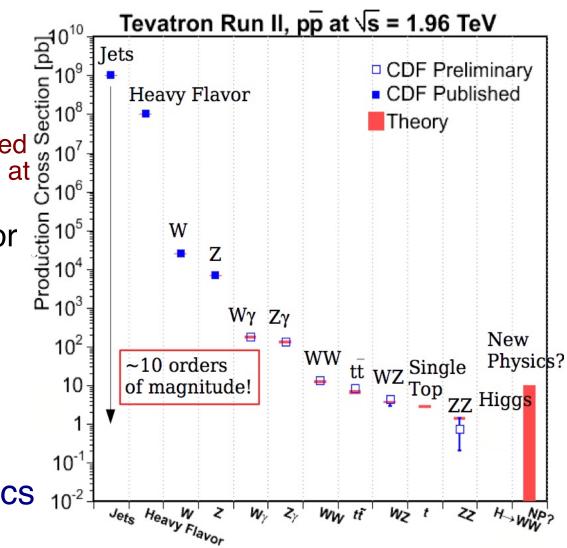


First Observation of Diboson Production in Hadronic Final States at the Tevatron

Jennifer Pursley

University of Wisconsin, Madison

2009 Meeting of the Division of Particles and Fields of the American Physical Society Wayne State University, July 27 - 31, 2009



Why Dibosons? Why with Jets?

Road to Higgs paved with dibosons! WW, WZ, ZZ

- Not previously observed in final states with jets at hadron colliders
- Same final state as for low mass Higgs
 - H+W/Z \rightarrow bb+ $\ell \nu / \nu \nu$
- Small signals in large backgrounds
 - Test of analysis techniques

Sensitive to new physics

How do You Find Dibosons?

Strategy:

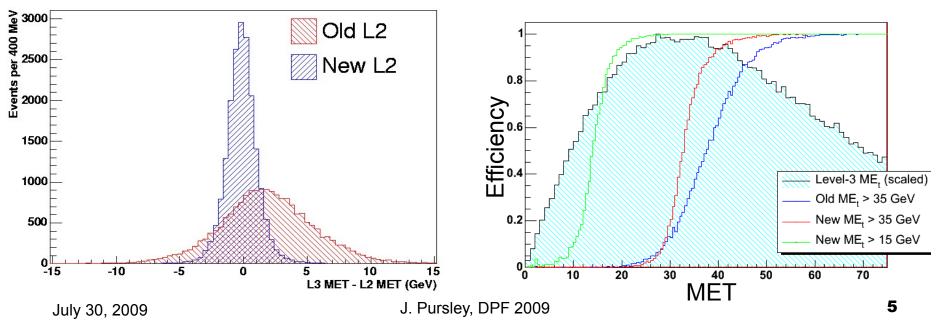
- Select dijet events with large missing transverse energy (MET)
 - Sensitive to *lv* and *vv* decay modes
- Maximal use of data to estimate backgrounds
- Simple but smart analysis techniques
 - Focus on deep understanding of backgrounds
 - It's never late to add multivariate techniques

How do You Find Dibosons?

Strategy:

- Select dijet events with large missing transverse energy (MET)
 - Sensitive to *lv* and *vv* decay modes
- Maximal use of data to estimate backgrounds
- Simple but smart analysis techniques
 - Focus on deep understanding of backgrounds
 - It's never late to add multivariate techniques

Challenges:


- Need lots of data
- High efficiency triggers at all luminosities
 - L2 trigger upgrade
- Large backgrounds dominated by multijet events with fake MET and Z/W+jets
 - Sophisticated technique to suppress QCD multijets and estimate systematics

Extracting small signal

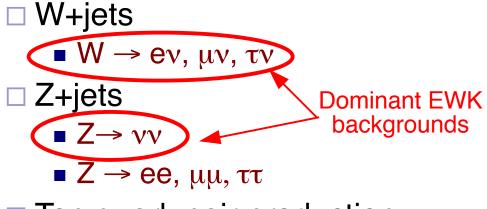
Calorimeter Trigger Upgrade

- Trigger designed for 30x10³⁰cm⁻²s⁻¹... Tevatron now regularly achieving 300x10³⁰cm⁻²s⁻¹
- Upgraded L2 trigger
 - More sophisticated algorithm (almost same as in offline)
 - Better resolution and turn-on
 - Better performance at high luminosity

