

Measurement of Asymmetry in W/Z production with DØ detector at Fermilab

Trang Hoang Florida State University On behalf of the DØ Collaboration 7/31/2009

The 2009 Meeting of the Division of Particles and Fields of the American Physical Society

Outline

>Introduction

➢ Measurement of the electron charge asymmetry in ppbar → W + X → ev + X events

▷ Measurement of the forward-backward charge asymmetry in $Z/\gamma^* \rightarrow$ ee events

≻Summary

7/31/2009

Trang Hoang - DPF 2009

W and Z events

Z event

- \succ Two high p_T electron
- Identify the charge, and measure the momentum of the electron using the trackers and calorimeter

W event:

- > One high p_T electron
- \blacktriangleright One high p_T neutrino
- Identify the charge, and measure the momentum of the electron
- Neutrino cannot be detected, p_T(v) is inferred by the "missing E_T (MET)" in the detector

Measurement of the electron charge asymmetry in $ppbar \rightarrow W + X \rightarrow ev + X$ events

Electron charge asymmetry

- The *W*⁺ is boosted along the proton and *W*⁻ is boosted along the anti-proton because the *u* quarks carry more momentum than the *d* quarks in proton
- Cannot reconstruct the transverse momentum of the neutrino → difficult to measure the W rapidity
- W production asymmetry → electron charge asymmetry.

$$d(\eta_l) = \frac{d\sigma(l^+)/d\eta - d\sigma(l^-)/d\eta}{d\sigma(l^+)/d\eta + d\sigma(l^-)/d\eta}$$

ad frage add to a second a sec

W distribution

Q^2 , x limit

W asymmetry measurement constraints

$$Q^2 \approx M_W^2, x = \frac{M_W}{\sqrt{s}} e^{\pm y_W}$$

 $|y_W| < 3.2 \Rightarrow 0.002 < x < 1.0$

Electron selection

- Luminosity ~ 0 .75 fb⁻¹
- Four electron types depending on the position of EM cluster, incident angle and the primary vertex
- Different track quality cuts applied for different electron types

Charge misidentification and bias

- Charge misidentification (misID) dilutes the asymmetry.
- Output See Sample to estimate the misID probability.
- Tighten the requirement for one electron, check the charge of the other electron.
- |η| < 1, misID ~ 0.3%</p>
- 2.8 < $|\eta|$ < 3.2, misID ~ 9%
- The solenoid polarity are flipped frequently in DØ. No significant difference in asymmetry for the forward and backward polarity is found.
- The selection efficiencies are similar for the positive and negative electrons.

(P. Nadolsky *et al.*, arXiv: 0802.0007v3)

Measurement of the forwardbackward charge asymmetry in $Z/\gamma^* \rightarrow$ ee events

Trang Hoang - DPF 2009

Weak mixing angle $\sin^2\theta_W$

 $u\overline{u}(d\overline{d}) \rightarrow Z/\gamma^* \rightarrow e^+e^-$

SM couplings of fermions to Z boson:

- > Axial-vector coupling: $g_A = I_f^3$
- $\blacktriangleright \text{ Vector coupling:} \qquad g_V = I_f^3 2Q_f \sin^2 \theta_W$
- \blacktriangleright With $\sin^2\theta_W = 0.232$
- $> A_{FB} \text{ is sensitive to } \sin^2\theta_W (\sin^2\theta_W^{eff} \text{ includes}_{-0.4} \text{ higher order corrections}) -0.6$

Event selection

> Integrated luminosity ~ 1 fb⁻¹

> Two electrons:

- $> p_T > 25 \text{ GeV}$
- Isolated with large EM fraction
- Shower shape consistent with that of an electron
- \succ 50 < M_{ee} < 500 GeV
- > A_{FB} measured in 14 mass bins
- Bin size chosen by detector resolution and available statistics
- ► Electroweak backgrounds ~ 0.4% $Z/\gamma^* \rightarrow \tau\tau, W+X, WW, WZ, ttbar$
- ➢ QCD background ~ 0.9%

Mass range	$\mathbf{C}\mathbf{C}$		CE	
$({\rm GeV})$	Forward	Backward	Forward	Backward
50 - 60	69	78	15	16
60 - 70	104	158	51	91
70 - 75	96	117	64	93
75 - 81	191	235	172	293
81 - 86.5	749	763	843	970
86.5 - 89.5	1388	1357	1860	1694
89.5 - 92	2013	1918	2543	2214
92 - 97	2914	2764	3132	2582
97 - 105	686	549	867	470
105 - 115	153	97	243	88
115 - 130	101	39	167	61
130 - 180	91	33	202	69
180 - 250	31	13	53	16
250 - 500	14	15	17	4

Unfolded A_{FB} result

- $\succ \operatorname{Raw} A_{FB} \rightarrow \operatorname{Unfolded} A_{FB}$
 - > Detector resolution:
 - Events migrate from one mass bin to the other
 - Especially important for mass bins near Z pole
 - > Acceptance and efficiencies
- The SM prediction is consistent with the unfolded A_{FB}

$sin^2\theta_W^{eff}$ result

- > Extraction of $\sin^2\theta_W^{\text{eff}}$ using PYTHIA:
 - Obtained from backgroundssubtracted A_{FB} distribution
 - Compared with A_{FB} templates according to different values of sin²θ_W^{eff} generated with PYTHIA and GEANT-based MC simulation
- Higher-order QCD and EW corrections: using ResBos and ZGRAD2
- > Fitted results (for $70 < M_{ee} < 130 \text{ GeV}$):

 $\sin^2 \theta_W^{eff}$ = 0.2326 ± 0.0018 (stat.) ± 0.0006 (syst.)

- $\clubsuit \ sin^2 \theta_W^{eff}$ result agrees with the global EW fit
- Uncertainty comparable with the uncertainties from light quark asymmetries
 Combined Q^{had}_{FB} from four LEP experiments (0.0012)
 - *NuTeV measurement (0.0016)

Summary

Electron charge asymmetry

- ➤ Measured in three different electron E_T bins
- Experimental uncertainties smaller than PDF uncertainties for most η(e) bins
- $> A_{FB}$ measurement and extraction of $\sin^2 \theta^{eff}_W$ (Z \rightarrow ee)
 - \succ The SM prediction is consistent with the unfolded A_{FB} distribution
 - > $\sin^2 \theta_W^{\text{eff}} = 0.2326 \pm 0.0018 \text{ (stat.)} \pm 0.0006 \text{ (syst.)}$
- > More data collected and more high precision EW and QCD measurements expected