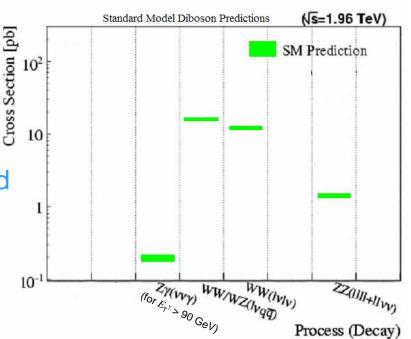


Diboson Production at DØ

Michael Strang The Ohio State University (SUNY-Buffalo) For the DØ Collaboration

2009 Meeting of the Division of Particles and Fields of the American Physical Society

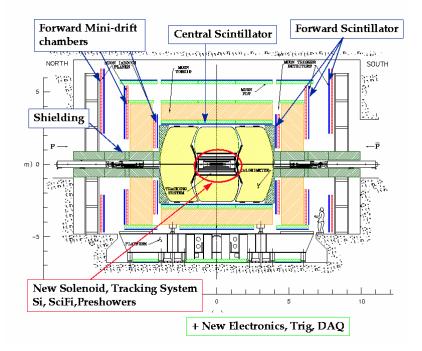


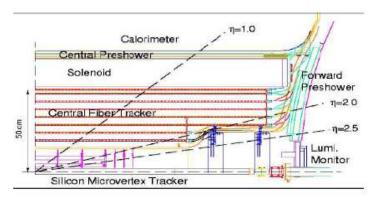
Diboson Physics at DØ

Diboson processes have low cross sections

- Provide natural series of goals for detector sensitivity
- Probe fundamental details of standard model EW sector directly
- Search at Tevatron explores higher energies than LEP and provides access to some channels (e.g., WZ) not available there

• New physics would be reflected in increased cross sections


Motivated by Higgs and SUSY searches


- Share same or similar final states
 - Vital to understand diboson background
- Share similar analysis techniques that can be used at the LHC

The DØ Detector

- Silicon micro-strip vertex detector
- Scintillating fiber tracker
- ✤ 2 T solenoid magnet
- Uranium Liquid Argon calorimeter
- 1.8 T toroid magnet
- Wire tracking / scintillation counter muon detector
- * $|\eta|$ coverage:
 - electrons < 3.2</p>
 - ♦ muons < 2.0</p>