Backgrounds

Electroweak

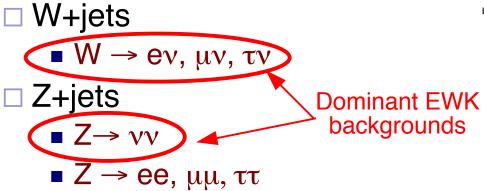
Use MC to describe kinematics


- □ W+jets
 - W \rightarrow eV, $\mu\nu$, $\tau\nu$
- □ Z+jets
 - $Z \rightarrow vv$
 - Z \rightarrow ee, $\mu\mu$, $\tau\tau$
- □ Top quark pair production

Backgrounds

Electroweak

□ Use MC to describe kinematics

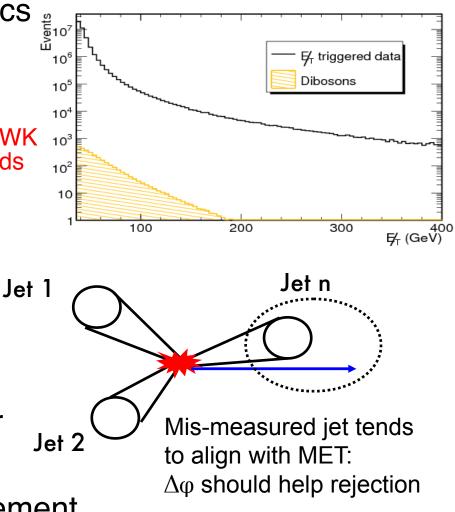

□ Top quark pair production

Backgrounds

Electroweak

Use MC to describe kinematics

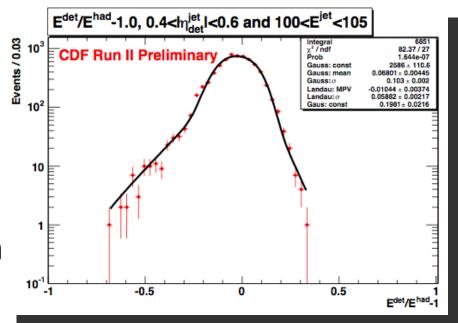
□ Top quark pair production


QCD multijets

- □ Fake MET, but large rate
- □ Reject as much as possible
- Use data to model remainder

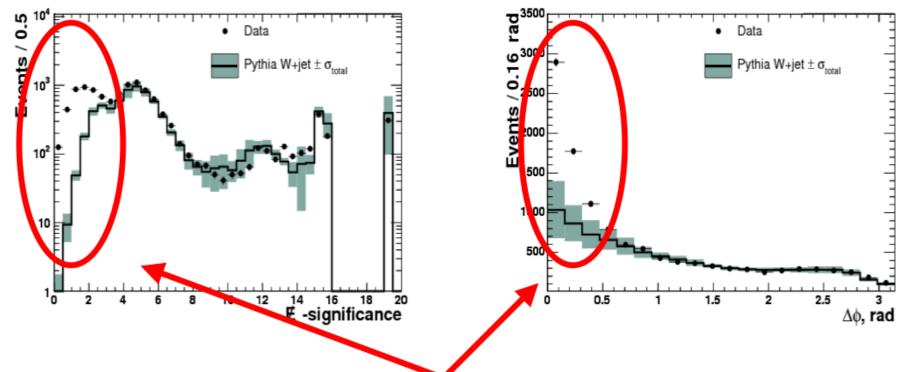
Non-collision (cosmics)

□ Negligible after timing requirement July 30, 2009 J. Pursley, DPF 2009


Diboson signal swamped by QCD background with fake MET

MET Resolution Model (Metmodel)

- Example of jet energy resolution
 - Mis-measurements of jet energy are leading source of fake MET
 - Obtain jet energy resolution as a function of E and η

