Entangled B_s-B_s States at The Upsilon (5s)

David Atwood (Iowa State University)

DA and A. Soni to be posted -1-

Outline

- Motivation
- Upsilon(5s): Bs menu
- Experimental Scenario
- Categories of B_s Decays
- Oscillation Formalism
- Basic (qualitative) Idea
- Correlations
- Asymmetries
- Conclusions

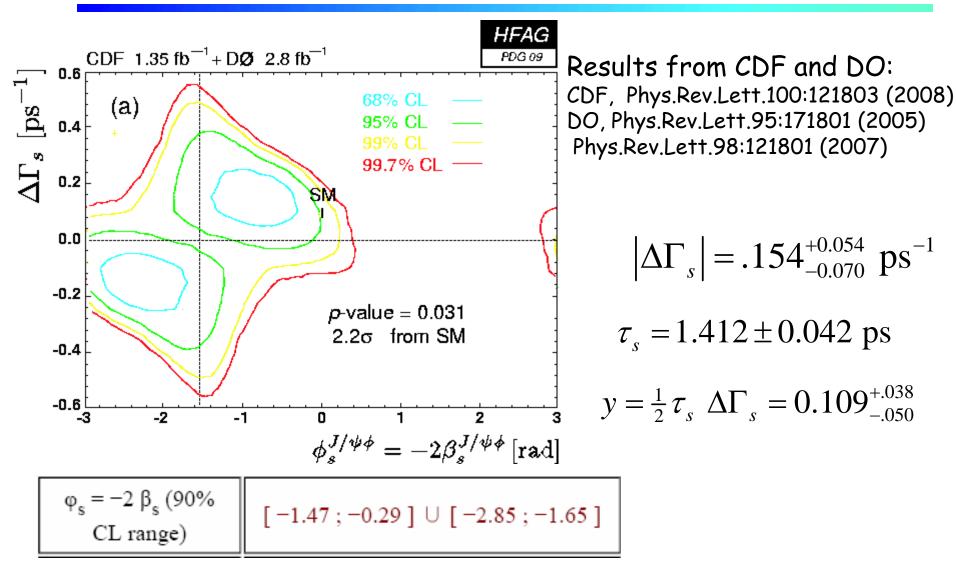
Motivation

- The SM predicts that CP violating phases in the c will be small. We should check that.
- Theory now gives a better prediction for $\Delta\Gamma_{s}$, We therefore want a better measurement of this.

Nierst and Lenz JHEP 0706:072 (2007) Badin, Gabbiani and Petrov Phys.Lett.B653:230-240 (2007)

- In contrast to hadron colliders, electron-positron B-factories produce B_s in a unique entangled state.
- In this talk, I will consider how to make use of this correlated initial state to address these two issues.

Current knowledge (from HFAG 2009)



