}} \approx 1.5 \%
$$

- How many ee \rightarrow bb events do you need to get a 5σ effect?
- $A(h t)$ correlation $N=1.8 \times 10^{6}$ (loose cuts)
- $A(h t)$ correlation $N=1.3 \times 10^{6}$ (tight cuts)
- Why do you do so well???

- Further advantage of an asymmetry: null experiment, don't need to subtract another measurement to find the signal

Charge/Time Asymmetry

$$
\begin{aligned}
& \Gamma^{\Gamma^{-}\left(F_{1} F_{2}, t_{1} t_{2}\right)=2 s_{12} e^{-\Gamma\left(t_{1}+t_{2}\right)}\left[\left(u_{1} u_{2}-w_{1} w_{2} C_{1}^{\phi} C_{2}^{\phi}\right) C_{y}^{-}+\left(u_{1} w_{2} C_{2}^{\phi}-u_{2} w_{1} C_{1}^{\phi}\right) S_{y}^{-}\right.} \begin{array}{l}
\left.\sim\left(v_{1} w_{2} S_{2}^{\phi}-v_{2} w_{1} S_{1}^{\phi}\right) S_{x}^{-}-\left(v_{1} v_{2}+w_{1} w_{2} S_{1}^{\phi} S_{2}^{\phi}\right) C_{x}^{-}\right] \\
\operatorname{not}_{\sim 1 / x^{2}}^{\longleftarrow} \longleftarrow
\end{array} .
\end{aligned}
$$

- We can look for the blue term by considering the asymmetry taking into account the sign of the taggable decay.

$$
A^{\prime}=A\left(h t^{+}\right)-A\left(h t^{-}\right)=\frac{\left(1-r^{*}\right)}{\hat{B}_{h}}\left[\frac{x^{2}\left(1-y^{2}\right)}{\left(1+x^{2}\right)}\right] \frac{y}{x} \tan \left(\phi+\theta_{h}\right)
$$

- For tan=1, $A^{\prime} \sim 0.5 \%$
- This asymmetry therefore gives us tan(phase).

Charge/Time Asymmetry

- How many ee \rightarrow bb events do you need to get a 5σ effect for $A^{\prime}(h t)$ if $\tan (\phi+\theta)=1$?
- $A^{\prime}(h t)$ correlation
$\mathrm{N}=7.0 \times 10^{6}$ (loose cuts) $\mathrm{N}=6.0 \times 10^{6}$ (tight cuts)

Summary

- At the Upsilon(5s), 90% of the time, B_{s} pairs are produced in the $C=-1$ correlated state.
- The correlation between the product branching ratio and the correlated branching ratio tells us about mixing
- Two inclusive states: $|y|$
- Inclusive/exclusive y $\cos (\phi+\theta)$
- Time taggable/hadronic time asymmetry gives us y^{2} and $\tan (\phi+\theta)$.
- This method is better because it is a null experiment
- All this may be done with existing or soon to be acquired data

