

Measurements of the Trilinear Gauge Boson Couplings from Diboson Production at DØ

Jadranka Sekaric (Florida State University)

For the DØ Collaboration

DPF 2009, July 27-31, Detroit

July 30, 2009

J. Sekaric

Introduction

X Tevatron = vector boson factory pp collisions @ $\sqrt{s} = 1.96$ TeV

Luminosity \approx 50/pb recorded per week: ~ 1.2.10⁶ Ws, ~ 3.5.10⁵ Zs, ~ 620 WW, ~ 190 WZ, ~ 70 ZZ, ~ 800 W/Zy (inclus.)

Run II data: 2002 - present Recorded luminosity: 6.1/fb

- * Recent (new 2009) results from DØ studies related to gauge boson couplings in diboson production:
 - · $Z\gamma \rightarrow vv\gamma$ final states
 - WW \rightarrow lvlv final states
 - WW/WZ→lvjj final states
 - · Combined study of $\gamma WW/ZWW$ couplings

Trilinear Gauge Boson Couplings (TGCs)

• Test of the SM, Search for New Physics (low energy effects) Measurements: Cross Sections, Gauge Boson Couplings (TGCs)

Trilinear Gauge Boson Couplings (TGCs) 🗾

- $\begin{array}{l} \textbf{\textbf{K} Effective Lagrangian for neutral TGCs (ZZY/ZYY):} \\ L_{\gamma Z V} = -ie \left[\left(h_{1}^{V} F^{\mu v} + h_{3}^{V} \tilde{F}^{\mu v} \right) Z_{\mu} \frac{\left(\Box + m_{V}^{2} \right)}{M_{Z}^{2}} V_{v} + \left(h_{2}^{V} F^{\mu v} + h_{4}^{V} \tilde{F}^{\mu v} \right) Z^{\alpha} \frac{\left(\Box + m_{V}^{2} \right)}{M_{Z}^{4}} \partial_{\alpha} \partial_{\mu} V_{v} \right] \\ CP \text{ conserving } \left(\begin{array}{c} + h_{3,4}^{V} \end{array} \right) \text{ couplings } (V = Y, Z) \Rightarrow h_{3}^{Y}, h_{3}^{Z}, h_{4}^{Y}, h_{4}^{Z} \end{array} \right)$
- × Effective Lagrangian for charged TGCs (WWγ/WWZ):

$$\frac{L_{WWV}}{g_{WWV}} = i g_{1}^{V} (W_{\mu\nu}^{*} W^{\mu} V^{\nu} - W_{\mu}^{*} V_{\nu} W^{\mu\nu}) + \kappa_{V} W_{\mu}^{*} W_{\nu} V^{\mu\nu} + i \frac{\Lambda_{V}}{M_{W}^{2}} W_{\lambda\mu}^{*} W_{\nu}^{\mu} V^{\nu\lambda}$$
$$- g_{4}^{V} W_{\mu}^{*} W_{\nu} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) + g_{5}^{V} \varepsilon^{\mu\nu\lambda\rho} (W_{\mu}^{*} \partial_{\lambda} W_{\nu} - \partial_{\lambda} W_{\mu}^{*} W_{\nu}) V_{\rho} + i \overline{k_{V}} W_{\mu}^{*} W_{\nu} V^{\mu\nu} + i \frac{\overline{\lambda_{V}}}{M_{W}^{2}} W_{\lambda\mu}^{*} W_{\nu}^{\mu} V^{\nu\lambda}$$

If we assume: EM gauge inv. $(g_1^{\gamma} = 1)$, C and P conserving \Rightarrow 5 couplings: $\Rightarrow \kappa_{\gamma}, \kappa_{Z}, \Lambda_{\gamma}, \Lambda_{Z}, g_1^{Z}$

SM :

SM Deviations :