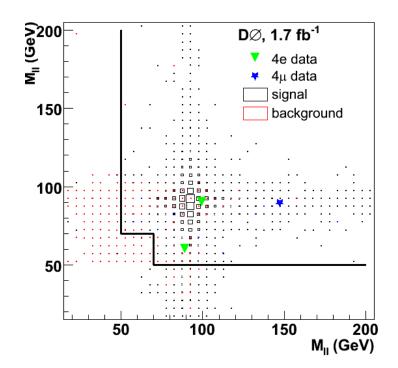
 $ZZ \rightarrow llll$

✤ Selected events from 1.7 fb⁻¹ of Run IIb data

• Four isolated leptons

4e channel:	
-------------	--

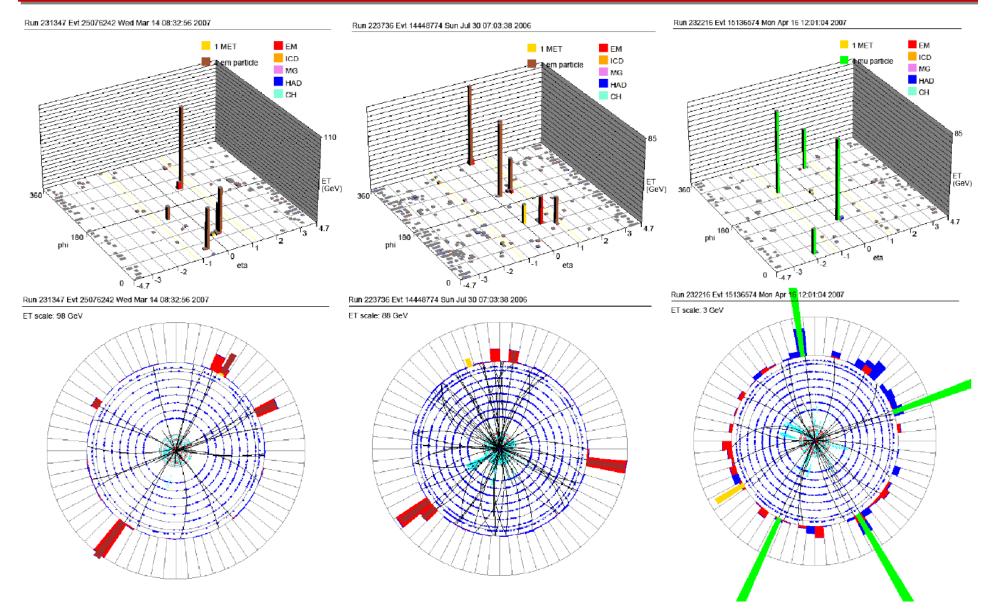
 4μ channel: $2e2\mu$ channel:


Four electrons with $p_T^1 > 30$, $p_T^2 > 25$, $p_T^{3,4} > 15$ GeV sorted by number of electrons with $|\eta| < 1.1$ (at least two) Four muons with $p_T^1 > 30$, $p_T^2 > 25$, $p_T^{3,4} > 15$ GeV Two electrons and two muons with $p_T^1 > 25$, $p_T^2 > 15$ GeV sorted by number of electrons with $|\eta| < 1.1$

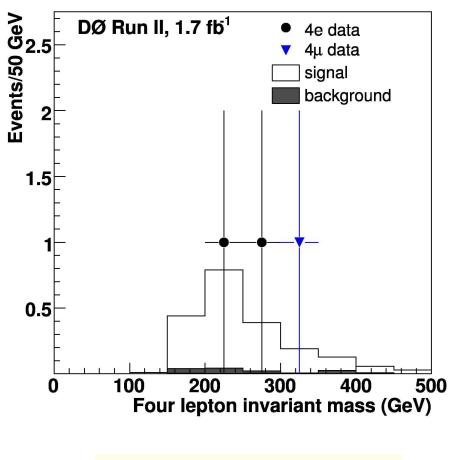
Consistent with coming from a pair of Z bosons
 Dilepton mass M_u^t > 70, M_u^l > 50 GeV

(one combo of opposite-charge, like flavor lepton pairings)

Clean Signature


- No other SM background with 4 leptons
- Small number of expected events means understanding background is important
- Small Z(y)+jets background
 - Jets reconstructed as leptons
 - Varies depending upon number of electrons in central calorimeter
- * Predicted background: $0.14^{+0.03}_{-0.02}$
- Predicted signal: 1.89 ± 0.08
- Observe 3 candidate events

 $ZZ \rightarrow llll + llvv$


✤ Results

- Likelihood of background fluctuating to give the observed yield (*p*-value) is 4.3×10⁻⁸ corresponding to 5.3σ (3.7σ expected)
 - Observation
- Measured cross section:

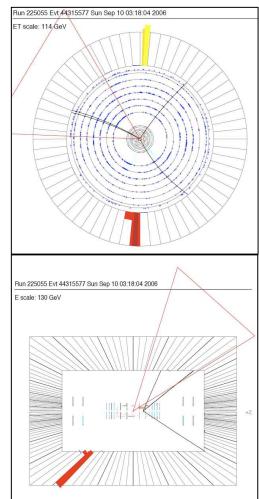
$$1.75^{+1.27}_{-0.86}$$
 (stat.) ± 0.13 (syst.) pb

- ★ Combined with previous $ZZ \rightarrow llll$ analysis (1 fb⁻¹ Run IIa) and $ZZ \rightarrow ll \nu \nu (2.7 \text{ fb}^{-1})$
 - *p*-value of 6.2 ×10⁻⁹ corresponding to 5.7σ (4.8σ expected)
 - Measured cross section:
 1.60 ± 0.63 (stat.)^{+0.16}_{-0.17} (syst.) pb
 - Agrees with earlier CDF result

