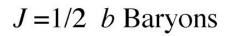
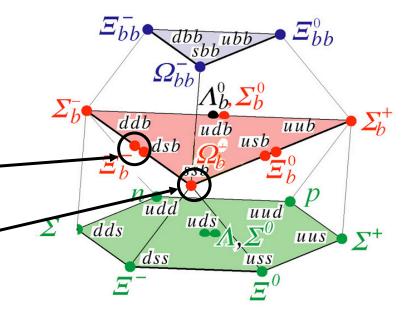
Properties of weakly-decaying bottom baryons, Ξ_{b}^{-} and Ω_{b}^{-} , at CDF

Satyajit Behari

Johns Hopkins University

(on behalf of the CDF Collaboration)

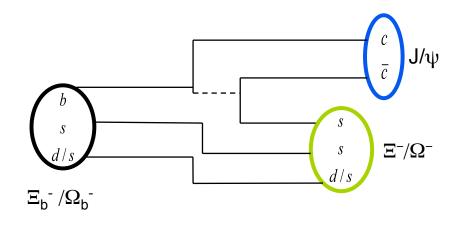



DPF 2009 Meeting Wayne State University, Detroit, July 28, 2009

Baryon Ground States

- We present measurements of *b*-baryon property from fully reconstructed states
- Properties of two of the most recently observed *b*-baryons
 - ⊃ Ξ_b⁻, observed in 2007 –
 ⊃ D0: 15, CDF: 18
 - ⇒ Ω_b⁻, observed by DØ in 2008

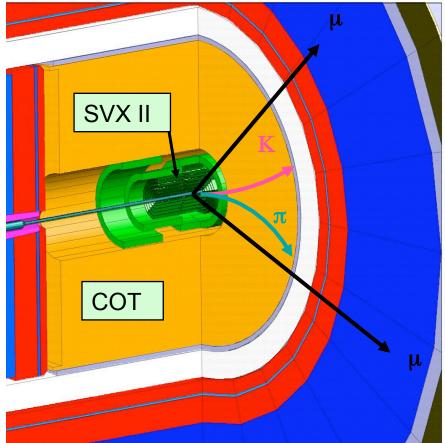
 ⇒ D0: 18
- ➢ Only available lifetime measurements of Ξ_b⁻ are semileptonic (LEP)



 Details of the analysis in: arXiv:0905.3123

B Baryon Searches

- The data set is collected using CDF's di-muon trigger
 - \fbox J/ $\psi \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$ in the final state
- $\succ \Xi_{\rm b}^{-}$ and $\Omega_{\rm b}^{-}$ are searched via:
 - ⇒ Ξ_{b}^{-} → J/ψ Ξ⁻, J/ψ → μ⁺μ⁻, Ξ⁻→ Λπ⁻
 - $\textcircled{\ } \Omega_{\rm b} \xrightarrow{} J/\psi \ \Omega^{-}, \ J/\psi \rightarrow \mu^{+}\mu^{-}, \ \Omega^{-} \rightarrow \Lambda {\rm K}^{-}$
- Data set rich with all *b*-meson species
- B⁰ and Λ_b decay modes are used as references:
 - ⇒ B⁰→ J/ ψ K^{*0}, J/ ψ → $\mu^+\mu^-$, K^{*0}→K⁺ π^- ⇒ B⁰→ J/ ψ K_s⁰, J/ ψ → $\mu^+\mu^-$, K_s⁰→ $\pi^+\pi^-$