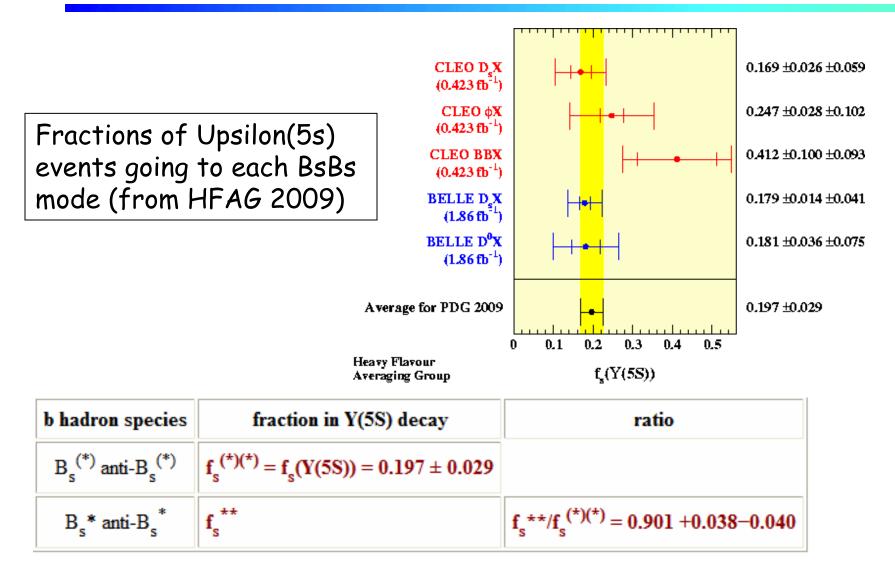
Upsilon(5s): B_s Menu

- Constraints we will try to live with:
 - $10^{7}-10^{8}$ bb events (σ_{bb} =0.3nb \rightarrow L=30-300 fb⁻¹)
 - Limited time resolution (cannot see Δm_s oscillations)
- Using this, what will we do?
 - Measure $\Delta\Gamma_{\rm s}$ using time independent correlations of inclusive states
 - Measure mixing/decay phases correlating inclusive with exclusive decays
 - Measure $\Delta\Gamma_{\rm s}$ using time asymmetry of inclusive states (much better)
 - Constrain tan(ϕ_s) (i.e. mixing phase) using time asymmetry of inclusive states

B factories at Upsilon(5s)

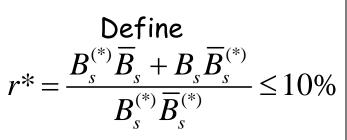
- CLEO has run at the Upsilon(5s) for 0.4fb⁻¹
- More recently BELLE has run at Upsilon(5s) BELLE Collab.. PRL 102, 021801 (2009)
- BELLE has now gathered ~100fb⁻¹ [=3x10⁷ bb events]

Basics of B_sB_s Production at Upsilon(5s)

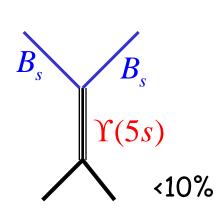


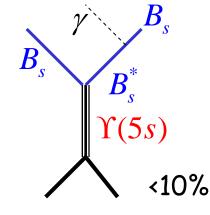
Experimental Scenario

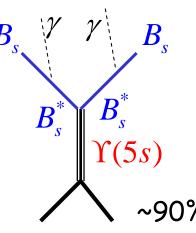
- A $\underline{B}_s \underline{B}_s$ pair is produced in about 20% of the e+e- \rightarrow bb events at the Upsilon(5s).
 - $-B_sB_s$
 - $B_s B_s$
 - $B_s^* B_s^* \rightarrow 90\%$ of the time!



• In all cases the system decays radiatively to a $\mathsf{B}_{\mathsf{s}}\,\mathsf{B}_{\mathsf{s}}$ pair.



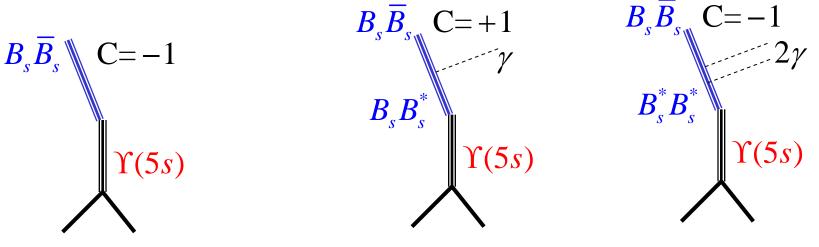




David Atwood (Iowa State University)

Properties of Meson Pairs

- In asymmetric B-factories, the system is in motion wrt the lab frame
- This allows us to get time information from the position of the decay (as in the Upsilon(4s)).
- I will assume time resolution not fine enough to see Δm_s oscillations.
- Unlike the Upsilon(4s), there are a variety of initial states



David Atwood (Iowa State University)

Initial State

- C=-1 implies L=odd and P=-1 (>90% of the time) $\Psi^{C=-1} = \frac{1}{\sqrt{2}} \left(|B_s\rangle |\overline{B}_s\rangle - |\overline{B}_s\rangle |B_s\rangle \right)$
- C=+1 implies L=even and P=+1