PRL 101, 171803 (2008)

SM NLO: $\sigma(ZZ) = 1.4 \pm 0.1 \text{ pb}$

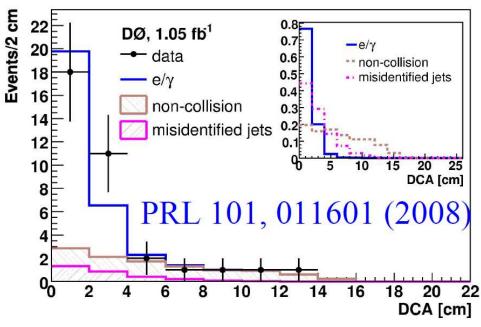
J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999).

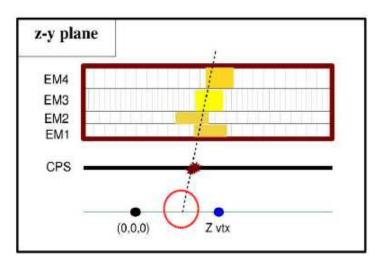


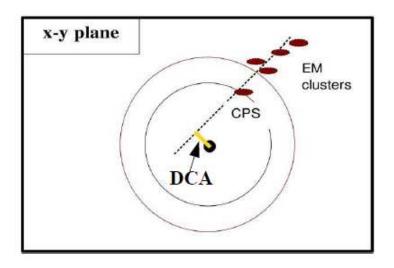
★ Selected events from 3.6 fb⁻¹ of Run II data

- Single high E_T photon with $p_T > 90$ GeV and $|\eta| < 1.1$
- Large missing transverse energy $mE_T > 70 \text{ GeV}$
 - Suppresses multijet background

- Mis-measured mE_T
 - Reject events with jets with $p_{T} > 15 \text{ GeV}$
- $W \rightarrow l \nu$ and $Z \rightarrow l l$
 - Veto muons
 - Veto Isolated tracks
 - Veto additional EM objects with $p_{\rm T}$ > 15 GeV



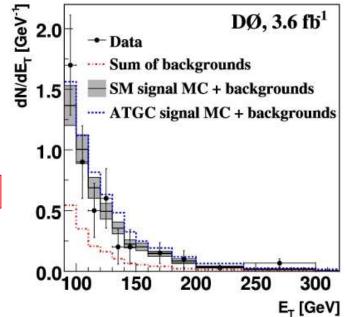




- Non-collision background (*e.g.*, muon from halo or cosmics undergoing bremsstrahlung)
 - Pointing algorithm

 (assume EM shower initiated by photons)
 → require |z_{em} z_{vtx}| < 10 cm
 → require DCA < 4 cm

$$Z\gamma \rightarrow \nu \nu \gamma$$



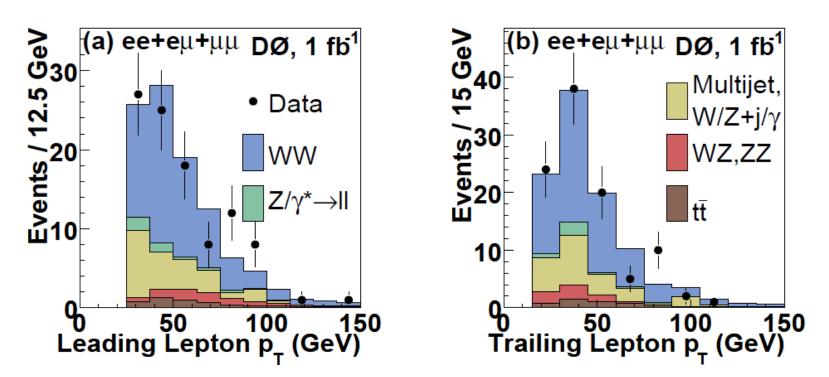
Predicted background: 17.3 ± 2.4
Predicted Signal: 33.7 ± 3.4
Observe 51 candidate events