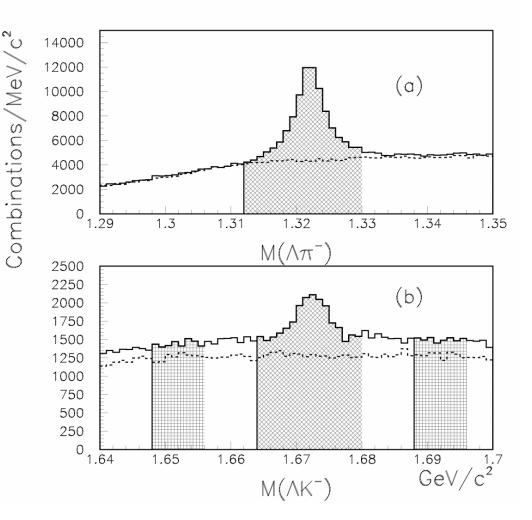

- This analysis uses 4.2 fb⁻¹ data.
- Similar selection and techniques are used for all reconstructed species.

Tracks in the CDF II Detector

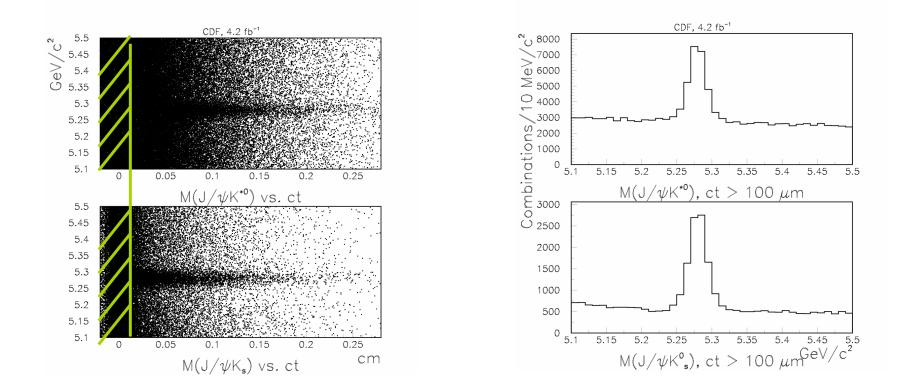
The di-muon trigger requires tracks in muon chambers tracks in the central tracking chamber (COT) (p_T>1.5 GeV) 2.7<M(μ⁺μ[−])<4.0 GeV/c² μ The trigger is unbiased with respect to decay time for *b*-hadrons


Tracks in the CDF II Detector

- In triggered events studied decays are fully reconstructed / analyzed.
- Track reconstruction identifies all tracks with p_T>0.4 GeV/c
- Three SVX II measurements are required for muon tracks.
 - \fbox Not used for p/K/ π tracks

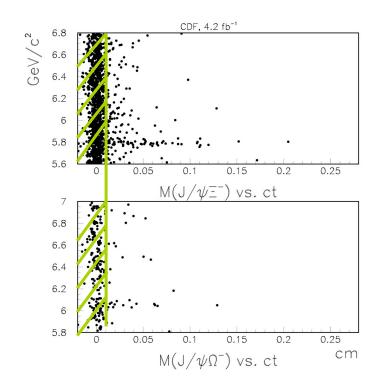

$\Xi_{\rm b}^{-}/\Omega_{\rm b}^{-}$ Reconstruction

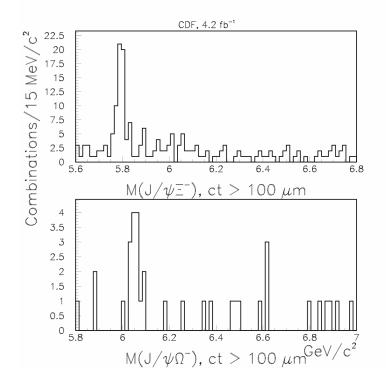
- > The $\Xi_{b}^{-}/\Omega_{b}^{-}$ have complex decay topology:
 - 5 tracks, 3 vertices
- Final state fit involves:
 - topology constraints
 - ⇒ Λ, Ξ⁻/Ω⁻, and J/ψ mass constraints
- Long flight of the Ξ⁻ and Ω⁻ enable usage of silicon detector hits on the 6th track.
 - Impact parameter resolution improvement