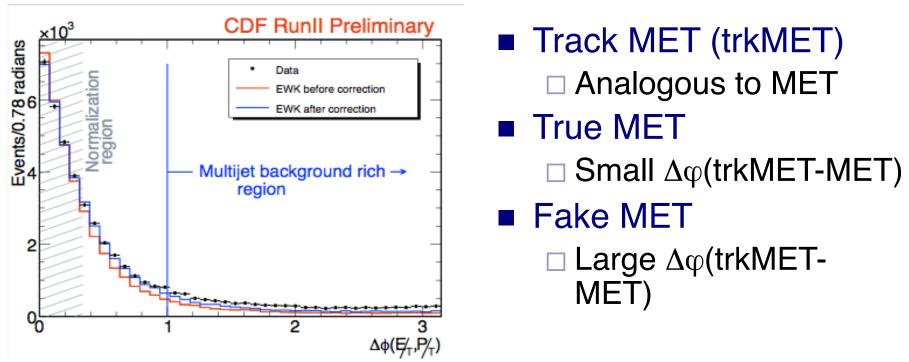

Select events with true MET:

- Calculate MET-significance based on event configuration and known energy resolution
- Use MET-significance to select events with true MET

Validation of Metmodel

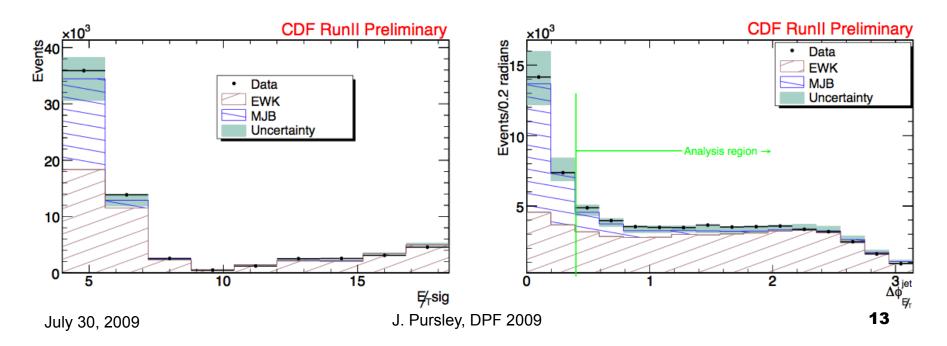
• Use $W(\rightarrow e_v)$ + jet data to validate MET-resolution

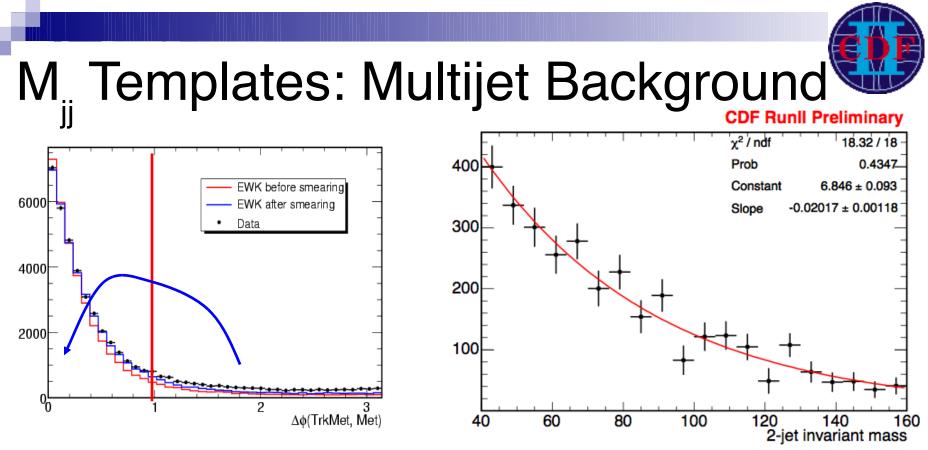
■ Regions dominated by events with fake MET □ Low MET-significance and small Δφ(jet,MET)