 $g_1^Z = \kappa_V = 1$, $\Lambda_V = h_{3,4}^V = 0$

 $\Delta g_{1}^{Z} = g_{1}^{Z} - 1, \ \Delta \kappa_{V} = \kappa_{V} - 1$ $\Delta \Lambda_{V} = \Lambda_{V} - 0, \ \Delta h_{3,4}^{V} = h_{3,4}^{V} - 0$

∆≠0 ANOMALOUS COUPLINGS

Trilinear Gauge Boson Couplings (TGCs)

X Helicity amplitudes grow with energy $\hat{S} \Rightarrow$ Unitarity violation Form factor:

 $\Delta \alpha(\hat{s}) = \frac{\Delta \alpha_0}{(1 + \hat{s}/\Lambda_{NP}^2)^n} \quad \text{Low-energy approximation of coupling}$ (partonic) center-of-mass energy n=2 for WW,WZ
n=3,4 for Zy

Form factor: conservative estimate based on the lowest possible scale for the new physics

Observables Sensitive to Anomalous TGCs

• Example: neutral TGCs

<u>U. Baur and E. Berger, Phys. Rev. D 47, 4889 (1993)</u> U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D 57, 2823 (1998)

Cross sections as a function of anomalous couplings in Zy production; Different couplings \Rightarrow different sensitivities

Deviation from the SM prediction as a function of anomalous TGCs - enhanced high p_T production

Disagreement with the SM expectation would indicate New Physics

July 30, 2009

(Neutral) TGCs in $Zy \rightarrow vvy$ events

Photon E_T spectrum used to set the limits on TGCs, $h_{30,40}^{\gamma,Z}$

- Signal MC predictions (with anomalous TGCs): <u>Baur's generator</u>
- Binned Likelihood Method: likelihood values from the Data/MC fits fitted with 2-par function in each photon E_{T} bin:

 $F(\Delta h_{30}, \Delta h_{40}) = c_1 + c_2 \Delta h_{30} + c_3 \Delta h_{40} + c_4 \Delta h_{30}^2 + c_5 \Delta h_{40}^2 + c_6 \Delta h_{30} \Delta h_{40}$

(Charged) TGCs in WW-Jvlv events

 $BR(W \rightarrow lv; W \rightarrow lv) \approx 10\%$

eμ

Interference between ZWW and γWW

DØ, 1 fb¹

vertices \Rightarrow sensitive to κ_Z , $\Lambda_Z \kappa_v$, Λ_v , g_1^Z

DØ, 1 fb¹

arXiv.org:0904.0673

eμ

Tree-level diagrams for WW→lvlv production

GeV

(Charged) TGCs in WW \rightarrow lvlv events

- Use measured lepton p_T 's to set constraints on ZWW/yWW TGCs Considers two different relations between the TGCs:
 - 1. Equal γWW and ZWW couplings (equality of γ/Z couplings) $\Delta \kappa_v = \Delta \kappa_z, \Delta \Lambda_v = \Delta \Lambda_z, EM$ invariance: $\Delta g_1^v = \Delta g_1^z = 0$
 - 2. LEP parameterization (light Higgs boson existence, preserve $SU(2)_L \times U(1)_V$ gauge invariance) $\boxed{\Delta \kappa_{Z}} = \Delta g_{1}^{Z} - \Delta \kappa_{v} \tan^{2} \Theta_{W}, \Delta \Lambda_{v} = \Delta \Lambda_{Z}$
- MC predictions (with anomalous TGCs): K. Hagiwara, J. Woodside, and D. Zeppenfeld, Phys. Rev. D 41, 2113 (1990) Hagiwara-Zeppenfeld-Woodside generator (HZW) 3-par function for each 2D lepton p_T bin (interpolation between generated anomalous TGC points) \Rightarrow prediction for any TGC value