Inclusive Ξ^- / Ω^- Sample

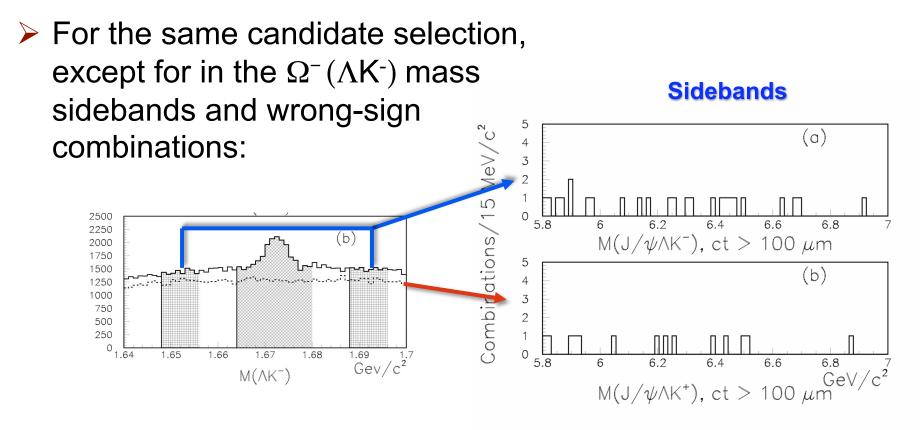
- Yields in the full sample
 - **Ο** J/ψ: 2.9×10⁷
 - **Ο**Λ: 3.6×10⁶
 - ⊃ Ξ⁻: 41,000
 - **Ο**⁻: 3,500
- Dashed histograms are Λπ⁺ / ΛK⁺ (wrong-sign decays)
- Shaded are selection and sideband regions


b-Meson Signals



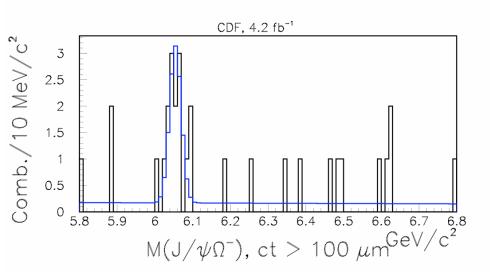
Decay time selects B hadron signals from the prompt background

 $ct > 100 \mu m$ requirement removes most prompt background


b-Baryon Signals

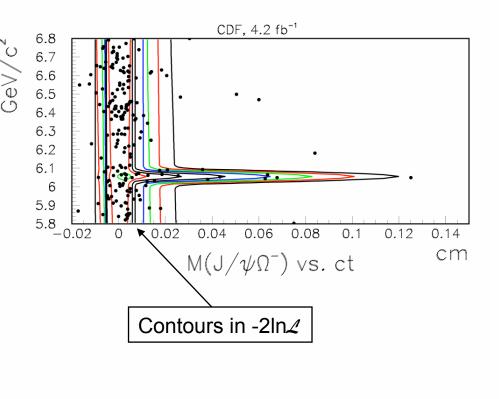
- J/ψ Ξ⁻ and J/ψ Ω⁻ samples
 p_T(B) > 6 GeV/c
 - ⇒ $p_T(\Xi^-/\Omega^-) > 2 \text{ GeV/c}$
 - **\bigcirc** Good fit with J/ ψ mass constraint
- Obvious Ξ_{b}^{-} signal when $ct > 100 \ \mu m$
- Cluster in the J/ $\psi \Omega^-$ around 6.05 GeV/c² test its significance

Where we expect nothing...