Diboson Candidate Selection

	Variable	Cut values	
44910 diboson candidate	MET	>60 GeV	
events after selection	Jet -1,2 E _T	>25 GeV	
SEIECIION	Jet EmFr	<0.9	
	Jet -1,2 η	<2.0	
QCD multijet rejection	$\Delta \phi_{closest}$	>0.4 rad	
	MET-significance	>4	
•	$\Delta R_{Iep-jet}$	>0.2	
	E ^{EM} /E ^{tot}	0.3-0.85	
	M_{jj}	40 GeV/c ² - 160 GeV/c ²	
July 30, 2009	Jet timing	<4.5 ns	

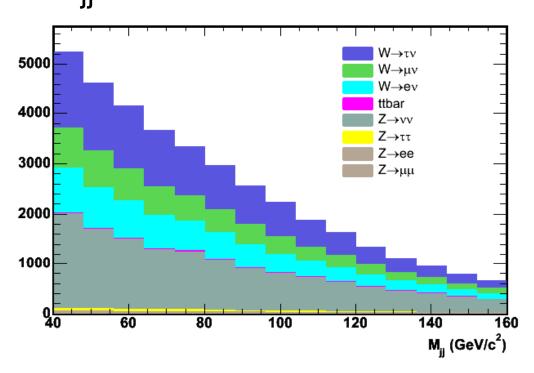
Modeling Multijet Background


Subtract EWK from data in $\Delta \phi$ (trkMET-MET) > 1.0 region


- \Box Address MC-data resolution and modeling effects with $Z \rightarrow \mu \mu$ events
- EWK MC normalized to data in peak region

Checking Background Model

- Check distributions sensitive to fake MET
 - MET-significance
 - $\Box \Delta \phi$ (jet,MET)
- EWK background and signal have the same shapes in these variables



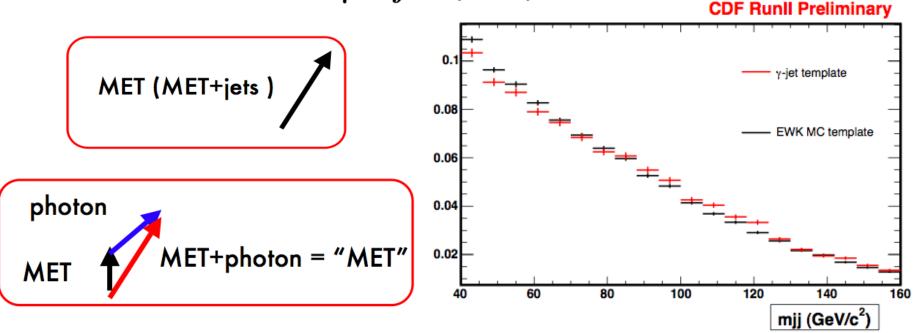
 Shape & normalization (6144 events) taken from data in the region Δφ(trkMET-MET) > 1.0 after EWK subtraction
□ Shape & normalization included as constraints in M_a fit

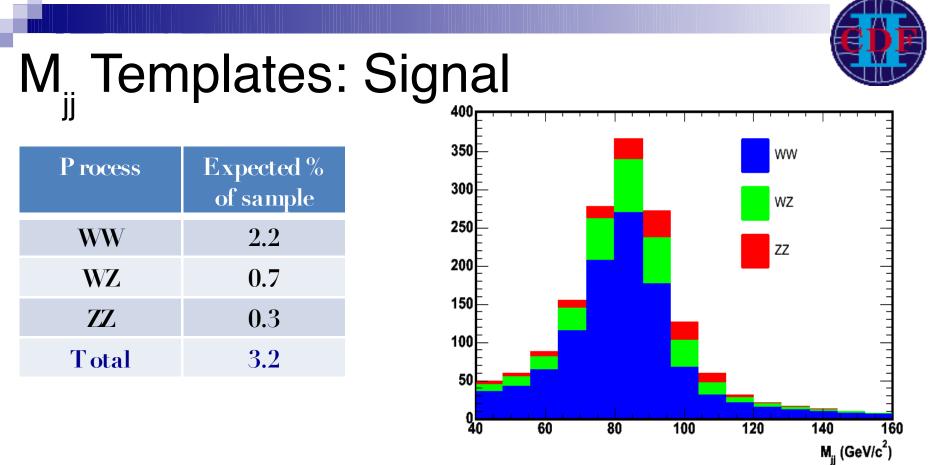
Uncertainties from extrapolation into $\Delta \phi$ (trkMET-MET)
< 1.0 region determined using dijet MC