★ Results

- Measured cross section (for $E_T^{\gamma} > 90 \text{ GeV}$) $\sigma(Z\gamma) \cdot \text{BR}(Z \rightarrow \nu\nu) = 32.9 \pm 9(\text{stat+syst}) \pm 2(\text{lumi}) \text{ fb}$
- *p*-value of 3.1 ×10⁻⁷ corresponding to significance of 5.1σ
 - First Tevatron observation in this channel

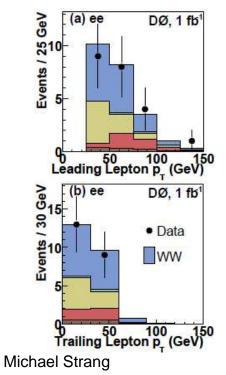
SM NLO: $\sigma(Z\gamma) \cdot BR(Z \rightarrow vv) = 39 \pm 4 \text{ fb}$ (for $E_T^{\gamma} > 90 \text{ GeV}$)

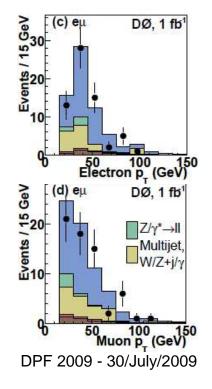
U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D 57, 2823 (1998).

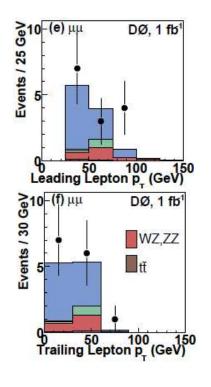


★ Selected events from 1 fb⁻¹ of Run II data

- Two isolated leptons from same vertex
 - $ee, e\mu$ or $\mu\mu$ of opposite charge
 - \rightarrow At least one electron in central calorimeter
 - Leading lepton $p_T^1 > 25 \text{ GeV}$
 - Trailing lepton $p_T^2 > 15 \text{ GeV}$







- \bullet Z \rightarrow ll
 - Removed by optimized mE_T cuts for each channel
 - \rightarrow m E_{T}^{ee} > 45, m $E_{T}^{e\mu}$ > 20, m $E_{T}^{\mu\mu}$ > 35 GeV
 - Further refined by invariant mass requirement in *ee* channel, and azimuthal angle requirements in $e\mu$ and $\mu\mu$ channels
- $t\bar{t}$ and W+jets
 - Require balanced event in $q_T = |p_T^1 + p_T^2 + mE_T|$: $q_T^{ee} < 20, q_T^{e\mu} < 25, q_T^{\mu\mu} < 16 \text{ GeV}$

★ Results

Process	ее	еµ	μμ
Signal	12.38 ± 0.62	44.43 ± 0.86	7.89 ± 0.35
Background	11.08 ± 1.80	24.21 ± 3.78	2.91 ± 0.46
Total expected	23.46 ± 1.90	68.64 ± 3.88	10.79 ± 0.58
Data	22	64	14

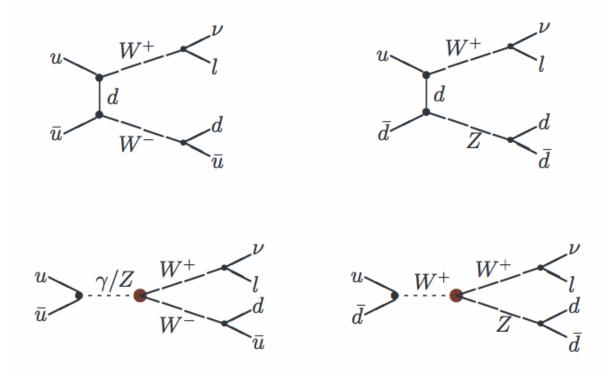
 Measured cross section (combined from individual channel results using the best linear unbiased estimator method):