(Charged) TGCs in WW/WZ \rightarrow lvjj events 💽

arXiv.org:0907.4398

Submitted to PRD

Tree-level diagrams are the same as for $WW \rightarrow IvIv$

- \cdot Indistinguishable signals (insufficient W/Z \rightarrow jj resolution)
- Larger BR than for leptonic modes: $WW(WZ) \rightarrow (e+\mu)vjj$ branching ratio: ~28.5 (14.2)% $WW(WZ) \rightarrow (e+\mu)vjj \sigma^{\text{theo}} \times BR: ~3.5$ (0.5) pb
- Huge background: ~ 86% W+jets, ~ 3% WW+WZ, tt-bar !
- Interference between ZWW and γ WW couplings \Rightarrow sensitive to κ_Z , $\Lambda_Z \kappa_\gamma$, Λ_γ and $g_1^Z > 10^4 \square D \emptyset Run \Pi$

(Charged) TGCs in WW/WZ \rightarrow lvjj events **E**

- \cdot Use dijet p_{T} distribution to set constraints on ZWW/yWW TGCs
- · Considers SU(2)×U(1) and γ WW=ZWW relations between the TGCs
- MC predictions with (anomalous TGCs): Reweighting Method

 $d\sigma = const \cdot |M|^2 dX = const \cdot |M|^2_{SM} \frac{|M|^2}{|AA|^2} dX$

Quadratic dependence of the differential cross-section on anomalous TGCs

$$\mathsf{R} = \frac{|\mathsf{M}|^2}{|\mathsf{M}|^2_{SM}} = \left[1 + \mathsf{A}(\mathsf{X})\Delta \kappa + \mathsf{B}(\mathsf{X})\Delta \kappa^2 + \mathsf{C}(\mathsf{X})\Delta \Lambda + \mathsf{D}(\mathsf{X})\Delta \Lambda^2 + \mathsf{E}(\mathsf{X})\Delta \kappa \Delta \Lambda + \dots\right]$$

X - variable sensitive to anomalous TGCs (W/Z boson p_T) A(X), B(X), C(X), D(X), E(X) are reweighting coefficients (SM: = 0) R(TGC;X) - weight R, matrix elements ratio per event K. Hagiwa

• HZW generator to describe effects of anomalous TGCs

<u>K. Hagiwara, J. Woodside,</u> <u>and D. Zeppenfeld,</u> <u>Phys. Rev. D 41, 2113</u> <u>(1990)</u>

Reweight PYTHIA p_T distribution to various HZW models (with *R*, in the reconstructed dijet p_T bin and sum all weighted events in that bin) to explore the parameter space

• 1D and 2D fit: Poisson χ^2 for each point in TGC space between Data and MC prediction ... and we look at the $\Delta \chi^2$ from the minimum to set limits July 30, 2009 J. Sekaric 12

(Charged) TGCs in WW/WZ→lvjj events 🎼

Most probable TGC values as measured from 1D MC fit to Data with their errors at 68% CL:

$\Lambda_{\rm NP}$ = 2TeV	κγ	$h = h_{\gamma} = h_{Z}$	g ₁ ^Z
SU(2) ×U(1),	1.07 ^{+0.26} _{-0.29}	0.00 ^{+0.06} _{-0.06}	1.04 ^{+0.09} _{-0.09}
γWW=ZWW	1.04 ^{+0.11}	0.00 ^{+0.06} _{-0.06}	-

The 95% CL limits from 1D MC fit to Data compared to other DØ analyses:

	Λ_{NP} = 2TeV	Δκ _γ	$h = h_{y} = h_{Z}$	Δg_1^Z
SU(2) _L ×U(1) _Y	WZ→lvII (1/fb)	-	-0.17 < \ < 0.21	$-0.14 < \Delta g_1^Z < 0.34$
	Wγ→lvγ (0.7/fb)	-0.51 < Δκ _γ < 0.51	-0.12 < \ < 0.13	-
	WW→lvlv (1/fb))	-0.54 < Δκ _γ < 0.83	-0.14 < \ < 0.18	-0.14 < ∆g ₁ ^Z < 0.30
	WW/WZ→lvjj (1.1/fb)	-0.44 < Δκ _γ < 0.55	-0.10 < \ < 0.11	$-0.12 < \Delta g_1^Z < 0.20$
WWZ=WWY	WZ→lvll (1/fb)	-	-0.17 < \ < 0.21	-
	Wγ→lvγ (0.7/fb)	-	-0.12 < \ < 0.13	-
	WW→lvlv (1/fb)	-0.12 < ∆к < 0.35	-0.14 < \ < 0.18	-
	WW/WZ→lvjj (1.1/fb)	-0.16 < ∆к < 0.23	-0.11 < \ < 0.11	-
July	/ 30, 2009	J. Sekaric		13