M_{jj} Templates: EWK Background

Shape taken from MC
Total number of EWK events unconstrained in fit (~31000 expected)

P rocess	Expected % of sample
Ζ→νν	28.9
Ζ→ττ	1.0
Ζ→μμ	0.7
Z→ee	0.0
₩→τν	24.1
W→ev	14.4
W→µv	12.8
tt	0.9
Single top	0.5
Total	83.3




Systematics on Shape of EWK

- Use data γ +jets as alternative template
 - □ Many uncertainties cancel (detector effects, ISR/FSR...)

• Kinematics of V+jets and γ +jets similar but not identical:

$$V + jets(data) \approx \frac{V + jets(MC)}{\gamma + jets(MC)} \times \gamma + jets(data)$$

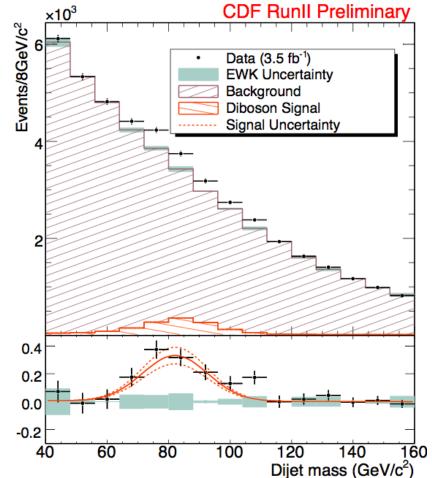
Shape from MC

- Number of signal events unconstrained in fit (~1400 expected)
- Jet energy scale included as Gaussian constraint in fit

Systematics

Ì

	Systematic	% un	ncert.
Extraction	EWK shape	7.7	Uncertainties on extraction
	Resolution	5.6	Oncertainties on extraction
	Total extraction	9.5	
	JES	8.0	
	JER	0.7	
Accentones		1.0	Additional uncertainties that
Acceptance	Trigger inefficiency	2.2	contribute to cross section
	ISR/FSR	2.5	
	PDF	2.0	
	Total acceptance	9.0	
	Luminosity	5.9	
	Total	14.4	


Signal Extraction

Fit result:

- \Box 1516 ± 239(stat.) ± 144(syst.)
- □ Expected 1398 ± 243

Significance

- □ Naively, 1516/√(239²+144²) = 5.4σ
- Consider parameter variations for all sources of systematics:
 - Compare likelihood of background only with full fit result
 - Convert difference into probability
- □ Lowest significance returned: 5.3σ

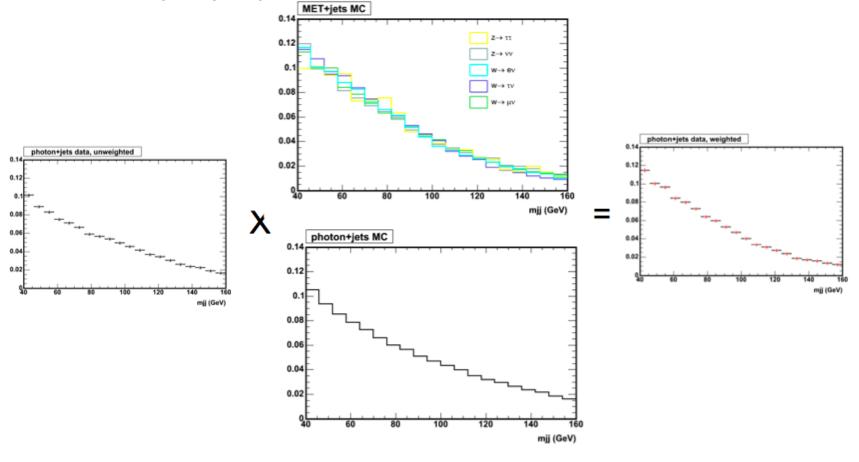
Cross Section

$\sim N_{VV}$ (extracted)	P rocess	Cross Section, pb	Acceptance, %
$\sigma = \frac{A \times \epsilon \times L}{A \times \epsilon \times L}$	WW	11.7	2.48
	WZ	3.6	2.64
■ N_{vv} (extracted) = 1516	ZZ	1.5	2.94