 $\sigma(WW) = 11.5 \pm 2.1(\text{stat+syst}) \pm 0.7(\text{lumi}) \text{ pb}$

SM NLO: $\sigma(WW) = 12.0 \pm 0.7 \text{ pb}$

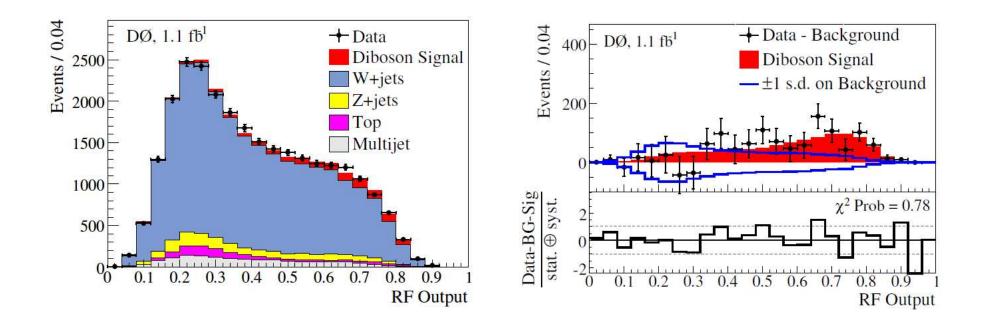
J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999).

arXiv: 0904.0673; submitted to PRL



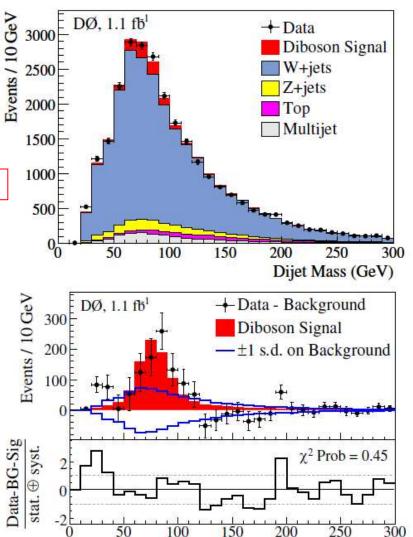
★ Selected events from 1.1 fb⁻¹ of Run II data

- One isolated lepton with $p_T > 20$ GeV and $|\eta| < 1.1$ (2.0) for electrons (muons)
- ♦ mE_T > 20 GeV
- Two jets with $p_T^1 > 30$, $p_T^2 > 20$ GeV and $|\eta| < 2.5$



- Multijet backgrounds
 - "Transverse" W mass > 35 GeV
- ♦ W+jets (Z+jets, top)
 - "Random Forest" multivariate discriminant

★ Results

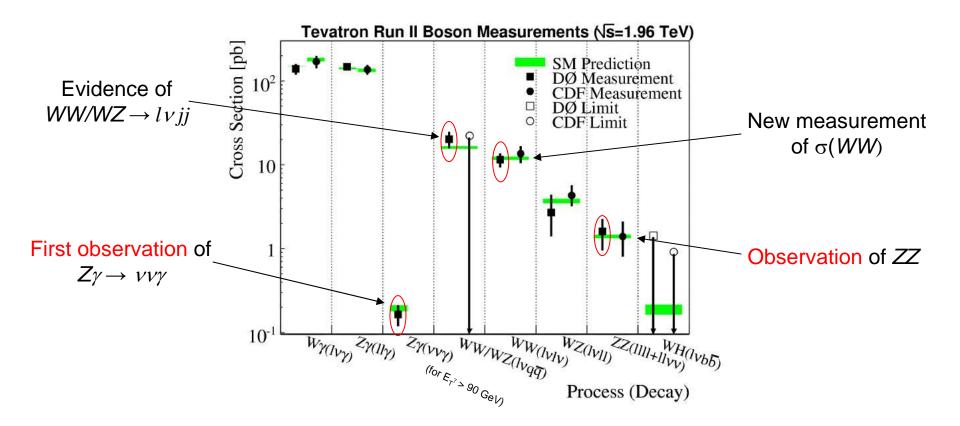

- *p*-value of 5.4 ×10⁻⁶ corresponding to significance of 4.4σ (3.6σ expected)
- Measured cross section