!!! First TGCs combined study for RunII
High statistics ~1/fb !!!

arXiv.org:0907.4952 Submitted to PRD-RC

- Measurement of charged TGCs: $\kappa_{\gamma}, \kappa_{Z}, \Lambda_{\gamma}, \Lambda_{Z}, g_1^Z$
 - Combined final states:

$WW \rightarrow IvIv$	1/fb	Lepton p_{T} distributions	Diver Dave D. 7/
$WZ \rightarrow IIIv$	1/fb	$Z_{\parallel} p_{T}$ distribution -	<u>- 111104 (2007)</u>
$W\gamma \rightarrow Iv\gamma$	0.7/fb	Photon E_{T} distribution -	Phys. Rev. Lett. 100
WW/WZ \rightarrow lvjj	1.1/fb	Dijet p_T distribution	241805 (2008)

- SU(2)xU(1) and γWW =ZWW relations between the TGCs considered Λ_{NP} = 2TeV
- × Extraction of the W boson magnetic dipole moment $\mu_W = e/2M_W(1+\kappa+\lambda)$ × Extraction of the W boson electric quadrupole moment $q_W = -e/M_W^2(\kappa_\gamma - \lambda_\gamma)$

Combined Measurement of vWW/ZWW TGCs

Most probable TGC values as measured from 1D MC fit to Data, 68% and 95% CL limits (Λ_{NP} =2TeV):

	$SU(2)_L \otimes U(1)_Y$	-constraint Resu	lts	
Parameter	Minimum	68% C.L.	95% C.L.	
$\Delta \kappa_{\gamma}$	0.07	-0.13, 0.23	-0.29, 0.38	
Δg_1^Z	0.05	-0.01, 0.11	-0.07, 0.16	
λ	0.00	-0.04, 0.05	-0.08, 0.08	
Equal Coupling Results				
Parameter	Minimum	68% C.L.	95% C.L.	
$\Delta \kappa$	0.03	-0.04, 0.11	-0.11, 0.18	
λ	0.00	-0.05, 0.05	-0.08, 0.08	

68% CL (SU(2)×U(1), $g_1^{Z}=1$):

$$q_{W} = -1.02 \pm 0.09 (e/M_{W}^{2})$$

 $\mu = 2 \Omega 2^{+0.08} (e/2M)$

- ~25% improvement in sensitivity relative to individual DØ analyses
- \cdot Most stringent limits on γ/ZWW couplings measured from hadronic collisions to date
- Most stringent (published soon) results of μ_W and q_W to date July 30, 2009 J. Sekaric

Summary

- **×** TGC studies useful in search for New Physics
- * All DØ results (cross sections/gauge boson couplings) are in the agreement with the SM
- × The world's tightest limits on TGCs h_{30}^{γ} , h_{30}^{Z} and h_{40}^{γ}
- ★ Combined TGC results with high statistics for the first time (RunII, ~1/fb) Wy→lvy + WW→lvlv + WZ→lvll + WW/WZ→lvjj
- * Most stringent limits on γ/ZWW couplings measured from hadronic collisions to date
 - close to LEP2 individual results in Λ ; $2 \times g_1^Z$; $2 3 \times \Delta \kappa_{\gamma}$
 - with expected ~10/fb data at DØ ~ sensitivity of LEP2 individual
- **×** The best results on μ_W and q_W to date

Still statistically limited but can be improved with incoming data \Rightarrow competitive results are in front of us !