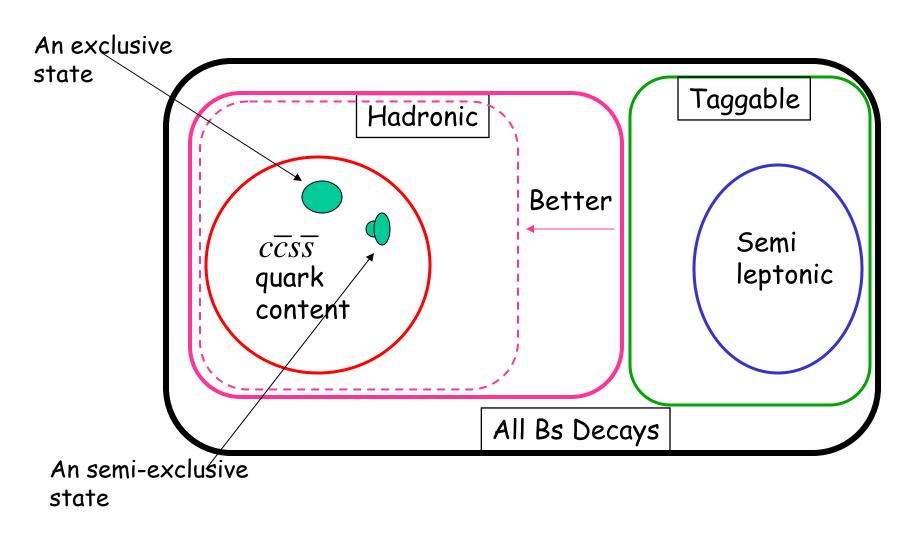
$$\Psi^{C=+1} = \frac{1}{\sqrt{2}} \left(\left| B_s \right\rangle \right| \overline{B}_s \right) + \left| \overline{B}_s \right\rangle \left| B_s \right\rangle \right)$$

Categories of B_s Decays

- Given limited # of mesons, we want to consider final states with as much BR as possible.
- Use inclusive states composed of many exclusive states.
- Taggable Decays (†)
 - This includes semileptonic decays as well as hadronic decays which give the flavor of the $\rm B_{s}$ meson.
 - Usually we_won't actually care whether it tags a B_s meson (t+) or a B_s meson (t-) [i.e. due to rapid oscillations].
- Hadronic Decays (h)
 - This includes all decays that are not taggable
 - Decays with quark content $C\overline{CSS}$ should be included in this sample.
 - It is advantageous to cut away as many non-ccss states as possible.
 - The width difference is entirely due to a difference in the decay rate of the eigenstates to hadronic states

- Exclusive final state
 - A single quantum amplitude (e.g. $D_s^+ D_s^-$)
- Semi-exclusive state
 - A set of related amplitudes (e.g. $D_s^{+*}D_s^{-*}$: three polarization amplitudes; $D_s^+D_s^-\eta'$: s-wave vs p-wave)
 - It is generally possible to separate out the components from the decay distribution.

Map of States



Oscillation Formalism: Decay Matrix for a General State

- For a single state, let
 - A=amplitude(Bs \rightarrow f)
 - \overline{A} =amplitude($\overline{B}s \rightarrow f$)

$$R_{f} = \begin{bmatrix} A^{*}A & A^{*}\overline{A} \\ \overline{A}^{*}A & \overline{A}^{*}\overline{A} \end{bmatrix} = \begin{bmatrix} u_{f} + v_{f} & w_{f}e^{i\theta_{f}} \\ w_{f}e^{-i\theta_{f}} & u_{f} - v_{f} \end{bmatrix}$$

for a single quantum state $u^2 = v^2 + w^2$

 For a set of states F={f} $R_F = \sum_{f} R_f = \begin{vmatrix} u_F + v_F & w_F e^{i\theta_F} \\ w_F e^{-i\theta_F} & \mu_F - v_F \end{vmatrix}$ for a set of quantum states $u^2 \ge v^2 + w^2$