Wrong-sign candidates

Ω_{b}^{-} Significance: Mass Distribution Test

- Two tests are used to determine the significance of the candidate signal in the J/ψΩ⁻ sample.
- First, ratio of likelihoods of the mass distribution with ct > 100 μm
 - P.D.F is Gaussian signal and a flat background.
 - Fit freely, and with the null hypothesis


$\Delta 2 \ln \mathcal{L} = 27.9$

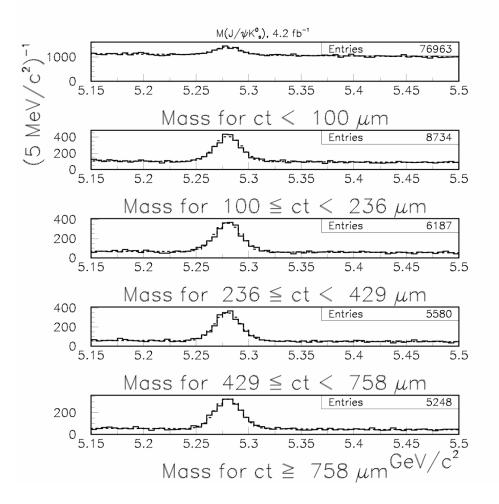
- Interpreted as P(χ²) with 2 d.o.f., =
 8.7×10⁻⁷ → 4.9σ
 - Confirmed by simulation
 - Similar prob. For random background
 - ± 200 MeV/c² search range

Ω_b⁻ Significance: Mass/Decay Time Distribution Test

- Second method: ratio of likelihoods of the mass-decay time distribution.
 - P.D.F in mass is Gaussian signal and a flat background.
 - P.D.F. in time is resolution smeared
 - \bigcirc Exponential(τ_0) for signal
 - Exponential(τ_b) for bbackground
 - Delta function for prompt background
 - Fit freely, and with the null hypothesis

$\Delta 2 \ln \mathcal{L} = 37.3$

Mass and Lifetime Measurements

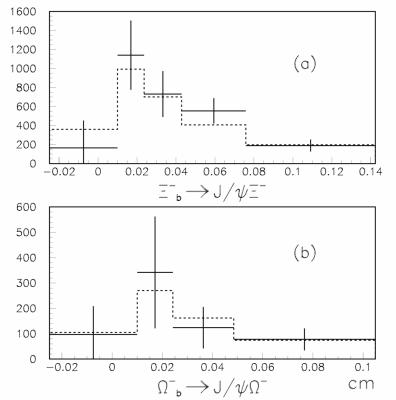

Masses and lifetimes are calculated for 5 final states
 3 are references (B⁰ in K^{*0} and K_s⁰ final states and Λ_b⁰)
 2 are results (Ξ_b⁻, Ω_b⁻)

Similar selection is used for all final states

- Same J/ ψ selection, p_T(B) > 6.0, p_T(K/ $\Lambda/\Xi/\Omega$) > 2.0
- Drop impact parameter requirements various efficiency for this
- ⇒ Mass windows set for hadrons, full fit $P(\chi^2) > 10^{-4}$
- Unbinned mass fit applied to *ct* > 100 μm samples
 Used in Ω_b⁻ significance evaluation
- Unbinned mass, binned lifetime fit applied to whole sample
 Mass and lifetime extraction

A Binned Lifetime Calculation

- A binned lifetime fit makes us insensitive to the modeling of background in decay time
 - Demonstrated on the full B⁰→J/ψK⁰_s sample.
 - Bin boundaries are indicated.
 ~20% area in each time range
 - Projections of the mass fits are overlaid on the data.
- > Fit results:
 - Yield: 9424 ± 167
 - Mass: 5280.2 ± 0.2 MeV/c²
 PDG: 5279.53 ± 0.33 MeV/c²
 - cτ₀: 448 ± 7 μm
 PDG: 459 ± 3 μm