- Acceptance, A: weighted by VV cross sections
- Efficiency, ε:
 - □ Trigger: 96%
 - Cosmics removal: 99%
- Luminosity, *L*: 3450 pb⁻¹
- Cross section:
 - Measured: 18.0 ± 2.8(stat.) ± 2.4(syst.) ± 1.1(lumi) pb
 - \square SM prediction: 16.8 ± 0.5 pb

Summary

- First observation of vector boson pair production in hadronic final state at the Tevatron
 - Milestone in search for low mass Higgs
 - Developed and tested new effective techniques
- Measured diboson production cross section
 - Measured: 18.0 ± 2.8(stat.) ± 2.4(syst.) ± 1.1(lumi) pb
 - \Box SM prediction: 16.8 ± 0.5 pb
- Paper submitted to PRL
 - □ Available as arXiv:0905.4714



Extra Slides

Re-weighting γ + Jets

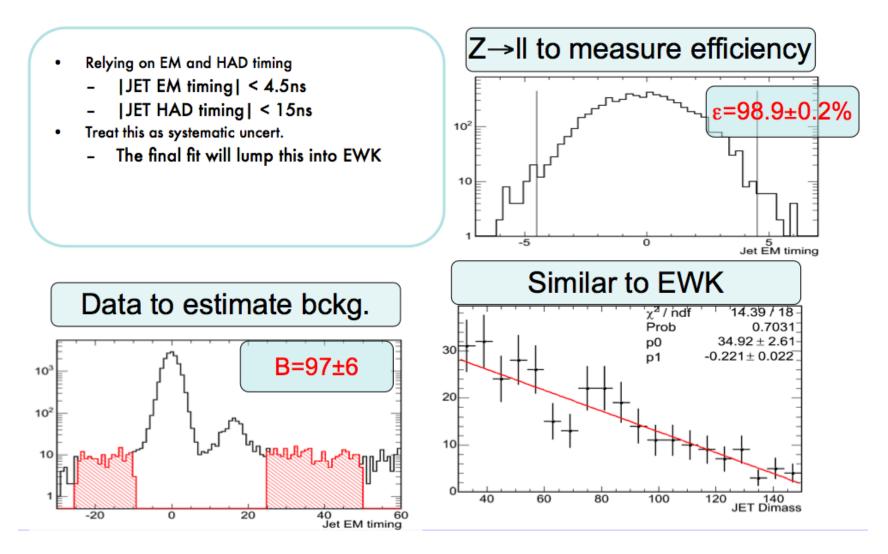
- Kinematics of photon+jets vs. W/Z + jets not IDENTICAL,
- however → weight the photon+jets data to the
- ratio of W/Z+jets / pho+jets MC

Fit Results

Source	Nevents	Stat Uncert
Jes	0.985	0.019
Ewk	36140	1230
Jet bkg	7249	1130
Signal	1516	239

	Jet slope	jes	ewk	jet	sig
Jet slope	1	0.212	-0.419	0.437	0.062
jes		1	-0.010	0.037	-0.116
Ewk			1	-0.967	-0.382
Jet				1	0.206
sig					1

Fit Results


Floating parameter	Fitted value	Stat Uncert
Jet slope	0.724	0.047
jes	0.985	0.019
Ewk	36140	1230
Jet	7249	1130
sig	1516	239

• Jet bkg background template (6144 events in peak and out , slope -0.02)

- Jet slope ~20% uncertainty
- Jet norm ~20% uncertainty
- (0.724x-0.02) is the fit result

Cosmic Removal