Oscillation of a Single Meson

• At time t,
$$|\psi(t)\rangle = a(t)|B_s\rangle + \overline{a}(t)|\overline{B}_s\rangle \equiv \begin{bmatrix} a(t)\\\overline{a}(t) \end{bmatrix}$$

• The time evolution is given by $|\psi(t)\rangle = U(t) |\psi(0)\rangle$

$$g_{\pm}(t) = \frac{1}{2} \left(e^{-im_{1}t} e^{-\frac{1}{2}\Gamma_{1}t} \pm e^{-im_{2}t} e^{-\frac{1}{2}\Gamma_{2}t} \right)$$
$$U(t) = \begin{bmatrix} g_{+}(t) & e^{-i\phi}g_{-}(t) \\ e^{+i\phi}g_{-}(t) & g_{+}(t) \end{bmatrix}$$

• Thus the time dependent decay rate is $\Gamma(F,t) = Tr \left[U^{\dagger}(t) R_F U(t) \rho_0 \right]$

 ρ_0 =Initial state density Matrix

General Result Single Meson

• Define

$$x = \frac{\Delta m}{\Gamma} \quad S_x = \sin(x\Gamma t) \quad C_x = \cos(x\Gamma t)$$

$$y = \frac{\Delta \Gamma}{2\Gamma} \quad S_y = \sinh(y\Gamma t) \quad C_y = \cosh(y\Gamma t)$$

$$C_{\theta}^{\phi} = \cos(\phi + \theta) \quad S_{\theta}^{\phi} = \sin(\phi + \theta)$$
• Result

$$\Gamma(B_s \to F, t) = e^{-\Gamma t} \left[u_F C_y + v_F C_x - w_F S_y C_{\theta}^{\phi} + w_F S_x S_{\theta}^{\phi} \right] \Leftrightarrow \rho_0 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Gamma(\overline{B}_s \to F, t) = e^{-\Gamma t} \left[u_F C_y - v_F C_x - w_F S_y C_{\theta}^{\phi} - w_F S_x S_{\theta}^{\phi} \right] \Leftrightarrow \rho_0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Gamma(\{B_s \overline{B}_s\} \to F, t) = e^{-\Gamma t} \left[u_F C_y - w_F S_y C_{\theta}^{\phi} \right] \Leftrightarrow \rho_0 = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Average Branching Ratio (as measured e.g. at a collider) $\hat{\Gamma}(F) = \int \Gamma(\{B_s \overline{B}_s\} \to F, t) \ dt = \frac{1}{\Gamma} \left[\frac{u_F - y w_F C_{\theta}^{\phi}}{1 - y^2} \right]$

Oscillation of Entangled Mesons

• For the C=±1 state, the time dependent decay to a final state $F_1 F_2$ is:

$$\Gamma^{\pm}(F_1F_2, t_1t_2) = s_{12} Tr\left(\begin{bmatrix}U^{\dagger}(t_1)R_1U(t_1)\end{bmatrix}T_{\pm}\begin{bmatrix}U^{\dagger}(t_2)R_2U(t_2)\end{bmatrix}^T T_{\pm}^{\dagger}\right)$$
$$T_{\pm} = \frac{1}{\sqrt{2}}\begin{bmatrix}0 & 1\\\pm 1 & 0\end{bmatrix}$$

- s_{12} =statistical factor=1/2 for $F_1 = F_2$ or 1 otherwise.