Mass and Lifetime Results

andidates/cm

- ➤ 2.0 MeV/c² shift in Ξ_b⁻ from 1.9 fb⁻¹ measurement - PRL 99,052002(2007)
- Systematic uncertainty on mass:
 - 0.8 (Ξ_b) and 0.9 (Ω_b) MeV/c²
 - 0.55 MeV from B⁰(K_s) error scale by 80% for kinetic energy in the decay
 - 0.5 MeV from Λ_b resolution treatment (considered largest possible)
 - O.3 MeV from Ω⁻ mass
- Systematic uncertainty on lifetime:
 - 1.3% overall
 - \bigcirc 2 µm from σ^{ct} treatment range is 15-40 µm in B⁰
 - \bigcirc 5 μ m from binning

References

		Mass (MeV)	Lifetime(µm)	
ſ	$B^{0}(K^{*0})$	5279.2 ± 0.2	453 ± 6	
₅┥	$B^{0}(K_{s}^{0})$	5280.2 ± 0.2	448 ± 7	
L	Λ_{b}	5620.3 ± 0.5	472 ± 17	
	[I]	5790.9 ± 2.6	468 +82 -74	Results
	Ω_{b}	6054.4 ± 6.8	340 +160 -120	

Production Rate Measurements

- We have access to the product of cross section times branching fraction.
 - \bigcirc We will measure ratios, with respect to the Λ_b^0 :

○Only other *b*-baryon with a large sample

- > The method:
 - **\bigcirc** Obtain acceptance vs. p_T from simulation
 - Cross section of Ξ_b⁻ and Ω_b⁻ is p_T dependent
 - \bigcirc Assume it has the same dependence as Λ_b^0
 - ⇒ Use measured Λ_b^0 production to integrate Ξ_b^- and Ω_b^- acceptance over p_T (6-20 GeV/c).

⊃ No $Ξ_{b}^{-}$ or $Ω_{b}^{-}$ candidates above 20 GeV/c

 $\sigma B(\Xi_h^- \rightarrow J/\psi \Xi^-)$

 $\sigma B(\Lambda_{h} \rightarrow J/\psi \Lambda)$

 $\frac{\sigma B(\Omega_b^- \to J/\psi \Omega^-)}{\sigma B(\Lambda_b \to J/\psi \Lambda)}$

Rate Results

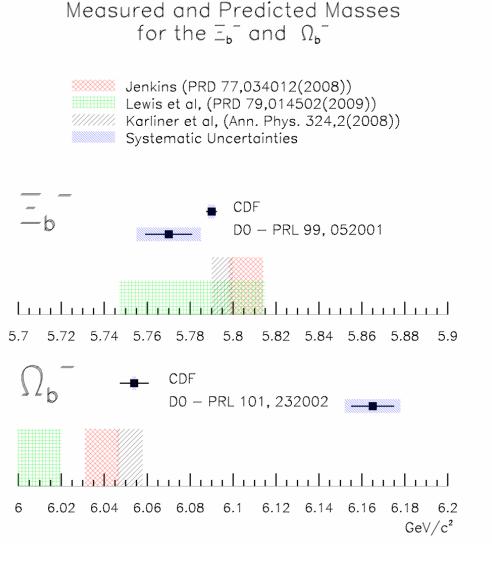
	Acceptance (6-20 GeV) * 10 ⁻³		Yield			
Λ_b^{0}	31	±	2	1812	±	61
Ξ _b -	6.7	±	0.2	66	+14	-9
Ω_{b}^{-}	9	±	0.3	16	+6	-4

- > Total systematic uncertainty of 7% for $\Xi_{\rm b}^{-}$, 9% for $\Omega_{\rm b}^{-}$
- Yields, acceptances, and known branching fractions are combined to give

$$\frac{\sigma B(\Xi_b^- \to J/\psi \Xi^-)}{\sigma B(\Lambda_b^0 \to J/\psi \Lambda)} = 0.167^{+0.037}_{-0.025}(stat.) \pm 0.012(syst.)$$

$$\frac{\sigma B(\Omega_b^- \to J/\psi\Omega^-)}{\sigma B(\Lambda_b^0 \to J/\psi\Lambda)} = 0.045^{+0.017}_{-0.012}(stat.) \pm 0.004(syst.)$$