 $\sigma(WW+WZ) = 20.2 \pm 4.4(\text{stat+syst}) \pm 1.2(\text{lumi}) \text{ pb}$

SM NLO: $\sigma(WW+WZ) = 16.1 \pm 0.9 \text{ pb}$

J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999). C

PRL 102, 161801 (2009)



Dijet Mass (GeV)

* So far, everything agrees with the standard model:

- ✤ Now have over 6 fb⁻¹ of reconstructed data
 - Stay tuned for more diboson physics to come from DØ

Backup

Performed using a semi-frequentist approach

Assume data is drawn randomly from a Poisson parent distribution

* Input is the information in channels (binned)

- *s* is expected signal, *b* is expected background, *d* is data
- Generate pseudo-experiments via random Poisson with mean value from expected b and s+b
- Systematic uncertainties treated using a Bayesian model
 - Treated as Gaussian-distributed, randomly sampled for each pseudoexperiment
 - Nominal background prediction varied according to smeared values of systematics, changing the mean of the random Poisson with each pseudoexperiment

✤ Use a negative log-likelihood ratio (LLR) test statistic:

$$LLR(\vec{s}, \vec{b}, \vec{d}) = \sum_{i=0}^{N_{bins}} s_i - d_i \ln(1 + \frac{s_i}{b_i})$$

Subchannel	$4e_{2C}$	$4e_{3C}$	$4e_{4C}$	4μ	$2\mu 2e_{0C}$	$2\mu 2e_{1C}$	$2\mu 2e_{2C}$
Luminosity (fb^{-1})	1.75 ± 0.11	1.75 ± 0.11	1.75 ± 0.11	1.68 ± 0.10	1.68 ± 0.10	1.68 ± 0.10	1.68 ± 0.10
Signal	0.084 ± 0.008	0.173 ± 0.015	0.140 ± 0.012	0.534 ± 0.043	$0.058\substack{+0.007\\-0.006}$	0.352 ± 0.040	$0.553\substack{+0.045\\-0.044}$
$Z(\gamma)$ +jets	$0.030\substack{+0.009\\-0.008}$	$0.018\substack{+0.008\\-0.007}$	$0.002\substack{+0.002\\-0.001}$	0.0003 ± 0.0001	$0.03\substack{+0.02 \\ -0.01}$	0.05 ± 0.01	$0.008\substack{+0.004\\-0.003}$
$t\bar{t}$	_	_	_	_	$0.0012\substack{+0.0016\\-0.0009}$	0.005 ± 0.002	$0.0007\substack{+0.0009\\-0.0005}$
Observed events	0	0	2	1	0	0	0

		e_1^+	e_2^+	e_3^-	e_4^-
4e candidate 1	$p_T (\text{GeV})$	107	59	52	16
	η	0.66	0.25	-0.64	-0.85
	ϕ	4.10	1.08	0.46	2.62
	$M_{\ell\ell}$ (GeV)	$e_1^+ e_4^- \\ 89 \pm 3$		$e_2^+e_3^- \\ 61\pm 2$	
4e candidate 2		e_1^+	e_2^+	e_3^-	e_4^-
	$p_T (\text{GeV})$	83	75	35	26
	η	0.64	0.40	0.85	1.17
	ϕ	6.16	3.80	3.83	1.40
	$M_{\ell\ell}~({\rm GeV})$	$e_1^+e_3^- \\ 99 \pm 3$		$e_{2}^{+}e_{4}^{-}$ 90 ± 4	
		μ_1^+	μ_2^-	μ_3^-	μ_4^+
4μ candidate	$p_T (\text{GeV})$	115	77	$\frac{\mu_3^-}{42}$	24
	η	0.04	-1.01	0.77	-1.93
	ϕ	1.69	4.26	5.29	0.36
		$\mu_{1}^{+}\mu_{3}^{-}$		$\mu_{2}^{-}\mu_{4}^{+}$	
	$M_{\ell\ell}~({\rm GeV})$	148^{+32}_{-18}		90^{+12}_{-8}	