General Result: Entangled Mesons

$$\begin{split} S_{y}^{\pm} &= \sinh(y\Gamma(t_{1}\pm t_{2})) \quad C_{y}^{\pm} = \cosh(y\Gamma(t_{1}\pm t_{2})) \\ S_{x}^{\pm} &= \sin(x\Gamma(t_{1}\pm t_{2})) \quad C_{x}^{\pm} = \cos(x\Gamma(t_{1}\pm t_{2})) \\ \Gamma^{-}(F_{1}F_{2},t_{1}t_{2}) &= 2s_{12} e^{-\Gamma(t_{1}+t_{2})} \Big[(u_{1}u_{2} - w_{1}w_{2}C_{1}^{\phi}C_{2}^{\phi})C_{y}^{-} + (u_{1}w_{2}C_{2}^{\phi} - u_{2}w_{1}C_{1}^{\phi})S_{y}^{-} \\ &- (v_{1}w_{2}S_{2}^{\phi} - v_{2}w_{1}S_{1}^{\phi})S_{x}^{-} - (v_{1}v_{2} + w_{1}w_{2}S_{1}^{\phi}S_{2}^{\phi})C_{x}^{-} \Big] \\ \Gamma^{+}(F_{1}F_{2},t_{1}t_{2}) &= 2s_{12} e^{-\Gamma(t_{1}+t_{2})} \Big[(u_{1}u_{2} + w_{1}w_{2}C_{1}^{\phi}C_{2}^{\phi})C_{y}^{+} - (u_{1}w_{2}C_{2}^{\phi} + u_{2}w_{1}C_{1}^{\phi})S_{y}^{+} \\ &+ (v_{1}w_{2}S_{2}^{\phi} + v_{2}w_{1}S_{1}^{\phi})S_{x}^{+} - (v_{1}v_{2} - w_{1}w_{2}S_{1}^{\phi}S_{2}^{\phi})C_{x}^{+} \Big] \\ B^{-} &= \int \Gamma^{-}(F_{1}F_{2},t_{1}t_{2}) dt_{1}dt_{2} &= \frac{2s_{12}}{\Gamma^{2}} \Big[(u_{1}u_{2} - w_{1}w_{2}C_{1}^{\phi}C_{2}^{\phi}) \frac{1}{1 - y^{2}} - (v_{1}v_{2} + w_{1}w_{2}S_{1}^{\phi}S_{2}^{\phi}) \frac{1}{1 - x^{2}} \Big] \\ B^{+} &= \int \Gamma^{+}(F_{1}F_{2},t_{1}t_{2}) dt_{1}dt_{2} &= \frac{2s_{12}}{\Gamma^{2}} \Big[(u_{1}u_{2} + w_{1}w_{2}C_{1}^{\phi}C_{2}^{\phi})C_{y}^{+} \frac{1 + y^{2}}{(1 - y^{2})^{2}} - (u_{1}w_{2}C_{2}^{\phi} + u_{2}w_{1}C_{1}^{\phi})S_{y}^{+} \frac{2y}{(1 - y^{2})^{2}} \\ &+ (v_{1}w_{2}S_{2}^{\phi} + v_{2}w_{1}S_{1}^{\phi}) \frac{2x}{(1 + x^{2})^{2}} - (v_{1}v_{2} - w_{1}w_{2}S_{1}^{\phi}S_{2}^{\phi}) \frac{1 - x^{2}}{(1 + x^{2})^{2}} \Big] \end{split}$$

David Atwood (Iowa State University)

-18-

Basic (qualitative) Idea: What happens if CP is conserved?

• The eigenstates are CP eigenstates

 $|B_1\rangle = \frac{1}{\sqrt{2}} \left(|B_s\rangle + |\overline{B}_s\rangle \right) \qquad |B_2\rangle = \frac{1}{\sqrt{2}} \left(|B_s\rangle - |\overline{B}_s\rangle \right)$

- The decay rate of B_1 and B_2 to taggable states is the same.
- The branching ratio of B_1 to taggable states will therefore be smaller because it has a larger total width.
- Just one catch:
 - there is no easy way to get a pure B_i sample.

e.g. DA and Petrov PRD 71 054032 (2005)

Measuring y If CP is conserved

- This leads to a couple of ways to find y at Bfactories (e.g. starting from a C=-1 pair):
 - You can find the BR of B_1 to taggable states by correlating with a CP=-1 eigenstate; this in effect gives a sample of B_2 states
 - If you observe one of the mesons decaying to a taggable state, it is more likely to be a B_2 .
 - The other meson is thus more likely to be a B_1 and thus less likely to decay itself to taggable states.
 - There will be an effect proportional to y^2 .