Summary of Results

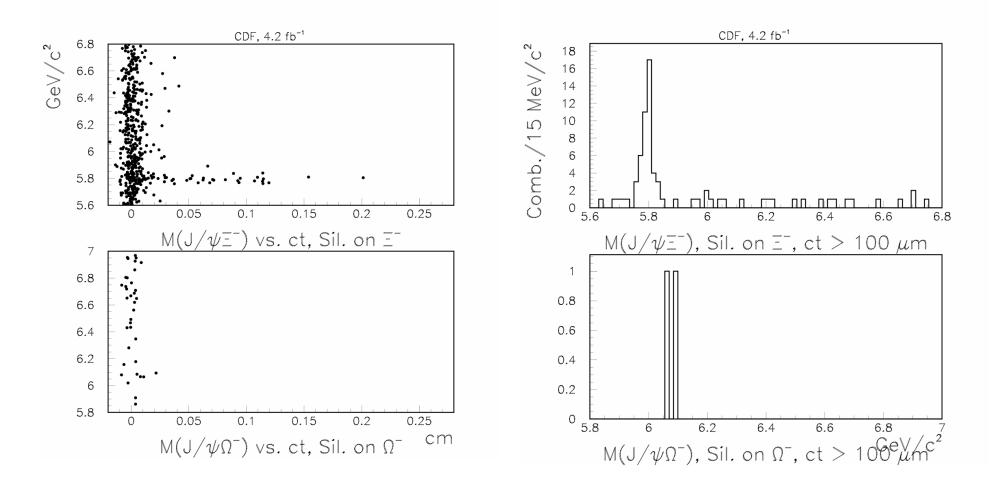

- \succ CDF observes the process Ω_b⁻→ J/ψ Ω⁻
 - Simultaneous mass and decay time fit => 5.5σ significance.
- > Properties of both Ξ_{b}^{-} and Ω_{b}^{-} have been measured:

	Mass (MeV/c ²)		$ au_0(\mathrm{ps})$		$\sigma { m B}/\sigma { m B}({\Lambda_b}^0)$	
Ξb	5790.9 ± 2.6	± 0.9	1.56 ^{+0.27} _{-0.25} ±	0.02	0.167 ^{+0.037} _{-0.025} ± 0.012	
Ω_{b}^{-}	6054.4 ± 6.8	± 0.9	1.13 ^{+0.53} _{-0.40} ±	0.02	0.045 ^{0.017} -0.012 ± 0.004	

- Masses new level of precision
- Lifetimes first Ω_{b}^{-} , first fully reconstructed Ξ_{b}^{-}

b-Baryon Masses Comparison

- CDF results are from this analysis
- They are at odds with the DØ results
 - \bigcirc Consistency with the Ξ_{b}^{-}
 - \bigcirc Inconsistency with the Ω_{b}^{-}
- Resolution of this puzzle can only come with more measurements
 - CDF other channels?
 - **C** $DØ more J/\psi$ sample?



Conclusions

- > CDF performs a "cut-based" selection on its J/ ψ sample in 4.2 fb⁻¹ to isolate B⁰, Λ_b^{0} , Ξ_b^{-} and Ω_b^{-} samples.
- > Mass, lifetime, and relative production rates are obtained for the Ξ_{b}^{-} and Ω_{b}^{-} .
 - Plentiful B⁰ and Λ_b^0 serve as cross checks and motivate systematics.
- > More measurements are necessary to shed light on the Ω_{b}^{-} mass puzzle.
- These strange b-baryons are simply additional members of a rich program of fully reconstructed b-hadrons obtained in the CDF J/ψ sample.

BACKUP SLIDES

Silicon on Ξ^-/Ω^- Helices

> 34700 Ξ^- and 1900 Ω^- with silicon information

> Due to short lifetime of Ω^- many decay before reaching silicon (1.5 cm)