- By the same argument, B_1 has a larger branching ratio to hadronic states since they account for the width difference.
- Thus tt th and hh correlations will all show effects proportional to y².
- The correlation of t or h states with a CP eigenstate will show an effect proportional to y

David Atwood (Iowa State University)

Correlations of Inclusive States

• Define
$$a = \left[\frac{e^+e^- \rightarrow B_s^{(*)}\overline{B}_s^{(*)}}{e^+e^- \rightarrow b\overline{b}}\right]_{\Upsilon(5s)} \approx 20\%$$

 $B_{5s}(F_1F_2) = \left[\frac{e^+e^- \rightarrow F_1F_2}{e^+e^- \rightarrow b\overline{b}}\right]_{\Upsilon(5s)}$

• The correlated branching ratios are $B_{5s}(tt) = a\hat{B}_{t}^{2} \left[1 - (1 - 2r^{*})y^{2} \right]$ $B_{5s}(hh) = a\hat{B}_{h}^{2} \left[1 - (1 - 2r^{*}) \left[\frac{1 - \hat{B}_{h}}{\hat{B}_{h}} \right]^{2} y^{2} \right]$ $B_{5s}(ht) = 2a\hat{B}_{h}\hat{B}_{t} \left[1 + (1 - 2r^{*}) \left[\frac{1 - \hat{B}_{h}}{\hat{B}_{h}} \right] y^{2} \right]$

These are all sensitive to y²

How Well Can y be measured?

- Assume that
 - B_t=0.3
 - B_h=0.7 (loose cuts) or 0.5 (tight cuts)
 - y=0.1
 - r*=0.1
 - I assume that taggable states are not contaminated by ccss states
 - Likewise all ccss states are designated hadronic
- How many ee \rightarrow bb events do you need to get a 5σ effect just including statistical errors?
 - tt correlation: N=21x10⁶.
 - hh correlation: N=120x10⁶ (loose cuts) N=8x10⁶ (tight cuts)
 - ht correlation N=25x10⁶ (loose cuts) N=7x10⁶ (tight cuts)
- Note, the number increases like y^{-4} as y decreases.

Inclusive / Semi-exclusive Correlations

- For a state Y, define $P_{Y} = \frac{W_{Y}C_{Y}^{\phi}}{u_{Y}}$ $\hat{P}_{Y} = \frac{P_{Y} - y}{1 - yP_{Y}} = \frac{Br(B_{1} \rightarrow Y) - Br(B_{2} \rightarrow Y)}{Br(B_{1} \rightarrow Y) + Br(B_{2} \rightarrow Y)}$
- Measuring this will give us information about $\theta + \phi$,
 - if Y is a single quantum state w=u so $cos(\theta+\phi)$ is determined by P_y.

$$B_{5s}(tY) = 2a\hat{B}_{t}\hat{B}_{Y}\left[1 + (1 - 2r^{*})y\hat{P}_{Y}\right]$$
$$B_{5s}(hY) = 2a\hat{B}_{h}\hat{B}_{Y}\left[1 - (1 - 2r^{*})\left[\frac{1 - \hat{B}_{h}}{\hat{B}_{h}}\right]y\hat{P}_{Y}\right]$$

How Well can P_y be Measured?

- Consider a final state like Y=DsDs with Br~1%.
- We expect P~1 since this a CP eigenstate.
- If the acceptance is about 10%, in effect the Br is
 0.1%
- How many ee—bb events do you need to get a 5σ effect?
 - ty correlation N=33x10⁶.
 - hy correlation N=76x10⁶ (loose cuts); N=20x10⁶ (tight cuts)

Problem with This Approach

- For hh, ht and tt correlations, the deviation from the product branching ratios is $O(y^2) \sim 1\%$.
- To use this method the input branching ratios, \hat{B}_h and \hat{B}_t must be known to better than 1%
- In the tY and hY correlations the deviations are $O(y) \sim 10\%$
- Likewise the input branching ratios must be known to this precision.
- How do we get around this?

Better yet: Time Asymmetry

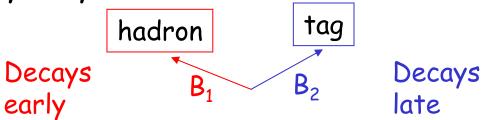
• Recall the time dependent rate

$$\Gamma^{-}(F_{1}F_{2},t_{1}t_{2}) = 2s_{12} \ e^{-\Gamma(t_{1}+t_{2})} \left[\left(u_{1}u_{2} - w_{1}w_{2}C_{1}^{\phi}C_{2}^{\phi} \right)C_{y}^{-} + \left(u_{1}w_{2}C_{2}^{\phi} - u_{2}w_{1}C_{1}^{\phi} \right)S_{y}^{-} - \left(v_{1}w_{2}S_{2}^{\phi} - v_{2}w_{1}S_{1}^{\phi} \right)S_{x}^{-} - \left(v_{1}v_{2} + w_{1}w_{2}S_{1}^{\phi}S_{2}^{\phi} \right)C_{x}^{-} \right]$$

- The colored terms are the only ones anti-symmetric under $t_1 {\leftrightarrow} t_2$
- Consider the asymmetry $A(F_1F_2) = \frac{(F_2 \text{ decays first}) - (F_1 \text{ decays first})}{\text{Total } F_1F_2}$
- In general this will be sensitive to the red term $A(F_1F_2) = (1 - r^*)(\hat{P}_2 - \hat{P}_1)y + O(1/x)$

Time Asymmetry for ht Correlations

- For the ht correlation $A(ht) = (1 r^*) \frac{y^2}{\hat{B}_h} \approx 1.5\%$ How many ee \rightarrow bb events do you need to get a 5σ
- effect?
 - A(ht) correlation N=1.8×10⁶ (loose cuts)
 - A(ht) correlation N=1.3x10⁶ (tight cuts)
- Why do you do so well???



• Further advantage of an asymmetry: null experiment, don't need to subtract another measurement to find the signal

Charge/Time Asymmetry

$$\Gamma^{-}(F_{1}F_{2},t_{1}t_{2}) = 2s_{12} \ e^{-\Gamma(t_{1}+t_{2})} \left[\left(u_{1}u_{2} - w_{1}w_{2}C_{1}^{\phi}C_{2}^{\phi} \right)C_{y}^{-} + \left(u_{1}w_{2}C_{2}^{\phi} - u_{2}w_{1}C_{1}^{\phi} \right)S_{y}^{-} \right]$$

$$\sim 1/x$$
not
$$-\left(v_{1}w_{2}S_{2}^{\phi} - v_{2}w_{1}S_{1}^{\phi} \right)S_{x}^{-} - \left(v_{1}v_{2} + w_{1}w_{2}S_{1}^{\phi}S_{2}^{\phi} \right)C_{x}^{-} \right]$$

 We can look for the blue term by considering the asymmetry taking into account the sign of the taggable decay.

$$A' = A(ht^{+}) - A(ht^{-}) = \frac{(1 - r^{*})}{\hat{B}_{h}} \left[\frac{x^{2}(1 - y^{2})}{(1 + x^{2})} \right] \frac{y}{x} \tan(\phi + \theta_{h})$$

- For tan=1, A'~0.5%
- This asymmetry therefore gives us <u>tan(phase)</u>.

David Atwood (Iowa State University)

Charge/Time Asymmetry

- How many ee \rightarrow bb events do you need to get a 5σ effect for A' (ht) if tan($\phi+\theta$)=1?
 - A'(ht) correlation
 N=7.0x10⁶ (loose cuts) N=6.0x10⁶ (tight cuts)

Summary

- At the Upsilon(5s), 90% of the time, B_s pairs are produced in the C=-1 correlated state.
- The correlation between the product branching ratio and the correlated branching ratio tells us about mixing
 - Two inclusive states: |y|
 - Inclusive/exclusive $y cos(\phi+\theta)$
- Time taggable/hadronic time asymmetry gives us y^2 and tan($\phi + \theta$).
- This method is better because it is a null experiment
- All this may be done with existing or soon to be acquired data